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Cooperative dynamics in visual processing
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An oscillator neural network model that is capable of processing local and global attributes of
sensory input is proposed and analyzed. Local features in the input are encoded in the average
firing rate of the neurons while the relationships between these features can modulate the temporal
structure of the neuronal output. Neurons that share the same receptive field interact via relatively
strong feedback connections, while neurons with different fields interact via specific, relatively weak
connections. The model is studied in the context of processing visual stimuli that are coded for
orientation. The effect of axonal propagation delays on synchronization of oscillatory activity is an-
alyzed. We compare our theoretical results with recent experimental evidence on coherent oscilla-
tory activity in the cat visual cortex. The computational capabilities of the model for performing
discrimination and segmentation tasks are demonstrated. Coding and linking of visual features oth-
er than orientation are discussed.

I. INTRODUCTION

The linking of sensory inputs across multiple receptive
fields is a fundamental task of sensory processing. '

Such linkage is necessary to identify distinct objects, seg-
ment them from each other, and separate them from
background. The theoretical issues raised by this pro-
cessing have been difficult to approach within the frame-
work of most current neural-network models. This
difficulty originates from using only the levels of activity
in individual neurons to encode information. It has been
suggested by von der Malsburg and Schneider' that glo-
bal properties of stimuli are identified through correla-
tions in the temporal firing patterns of different neurons.
This concept gained support from a recent series of ex-
periments by Eckhorn and co-workers and Gray, Singer,
and co-workers, who showed that neurons in the cat
primary visual cortex can exhibit oscillatory responses
that are coherent over relatively large distances, and are
sensitive to global properties of stimuli.

Before describing the model, we summarize the current
status of experimental results that are relevant to our
work (Fig. 1).

(i) Neurons that respond to moving, oriented bars have
a periodic component in their spiking output. The aver-
age period, approximately 20—30 ms, appears to be the
same for different neurons and is independent of the
orientation of the stimulus.

(ii) The activity of neurons with overlapping receptive
fields can be synchronized by the presentation of a single,
oriented bar. The synchronization is fairly insensitive to
the orientation preferences of the neurons [Fig. 1(a)].

(iii) Neurons with separate receptive fields will fire in
synchrony only if bars that simultaneously pass through

the individual fields have similar orientation. Interesting-
ly, this occurs even though the coherent activity of neu-
rons that share the same receptive field is largely indepen-
dent of the orientation of the stimulus [Figs. 1(b) and
1(c)].

(iv) The strength of the synchronization of the activity
of neurons with different receptive fields is significantly
enhanced by the use of a single, long bar that extends
across several fields, rather than two discontinuous, short
bars.

(v) The outputs of neurons with different receptive
fields are not synchronized if the two stimuli move in op-
posite directions, even for neurons that respond vigorous-
ly to both directions of motion.

(vi) There are no substantial phase shifts in the tem-
poral coherence for any of the experimental paradigms.

The existence of temporal synchronization over relatively
large distances in the cortex suggests that, already in pri-
mary visual areas, the processing of information is a
cooperative process that involves neurons with different
receptive fields. The global aspects of this process chal-
lenge the classical notion that processing in the primary
visual areas is essentially confined to segregated groups of
neurons with discrete receptive fields (see also Ref. 9).

Oscillations in neuronal activity in the visual cortex
and their potential role in computation have been the to-
pic of much recent investigation. ' Many of these
works address the possible mechanisms that are responsi-
ble for the generation of cortical oscillations. '

The discrimination of visual stimuli based on their rela-
tive orientation was studied by Sporns et al. ' ' and by
Schillen and Konig. ' ' ' These investigations were based
on computer simulations of models with relatively com-
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FIG. 1. Schematic summary of the experimental evidence on
phase coherence between neurons in different regions of the cor-
tex. The large ovals corresponds to the receptive field that is
shared by different neurons (circles with stripes) whose individu-
al orientation preference is indicated by the orientation of the
stripe. The long bars correspond to stimuli with orientation Oo.

{a) The outputs of neurons that share the same receptive field
are correlated, independent of their orientation preference. (b)
The output of neurons in spatially separated receptive fields is
correlated if the separate stimuli have the same relative orienta-
tion. (c) The output of neurons in spatially separated receptive
fields is uncorrelated if the separate stimuli have the same rela-
tive orientation.

plex neuronal dynamics.
In this paper we present a model neural network that

consists of neurons with oscillatory outputs. We study
the temporal and spatial coherence of the oscillations and
show that it can be strongly modulated by global features
of an external stimulus. The capability of such a network
to segment extended stimuli into distinct, coherent re-
gimes according to the similarity of their local features is
demonstrated.

We do not attempt to describe the mechanism that
gives rise to the underlying oscillations. Rather, we con-
sider a phenomenological description of interacting neu-
ronal oscillators in the presence of noise in which the
only dynamic variables are the phases of the oscillations.
Such a description can, under certain circumstances, be
systematically derived from the equations of motion of a
system of weakly perturbed limit cycle oscillators. We
do not discuss the derivation of phase equations here.
Phase equations of the form used in this study have been
studied extensively as models of entrainment of popula-
tions of oscillators in physical and biological systems.
Models of phase oscillators have also recently been ap-
plied to the processing of visual stimuli. "' '

It is attractive to model the oscillatory responses in the
visual cortex in terms of a phenomenological model of in-
teracting phase oscillators with noise for a variety of
reasons. First, it allows one to focus on the synchroniza-
tion of the neuronal oscillations and the modulation of
this synchrony. Second, the interactions that are re-
quired to synchronize the phases of two oscillators are
much weaker than those required to modify their ampli-

tudes. Our description thus implicitly assumes that the
interactions that mediate and modulate the temporal
synchronization between neuronal oscillators are substan-
tially weaker than the intrinsic and extrinsic neuronal in-
puts that determine the average firing rate, or amplitude,
of the neuronal response. This suggests that our model
may act as a framework to reconcile the observed, long-
range temporal synchronization with the localized, re-
tinotopic organization of neuronal activity. Finally, the
analysis of the network is greatly simplified by reducing
the dynamical degrees of freedom of each neuron to a sin-
gle phase.

We present an analytical and numerical study of the
properties of our model. The theoretical analysis is great-
ly facilitated by our assumption that the interactions be-
tween the neurons are symmetric. This assumption al-
lows us to describe the equilibrium properties of the net-
work by statistical mechanics, similar to the description
of interacting X-Y magnets. The analysis of the model is
further facilitated by the presence of two scales of neu-
ronal connectivity. Extensive connectivity within local
clusters of neurons makes it possible to describe the
short-range properties of the network by a mean-field
theory. Long-range coherence is computed in terms of
the interactions between the average phases for each of a
small number of locally coherent clusters.

In Sec. II we define the phase equations and the pattern
of connectivity. In Sec. III we analyze the feature
specificity and discrimination of the model. In Sec. IV
we present the mean-field analysis of the model and the
main results of this analysis. In Sec. V we analyze the
steady-state behavior of the system in terms of several ex-
amples of extended, orientation coded stimuli. In Sec. VI
we study the efT'ect of synaptic time delays. An extension
of the model to include stimuli that are coded for direc-
tion as well as orientation is discussed in Sec. VII and an
extension to account for possible modulation of the fre-
quency of the oscillations by external stimuli is analyzed
in Sec. VIII. Finally, we discuss some of the underlying
assumptions of our model and the biological issues raised
by them in Sec. IX.

Preliminary accounts of this work have been given.
Here we present a detailed analysis of the model. Fur-
thermore, we incorporate a number of extensions that
enhance the computational capabilities of the network.

II. MODEL

A. Stimuli

Our model describes the dynamic behavior of oscillato-
ry neurons that respond to short bars in the visual field.
Each neuron is sensitive to bars that are present within a
receptive field located at r. The size of the receptive field
is small compared to that of the entire visual field. We
initially focus on the behavior of neurons that respond
only to the orientation of a bar, denoted by Ho(r), where
0~ Ho(r) ~ vr. Neurons that respond to this stimulus have
an auerage rate of firing I (r) that is described by

I (r)=I (9o(r) —6(r)),
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C. Phase equations

The phase variables that govern the temporal aspects
of the neuronal activity are assumed to obey equations
for a system of coupled phase oscillators with noise, i.e.,

&P ( r, t ) =co+ il( r, t )

(2.3)
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where m is the frequency of the neuronal oscillations and
the term i)(r, t ) represents fiuctuations in the instantane-
ous frequency of a cell. It is taken to be white noise with
variance ( i(lr, t) i()r', t')) ~5(t t'). Th—e spatial correla-
tions of li(r, t) will be specified later. The connection
strength J(r, r') mediates the interaction between the
phases of the neurons at locations r and r'. Finally, the
sum over r ' includes all neurons in the network.

FIG. 2. Example of a tuning curve assumed for each of the
neurons. The curve is the average firing rate of the neuron in

response to a moving bar with orientation Oo. The neuron has
orientation preference 0. This particular curve has a triangular
shape, given by 1 (0O —0) ={1—~00

—0~/20') for (0O —0) (2cr
and zero otherwise, where the half width at half maximum is
cr =0.44 rad (25').

where 9(r) is the orientation preferred by the neuron.
%'e assume that there is a uniform distribution of pre-
ferred orientations among neurons that share the same
receptive field. The dependence of the firing rate on the
relative orientation of the stimulus, typically called the
"tuning curve" of the neuron, is illustrated by the exam-
ple in Fig. 2 (e.g., Ref. 28). Neurons that encode both the
orientation and the direction of motion of moving bars
will be considered later.

B. Phase variables

P(r, t)=I (r)[1+A, cosC&(r, t) j . (2.2)

The phases &P(r, t) parametrize the time dependence of
the firing pattern of the neurons. The coefFicient k corre-
sponds to the relative contribution of the temporally
modulated neuronal activity.

The observed neural responses exhibit bursts of spikes.
The time between each burst is close to periodic, while
the time between individual spikes in a burst is highly ir-
regular. We therefore identify the phase variables with
the periodicity of the bursts, i.e., the coarse-grained firing
rates, and not with the timing of individual spikes. The
phases vary on the time scale of the average period of the
oscillations, which is considerably longer than the shor-
test intervals between adjacent spikes.

We describe the state of the neuron at time t by the in-
stantaneous rate of firing P(r, t). It is constructed by
averaging the activity of the neuron over short periods of
time, i.e., a few milliseconds, and is assumed to have the
form

D. Architecture of the connections

The interactions between the neuronal phases are as-
sumed to encode information about the position and
orientation of the stimulus. We postulate that they de-
pend on the level of activity of the pre- and post-synaptic
cell in a Hebb-like manner, i.e.,

J(r, r ') = V(r) W(r, r ') V(r '), (2.4)

V(r) = I (r), (2.5)

as assumed in our previous work. ' However, as will
be evident later, computational and sensitivity issues may
require the use of a nonlinear relation. The term W'(r, r ')
specifies the architecture of the connections and is in-
dependent of the external stimulus.

We assume an architecture for the network in which
neurons are grouped into clusters, analogous to hyper-
columns in the primary visual cortex (e.g. , Refs. 29 and
30). The neurons in each cluster respond to a stimulus in
a common receptive field. They are labeled by the spatial
coordinates of the cluster, denoted R, and their preferred
orientation 0, which is assumed to be uniformly distribut-
ed within each cluster (Fig. 3).

Each neuron interacts with cells in the same cluster via
short-range connections 8'RR(9, 9'), taken as

8'RR(9, 9') = Fs(9 9'), —~s
(2.6)

where X is the total number of neurons in the cluster.
Neurons in different clusters interact via long-range con-
nections WRR. ( 9,9' ), taken as

O'RR (9,9')= FL(B 9'), RWR' . —(2.7)

We have assumed for simplicity that 8'RR. (9,9') does
not depend on the spatial separation between the clusters.
The function Fs( 9 9') determines the f—eature specificity

where V(r) is a function of I (r), the average firing rate of
the neuron [(2.1)j. This form allows the presence of an
external stimulus to modulate interactions between neu-
ronal phases. A particularly simple choice is
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but varies between different clusters. It has variance

V(go-8) P
I

0

( gR(t )gR, (t') ) =2TL 5RR,5(t —t') (2.11)

and controls the coherence between different clusters.
The relative strength of the two components of the noise
are taken to be

+L

Ts
(2.12)

V(eo-e')

0
e,

so that both Ws/Tz and WL /TL are of the same order.

III. FEATURE SPECIFICITY AND DISCRIMINATION

A. Feature specificity of the connections

FIG. 3. Schematic of the neuronal architecture assumed in
our model. Neurons that share a common receptive Geld are
grouped into clusters. Each neuron interacts with cells in the
same cluster via short-range connections with strength 8'&/X
and with cells in different clusters via long-range connections
with strength O'L /X.

of the connections between neurons within a cluster,
while the function FL (0—8') determines the feature
specificity of the connections between neurons in different
clusters. The relative strength of the long-range to
short-range connections scales as

Our main focus is to study the synchronization be-
tween different clusters in response to global aspects of an
extended stimulus. This synchronization is fairly insensi-
tive to the detailed form of the fixed connections between
neurons within the same cluster Fs(0 8'), bu—t will de-
pend strongly on the form of the orientation-specific
long-range cannections FL (8—8') between pairs of neu-
rons belonging to different clusters. The relationship be-
tween Ft (0 8') and —the phase coherence between the
clusters can be expressed in terms of the eQectiue interac-
tion, denoted JRR between the average phases of the two
clusters. A simplified form for JRR is obtained by
averaging the long-range interactions between all pairs of
neurons belonging to the two clusters [(2.4), (2.6), and
(2.7)]. This results in

J „,=W, ', f f—d8d0'V (9)F (8 0')V —(8'),RR

(2.8) (3.1)

where e is assumed to be small (e ((1). This ensures that
the coherence between neurons that share the same re-
ceptive field is largely independent of the global proper-
ties of the stimulus.

E. Spatial correlations of the noise

The component gR(8, t ) varies fram neuron to neuron
within the same cluster. It has variance

(gz(0, t )gR (0', t') ) =2Ts5RR'5ee 5(t t')—(2.10)

and controls the coherence within a cluster. The com-
ponent gR(8, t ) is uniform for all neurons within a cluster,

The extent of the synchronization between neurons
within a cluster and between neurons in different cluster
depends not only on the level of noise but also on the
form of its spatial correlations. These noise characteris-
tics will also determine the speed at which noninteracting
neurons will be desynchronized. These correlations are,
in general, expected to be related to the form of the neu-
ronal architecture. In our architecture, it is natural to as-
sume that the noise can be divided into two parts, i.e.,

(2.9)

where

VR(8) —= V(00(R )
—8(R ) ) (3.2)

and Xo is the total number of neurons in the cluster for
which the value of VR(8) is not zero. Equation (3.1) is
valid only in the limit that each cluster is fully synchron-
ized, i.e., 8's ))Ts. A more general form for the
effective interaction, which is appropriate for 8's —Ts, is
given in Sec. IV [(4.30)].

The ability of the network to discriminate between
stimuli of different orientations is given by the depen-
dence of JRR on the orientation of the stimulus to the
Rth cluster relative to that for the R'th cluster. We
define this difference as 60o, where

b.00 —=00(R)—00(R ') . (3.3)

~RR ' ( ~00 )

= WL, f f "d8d8'V(8)Fi(0 —8'+600)V(8'),
Xo ~2 o o

(3.4)

The relation between JRR. and 60o is readily seen by
rewriting (3.1) as
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B. Discrimination of features

We consider a form for the neuronal activity V(go —0)
that is essentially zero beyond an angle o., i.e.,
V(go —0) =0 for lgo —0 & o. Similarly, we let

FL, (0 0') =—0 for lg —0'l & ) . Then

JRR (~go) =0 «r
l

algol

& 2~+ y . (3.5)

The behavior of JRR at small values of 60p can be es-
timated by expanding (3.4) in powers of b, go. This yields

where we have made use of (3.2) and the periodicity of
Vtt(0). The form of Vz(0) and FL (0—0') must be
specified in order to evaluate the dependence of JRR. on
Ego [(3.4)]. Some general aspects of this dependence are
presented below, followed by two specific examples.

r
C9

UJ
IX
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0
I
—LLO~
LLJ 0
Z I0 co
O

Z'.

I

0

-vr/2 0 7r/2

DIFFERENCE IN ORIENTATION PREFERENCE, 8-8'

JRR (b, go) =JRR (0)—A(b.go), b.go —-0

where

(3.6)

1.0

- -dgdg, & (0)F (, 0, )&V(0')
2 Xp ~2 p O O0 ' a0

(3.7)

and we have assumed that V(0) and Ft (0—8') are even
functions of their argument. A singularity occurs when
FL (0—0')=m5(0 —0') and V(0) drops discontinuously at
some angle 0C. For this case, JRR decreases linearly
with the absolute value of 60p i.e.,

I
O

0.5
O

C3

J„„.(ag, )=J„R.(0)—w lag, l, ag, =o (3.8) 0—
where

8'I
( Vc)

Xp
(3.9)

-7r/2
t

0
RELATIVE ORIENTATION 8p 8

7r/2

C. Sharp discrimination with inhibitory connections

The tentative experimental results ' and computation-
al considerations suggest that JRR is a rapidly decreasing
function of 60p. It is not trivial to achieve this decrease
in light of the above results [(3.5)] and the observation
that the average extent of the tuning curves in the pri-
mary visual cortex is rather large, 0.9 rad (50 ) or more.
One way to achieve a sharp dependence of JRR on 60p is
to assume that Ft (0 0') has an excitat—ory center and in-

hibitory surround. However, the inclusion of inhibitory
components to Ft (0—0') must be done with care so that
JRR does not assume negative values. Such values can
lead to nonzero phase shifts among the oscillatory neu-
rons. An example of an inhibitory scheme is [Fig. 4(a)]

2

F (g gi) 1 2 —(0—0') /2P
a2

t)(0—0')
(3.10)

and Vz is the value of the discontinuity of V at 0c. This
result shows that, at least for small differences in orienta-
tion, a discontinuous drop in the activity V(go —0) can
substantially sharpen the sensitivity of the network to
discriminate between stimuli.

,
'80

0
I—0

CLw~
0

W I

—QP

Ow a

Li
w

0—

QR I ENTATIoN DI FFERENcE I 8p 8p I

7r/2

FIG. 4. The interaction between two spatially separated clus-
ters that involves excitatory and inhibitory connections. (a) A
form for the long-range connectivity between neurons in
different clusters, with orientation preferences 9 and 0', respec-
tively [(3.10) and (A4)]. (b) The contribution of the activity of
each neuron to the interaction between neuronal phases [(3.11)].
(c) The effective interaction between a pair of clusters for the
connectivity in (a) [(3.12)].
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with VR{8&
—8) of the form [Fig. 4(b)]

—
~ so(R) —8(R)

~
/KVR8=e (3.1 1)

—(&& ) /&p
JRR' (3.12)

where p is an independent parameter that determines the
width of JRR. . This width can be considerably less than
the width of the tuning curve. Details are given in Ap-
pendix A.

D. Discrimination with purely excitatory connections

where ~ is the width of the activity curve. This choice
yields [Fig. 4(c)]

-7r/2 0 m/2
DIFFERENCE IN ORIENTATION PREFERENCE, e-e'

0.5—

Numerical simulations of the model using the above in-
hibitory scheme [(3.10) and (3.11)] have shown that it is
not robust. Small distortions in the shape of FL(e 8')—
relative to that given by (3.7) disturb the delicate balance
between excitation and inhibition. This tends to cause
JRR to be negative for large values of b,80 and, as stated
above, leads to phase locking of neurons with a phase
shift of vr. An alternative, robust choice for FL (8—8') is
to include only excitatory components whose strength is
a sharp function of the difference in angles 8—8' [Fig.
5(a)], i.e.,

FL (8 8') =~5(—e —8') =%5' s . (3.13)

]

0
RE LAT I V E OR I E TAT I ON. e,—e

7T /2

The width of ERR is given by the width of V(ec—8) for
this choice of FL (8—8') [(3.5)]. For concreteness, we as-
sume that the activity V(eo —8) has a tentlike shape [Fig.
5(b)], i.e.,

1—
V(eI) —8)=

0 otherwise .

/8, —8I&o

(3.14)

O

o o
CL
QJ 0

Z -0
0

o K

LU

0—

7r/2

This hypothesis leads to

4 —6x +3x if 0(x (1
JRR '

~I. 2o- iv
X . (2 —x) if 1&x &2

48m ~ Xo 0 otherwise,
(3.15)

where x = ~heoI/o. The width o must be substantially
smaller than the width of the tuning curve (Fig. 2) in or-
der to obtain sharp discrimination. To achieve this, we
assume that the activity V(eo —8) is a strongly nonlinear
function of the tuning curve I (eo —8). For I (80—8) of
the form shown in Fig. 2, (3.14) can be written as

ORIENTATION DIFFERENCE ) S,—e,' ) v(e, —8)= [r(e,—8)—r, ]e(r(e,—e) —r, ), (3.16)
FIG. 5. The interaction between two spatially separated clus-

ters that involves purely excitatory connections. (a) A form for
the long-range connectivity between neurons in different clus-
ters, with orientation preferences 0 and 0, in which only neu-
rons with similar orientation preferences form excitatory con-
nections [(3.13)]. (b) The contribution of each neurons activity
to the interaction between neuronal phases [(3.14)]. The curve
is a thresholded version of the tuning curve shown in Fig. 2
[{3.16)]. (c) The eff'ective interaction between a pair of clusters
for the connectivity in (a) [{3.1S)].

where the Heaviside function e{x) is 1 if x )0 and zero
otherwise, and I o is a threshold parameter. The thresh-
old is chosen to be I o= —,

' in (3.14).

IV. AN%.I.YSIS DF THE MADEL
A. Correlation functions

Before presenting our analysis of the model, we discuss
the quantities that we wish to calculate. Coherent output
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in a population of neurons is deduced in experiments
from the autocorrelogram of the output of each neuron
and crosscorrelograms of the output of pairs of neu-
rons. ' The correlograms can be expressed in terms of
the correlation functions of the underlying phase vari-
ables in the model. We de6ne

CR(0,r):—(cos[PR(0, t) —(b (R0, t+ )r]) (4.3)

measures the temporal fluctuations in the phase. Note
that the correlation functions are expected to depend
only on the absolute value of the time ~ and thus
( sin[JR(0, t )

—PR(0, t +a) ] ) =0. Furthermore, we have
assumed that the averaging time is sufTiciently long so
that (cos(2cot ) ) and (cos(cot ) ) average to zero.

The crosscorrelogram of the activity of a neuron in the
I

4&R(0, t) =cot+/„(0, t),
where P represents the noisy component of the total
phase N for a neuron in the Rth cluster with orientation
preference 0. The autocorrelogram is

(PR(0, t )PR(0, t+r) )

=I R(0)[i+(A, /2)CR(0, r)cos(cur)], (4.2)

where ( ) denotes averaging over time and the autocorre-
lation function

Rth cluster with orientation preference 0 with one in the
R 'th cluster with orientation preference 0' is

where the cross-correlation function CRR. (0, 0', ~) mea-
sures the amplitude of the phase coherence and

ERR ( 0, 0', r) represents the average phase shift. These
functions are given by CRR (0,0', w)=(a +b )'~ and

ERR.(0, 0', ~)=tan '(a/b) with a=( isn[P R( 0t)
—Ptt. (0', t+r)]) and b =(c so[/ (R0, t) PR, (0', t—+rj]).
In all cases considered in this work, a =0 and thus

CRR ( 0, 0', ~) = ( cos [pR( 0, t ) pR, ( 0'—, t +~) ] )

and ERR,(0,0', r) =0.
(4.5)

B. Separation of scales

The equations for the phase of each neuron that in-
corporate the assumptions about the form of the connec-
tivity [(2.3), (2.4), (2.6), and (2.7)] are

( PR(0, t )PR, (0', t+r) )

= r (0)r,(0') I I+(X'/2)C, (0,0', r)

Xcos[cor+gRR (0,0', ~)]j, (4.4)

~s
p~ (0, t ) =(R(0, t )

— g VR(0)Fs(0 —0') VR(0')sin[/~ (0, t ) —p~.(0', t ) ]

+pa(t) — g g VR(0)FL(0 0')VR (0')—sin[(5R(0, t) ptt (0', t—)] .
N z (~R) (~)

(4.6)

The sum over 0' includes all neurons X in a cluster. The sum over R' includes only clusters that are activated by the
stimulus. These equations can be written in the from

PR(0 t)=PR(0 t)+kR(t) BE (4.7)

where the energy function E is

&[p]= — —g g VR(0)Fs(0 —0') VR(0')cos[pR(0) —QR(0')]
s

21' ~ ge (~0)

(0)F (0—0')V, (0')cos[P (9)—P,(0')] .
2X RR(~R)0 8

(4.&)

The energy function contains two terms. The intra-
cluster term contributes an energy of order X, whereas
the interaction between the clusters contributes a term of
order eX. A similar separation holds for the dynamic
equations [(4.7)], where the local noise gR(0, t) is respon-
sible for the desynchronization of the intracluster degrees
of freedom and the correlated noise gR(t) is responsible
for desynchronizing the average phases of the clusters.

The intracluster degrees of freedom are

—I/Ts —I/IVs. In contrast, ~BQ&/Bt ~
is determined by

long-range interactions, with overall strength -e/8&,
and by noise with magnitude of order -e/Tz. This im-
plies that the coherence within a cluster can be studied by
neglecting the long-range interactions. The coherence
between clusters can then be determined by evaluating
the slow Auctuations of the cluster phases gR.

C. Phase coherence within a single cluster
&NR(0) =NR(0) —

WR (4.9)

where 6$R(0) measures the phase of each neuron relative
to QR, the average phase of its cluster. Inspection of (4.6)
shows that ~B5$R(0)/Bt~ has a value on the order of

Mean geld equations-
Neglecting terms of order e, the dynamics of a single

cluster are described by
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M= —f d0 VR(0)&[ps WsMVR(0)] . (4.19)

8~
VR(0)Fs(0 —0') VR(0')

0' (&(9)

X sin[(t R(0, t ) —QR, (0', t ) ] .

(4.10)

These equations can be written as

(4. 1 1)

where the energy function of the Rth cluster is

ER =const —Ws g MR(0) VR(0)cos[PR(0) —it)R] . (4.12)

The order parameters MR(0) and i)'jR are defined by

MR(0) =—f d O'Fs(0 0') VR(0')—mR(0'), (4.14)

Ps )Vs VR(8)MR(8)cos(i
d cos e

mR(8)—:
i)s )Vs VR(8)MR(8)cosg

0

=&(/3s WsMR(0) VR(0) ) (4.15)

with Ps =—1/Ts and &(x ) =J,(x ) /20(x ). The functions
J0(x) and Ji(x) are the modified Bessel function of zero
and first order, respectively. In deriving the above equa-
tions we assumed that there are no phase shifts within a
cluster, i.e., 1ttR is independent of 0. This may not be true
if Fs(0—0') has a strong inhibitory component.

In general, MR(0) can be found by self-consistently
solving (4.14) and (4.15) for a given Fs(0 0'). In the fol-—
lowing analysis, we restrict ourselves to the simple choice
of uniform excitatory connections within a cluster, i.e, ,

Fs(0 0')=1 . — (4.16)

For this case, MR(0) is independent of 0, i.e.,
MR(0) =MR, and thus

MR =—f d0 VR(0)mR(0),
7T 0

where

(4.17)

MR(0)e "—=—g Fs(0 0') VR(—0')e " . (4.13)
gl

In the limit of large X, the right-hand side of (4.13) can
be replaced by its thermal average, i.e., by its average
over g. Noting that the equilibrium distribution of PR is
given by a Boltzmann distribution with energy E [(4.12)],
the order parameter MR(0) is determined by the self-
consistent condition

Note that mR(0) and VR(0) depend on R only through
angular dift'erences, and thus the solutions of (4.19) are in-
dependent of R.

2. Emergence ofphase coherence

For high noise levels, i.e., Tz greater than a critical
value Tc, the only solution of (4.19) is M =0, where the
critical noise level Tz is

Tc= —f d0 VR(0) . (4.20)

We find Tc =0.012Ws for VR(0) of the form in Fig. 5(b)
[(3.14)] with o. =0.44 rad (25'). This implies that all
mR(0)=0 for noise levels Ts) Tc and, consequently,
that the noise desynchronizes the oscillations. Below T&,
the stable solution of (4.19) yields a value of M that is
greater than zero. In the limit of low noise levels, i.e.,
Ts —+0, the value of M approaches m

' J0d0 VR(0).
Hence, below Tc the value of mR(0) for the active neu-
rons is not zero. This signals the emergence of temporal
phase coherence. The solution of (4.19) for M as a func-
tion of T&/W&, with VR(0) given by (3.14), is shown in
Fig. 6(a). The form of mR(0) for several levels of noise is
shown in Fig. 6(b). For values of Ts not far from Tc, the
shape of m R(0) has roughly the shape of VR(0) [cf. Figs.
5(b) and 6(b)]. This can be seen analytically by examining
(4.19) for small values of M. In contrast, for small values
of Ts the value of mR(0) saturates at a value close to 1

for all neurons that are significantly excited by the
stimulus.

3. Autocorrelation functions

The value of mR(0) measures the temporal coherence
of the individual neurons. Specifically, the long-time lim-
it of the autocorrelation function [(4.3)] is

CR ( 0)—= lim ( cos[PR(0, t ) —(t R(0, t +r) ] )

=(c s[o5$ (0R, t)])(cos[ P5(R0t+~)])
=mR(0) . (4.21)

Note that PR(0, t ) fluctuates symmetrically about the
average phase 1i)R [(4.9)] and thus (si n[ 5$ R(

0t )] ) =0.
To evaluate the time dependence of the autocorrelation

function one has to analyze the dynamic equations [(4.6)].
Neglecting terms of order e and using mean-field theory,
the equations for 5$R(0, t ) reduce to

5$R(0, t ) =JR(0, t ) —WsMVR(0)sin[5(b~ (0, t )] . (4.22)

mR(0) =&(ps WsMR VR(0)) .

The self-consistent equation for M =MR is

(4.18)
When the level of noise is large, i.e., Tz & Tc, the auto-
correlation functions decay to zero. Integrating (4.22)
with respect to the Gaussian distribution for g and taking
M =0 yields (Appendix B)
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—l~l T~
CR(0, r) =e (4.23) Ct~(0, r) = [1—m R(0)]e +mR(0), (4.24)

When the level of noise is below T~, the autocorrelation
function decays from its initial value CR(0, 0)=1 to its
long-time limit mR(0). This limiting value can be evalu-
ated by numerical integration of (4.22). An approximate
solution, valid for values of mR(0) not too small, is (Ap-
pendix 8)

where the decay constant ~z is

1 =MWs VIt(0) . (4.25)

The initial decay results in a peak in the autocorrelation
function that is centered at ~=0 and has a width of ap-
proximately 27'.

4. Cross-correlations

W

cf~ 005
cf
CL

D

0.5
Ts/Tc

1.0

=m R(0)m ~(0') . (4.26)

Equations (4.21) and (4.26) imply that the cross-
correlation is given by the geometric mean of the long-
time limits of the autocorrelations, i.e.,

CR (0,0', )=[CR(0)CR(0')]' ' . (4.27)

The intracluster cross-correlation functions factorize at
all times ~ since the direct interaction between a given
pair of neurons is weak, i.e. , of order I/X. Thus

CRR(0, 0', r) = (cos[PR(0, t ) —PR(0', t +r)] )

=(cos[5$ (0, t)])(cos[6$ (0', t+r)])

0

Ts= 0.1 Tc (b)

I I

0.01
LOCAL NOISE LEVEL Ts(units of Ws)

Furthermore, there are no phase shifts associated with
the cross-correlation, i.e., ERR(0, 0', r)=0 [(4.4)] as the
short-range connections are excitatory [(4.16)]. Thus all
of the active neurons in a cluster will fire coherently as a
result of the extensive short-range connectivity. Finally,
according to (4.26), there is no peak centered near v=0
that is associated with the cross-correlation functions.

5. Damping of the correlation functions
by correlated noise

'o 0.5—

E

0
RELATIVE ORIENTATION 8 -8

vr/2

FIG. 6. Mean-field parameters for neurons in a single cluster.
{a) The dependence of the order parameter Ion the local noise
level T&. Equation (4.19) was solved numerically with the pa-
rameters Wz = 10 and o =0.44 [(3.14)], for which Tc =0.12. (b)

The dependence of the long-time limit of the average phase
ma{0)= (cos5$R(0) ) [(4.18)] on the orientation of the stimulus
relative to the preferred orientation of the neuron. Equations
(4.18) and (4.19) were solved numerically for diA'erent values of
local noise level Ts, as indicated. Note that the intracluster
correlation functions are given in terms of mR(0) [(4.21) and
(4.26)].

Until now we have neglected all terms of order e in our
analysis of the intracluster equations. This includes the
uniform, weak noise that is correlated within the cluster,
i.e., gz(t ) [(2.9)]. It is of interest to consider the effect of
the cluster noise on the properties of a single stimulated
cluster. The only change in the phase equations [(4.10)] is
the addition of a term g (tR). However, if one shifts all
the phases of the neurons in the cluster by a global phase

(tR), whose time derivative is gR(t), the equations of
the shifted variables are identical to those of (4.10). This
implies that the effect of a uniform cluster noise is to mul-
tiply the correlation functions found without this noise
[(4.24) and (4.26)] by the autocorrelation—/~(T(cos[PR(t) —g (tR+ )]r) =e . Thus the noise g (t)R
induces a slow, exponential decay of the correlation func-
tion with a decay time of 1/Tz. The long-time limit re-
ferred to above corresponds to time scales ~ obeying
1/T ««&1/T .

B. Numerical results for stimulation
of a single cluster

We carried out numerical simulations of the phase
equations [(4.6)] with a network consisting of one active
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cluster that containe d 1000 phase oscillators. The orien-
t ~ ~ ~

tation selectivi y o1
'

it of the oscillators was uniform y istri-
buted betweend b t 8= —m/2 and ir/2, with activity epen-
dences as shown in ig.F' . 5(b). The short-range connection

h 8' were uniform [(4.16)]. We performed simu-
lations for local noise levels T~ both below an a ove

d f nd nonzero levels of correlated noise TL.
The correlation functions CR(8, r) and CRRi, , r we
cacua e r1 1 t d from the time dependence of t e pf the hase vari-

n interval of[(4.21) and (4.26)] averaged over an inteables
&
~. an

10 /T . The results of these simulation
'

ns are com-X c.
an-field e ua-d 'th th umerical solution of the mean- q

and 4.23)tion 4.22) with M given by (4.19) for Ts & Tc and
orT )T

Th t dependence of the autocorrela ionation function ofe ime
0=0, isa neuron a ithat is optimally stimulated, i.e.,

fromn Fi . 7. In all cases, the results obtained romshown in ig. . n a
r well with-field theory (solid lines) agree very wethe mean- e
of the hasethose obtained from numerical simulations o p

e uations (solid circ es .1 ) This implies that the finite-size
= 1000 to the X—+ ~ behavior are rathercorrections at X=

small. We consi er rs ed fi t th behavior of the autocorrela-
ith T =0. This function shows a fast de-

cay from its initial value of 1 to a long-time imit or
noise leve s1 T (T (Fig. 7). The limiting value is con-

c„(e,)

t ith the value of CR(8o) calculated [(4.18, 4.19,sistent wit t e va ue
and 4.21)] for the parameters used in the simu
For noise leve sls T )T, the autocorrelation decays rap-

(Fi . 7). In the presence of correlated noise,idly to zero ig. . n
i.e. T %0, the autocorrelation functions are observe oi.e., I, e

e initial decay to a
4

h'b't two time constants (Fig. 7). T e i
'

y
lue occurs with time constant rs [( . ],nonzero va ue oc

t closethe slow ecay o zeroa t o occurs with a time constan c
to 1/T, as predicted (Sec. IV C).

Th t' dependence of the autocorrela
'

relation and cross-e ime
with 0=-0 =0correlation functions for a pair of neurons, wi

'=0 8 =0.35 rad are shown in Fig. 8. We consid-and 0'= . o. =
er the case wit'th T =0 to emphasize the difterence

'

the cross-correlation functiontime dependence etween e
~ ~

e observed reduction inand autocorrelation functions. e ob
value of the autocorrelation function of thethe long-time va ue o e

suboptimally stimulated neuron CR, ~ is in
dance with the mean-field result [Fig. 6(b)]. The cross-

C (8 8' r) is essentially constant incorrelation function
time. Its va ue is a so

'
1

'
1 in good agreement with that pre-

dicted from the mean-field theory [(4.27)].

Time scaie of the oscillations

The above results illustrate how the time course of the
correlation functions marked y pcorre

' '
1 de ends on the level of

noise re ative o e1
'

e to the critical level Tc [(4.20)]. This sug-
T should correspond to the noise leve e owgests that c s ou

w ic peh' h rsistent oscillations can occur in t e ne w
hand the neurons should behave as over-Thus, on one an,

& T . This condi-d ed oscillators for noise levels Tz & c. is
tion is achieved for periods 2~/co& 1/Tc. 0On the other

O
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C!

C)

OI—

0=
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FIG. 7. The autocorrelation function C (0 ~) of a neuron
bar at the preferred orientationthat is stimulated by a moving bar a p

vels ofi.e. 0= 0 . Results are shown for three levels oof the neuron, i.e., = 0. e
=0 (ii) Ts =0.020noise: (i) T =0.020=0. 17T& and TL =0,

T d T =0.0030=0.026Tc and (iii s ==0 17Tc an L
=

~
=

~

=0. The dotted line is the result found from
simulation of the phase equations. Equation . was
numerically for a smgle, ac ive
given yb (3.14) with o.=0.44 rad, Fs(0—0') = 1

8—8')=0. Equations [(4.4)] was solvedlved with aPs=10, FL(
ns were calcu-4t = 1.0 and the autocorrelation functions wetime step t= . an

lated [(4.3)] by averaging over 130000 time s eps.
is the resu o elt f the numerical solution of the mean-field equation
[(4.22)]. In the presence of correlated noise, i.e., L

= . s.
The autocorrelation function calculatedd from (4.22) was multi-
plied by exp( —

~
r~ TL ).

0.5—

-15
I l

0
7)ME c(units of I/Tc )

I

+15

FIG. 8. The auto- and cross-correlat'e ation functions for two
neurons in a single c uster a1 r that are stimulated by a moving bar.

~ ~ ~

1 t d at its preferred orientation, i.e. ,One of them is stimu a e a
other at the nonoptirnal onentation0—0o=0 and the ot er a e

d 4.5) were—0 =0.35 ra d (20 ). The correlations [(4.3) and . ]
f the hase equations [(4.6)]found from numerical simulation o e p

with Ts =0.02=0. 17 & anwi s= . . T d T =0 and all other parameters as
in Fig. 7.
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hand, the neurons should exhibit persistent, coherent ac-
tivity when the level is below Tc. This implies that the
period of the oscillations should be smaller than the
long-time decay of the correlation functions, given by

1.5

1/TI . Thus the period of the oscillations is conjectured
to lie in the range 1/Tc ~ 2'/co ~ 1/TI . This point is il-
lustrated by the correlograms [(4.2) and (4.4)] in Fig. 9,
for which we chose 2'/co=2/Tc =0.05/TL [the param-

Fi . 9).eersa et s are otherwise the same as those used above ig.
onlSlowly decaying, coherent oscillations are observed on y

for the case of Ts (Tc.

CL

O
n

QJ

+
C)
O q)0 a)

CL
COCA

C5
LU

0
V

O

1.0

0.5—
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Ts( Tc
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E. Coherence between spatially separated clusters

l. E+ectiue interactions between clusters

The intracluster energy does not determine the values
of the mean cluster phases gR, since shifting all the

hases of a given cluster does not affect its energy. Thep ase
cluster phases are determined by the intercluster term

~ ~ of
(4.8). An eff'ective energy function for the cluster phases
is derived by averaging the intercluster term over the lo-
cal noise g (Rg, t) or, equivalently, over the fast ffuctua-
tions of the intracluster degrees of freedom. This yields

CC

O
UJ

C)

0 ~ g)I- a—
0 CVK

C)
LLJ
fV

V

O

1.5

0—

k 4 E[0]= g g g g VR(0)+g(0 —0')VR (0')2X R R'[&R) g g

X (cos[5$R(0)—5$R,(0')

+tbR —4R ])
(4.28)

6where ( ) refers to averaging over the
Using (cos[5$R(0)—5$R,(0')]) =mR(0)mR (0') and
(sin[5$R(0) —5PR (0')])=0, one obtains

(c)- E[p]= —
—,
' g g JRR cos(1bR LbR')

R R' (WR)
(4.29)
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FIG. 9. The normalized auto- and cross correlograms, which
includes the oscillatory part of the neuronal response, for neu-
rons in a cluster that is stimulated by a moving bar. One neuron
is stimulated at its preferred orientation, i.e., 61—80=0—8 =0 and the
other at a nonoptirnal orientation, i.e., 0—90=0.35 rad ( ').d (20' .
The correlograms [(4.2) and (4.4)] were found from numerical
simulation of the phase equations [(4.6)] with Ts=0.02 and
TL =0.003 and all other parameters as in Fig. 8. The period of
the oscillations was chosen to lie between Tc (Tc =0.12 for our
parameters) and TL.

where the effective interaction between the cluster phases
JRR' 'S

For the relevant case of VR(0) =0 for
~ 00—

0~ )0 [(3.14)],
the number of active neurons is No=(2o /~)N. Finally,
note again that JRR. is a function only of the difference in
the orientation of the stimuli b.gII= go(R) —0II(R ').

The temporal ffuctuations in the gR are affected by the
cluster noise gR(t). Both the effective coupling between
the cluster phases JRR and the effective dephasing noise
are of the same order, i.e., the value of e. As a conse-

calequence, the cluster phases vary on the time sca e
rr = 1/Ti ——1/(eTs) and the dynamics of hatt can be ap-
proximated by

R(t) =4(t)— g JRR.stn[LbR(t) —
LbR (t)] .

R' (WR)
(4.31)

JRR = WL I f dgdg'VR(0)mR(0)
0 7T

XFL(0 0')VR (0')mR —(0') .

(4.30)
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2. Correlation functions whose length spans the individual receptive fields.

The cross-correlation function between the output of
neurons in different clusters can be expressed, using the
above results, as

CRR ( 8, 8', ~) = ( cos[ Pit( 8, t )
—PR.( 8', t +r ) ] )

= ( cos[5$R(8, t ) ] ) ( cos[5$R.(8', t + r) ] )

1. Analytical eesults

Denoting the relative phases of the two clusters byg:—1(R
—gR. , the relevant energy function reduces to

E[ P] — JRR cosf .

X (cos[QR(t) —lijR.(t+~)] ) . (4.32)
The resultant correlation function is

Equations (4.21) and (4.32) imply that the correlation be-
tween different clusters has the form

CRR (8, 8', r)=mR(8)mR (8')CRR (r)

L RR'

CRR '
pI JRR cosg

dpe
0

=~«L.JRR» (5.2)

=[CR(8)CR (8 )]' CRR (r) (4.33) where

where

CRR (r)—:(cos[QR(t) —
gR (t+ r)]) (4.34)

1L=
L

(5.3)

measures the correlation of the mean phases of the two
clusters.

As noted above, CRR. (r) depends appreciably on 7
only for r ~ 1/Tt . As long as one considers the coher-
ence between clusters for time intervals that are short
compared to I /TL, the time dependence of CRR can be
neglected. In this limit, the coherence between clusters
can be evaluated by the equilibrium equal-time correla-
tion functions CRR =CRR, (0) for a system described by
the energy function E[P] of (4.29).

We emphasize that our simple result for the dynamics
of the collective degrees of freedom, i.e., the cluster
phases fR [(4.31)], are exact only in the limit Ts ((Tc.
In this limit the fluctuations in the intracluster degrees of
freedom can be neglected. In the general case, (4.30) and
(4.31) are probably only approximately valid and even the
notion of a cluster phase requires a more precise
definition. For instance, a naive definition of gz in terms
of a simple average of the individual phases may not
coincide exactly with the phase that is defined through
the equation for the order parameter M [(4.13)]. Our ap-
plications of the theoretical results in the examples below
are all in the regime of T~ «Tc, where these differences
are negligible.
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CL
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and the form of JRit. is specified by (3.15). The depen-
dence of the equal-time cross-correlation on the relative
orientation of the bars, 60o= Oo

—
Oo, is shown in Fig. 10.

V. EXAMPLES

The correlation function between a pair of clusters
CRR depends on the direct interaction between the two
clusters as well as the indirect interaction via other active
clusters. We consider below several examples of extend-
ed stimuli and demonstrate the dependence of the coher-
ence CRR [(4.33)] on global features of the stimulus. For
each example, we use the long-range connectivity
I'L (8—8') =m6(8 —8'), a tentlike shape for Vz (8)
[(3.14)] with a =0.44 rad (25 ), and the associated form
for JRR [(3.16)].

A. Stimulation by two short bars

The simplest example of long-range coherence involves
two clusters that are stimulated by separate, short bars

FIG. 10. The equal-time cross-correlation between the clus-
ter phases 1(a and its of two clusters stimulated by short bars.
The difference in orientation between the bars is b Oo. The solid
line is the analytical result [(5.2) with Jail of (3.15)]. The cir-
cles represent results derived from numerical simulation of the
phase equations for a network with two active clusters for
which the cluster phases were calculated according to (4.13).
For this example, long-range excitatory connections existed
only between neurons with similar orientation preferences
[(3.13)], the activity of each neuron was described by the curve
in Fig. 15{b),and the short-range connectivity was taken as uni-

form [(4.16)]. The other parameters were IVs =10, 8'I =0.2,
Ts=0 02=0 17Tc, and TL =0 003=0 026Tc For the numeri-

cal simulations, (4.6) was simulated for two clusters, each con-
taining %=1000 neurons. The time step was ht =1.0 and the
autocorrelation functions were calculated [(4.34)] by averaging
over 170000 time steps.
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2. Numerical results

We carried out numerical simulations of the phase
equations for the case of two clusters, each simulated by a
short bar. The parameters for these simulations were
identical, when appropriate, to those for the numerical
simulation for one cluster (Figs. 7—9). We calculated the
global phase PR(t) [(4.13)] for each cluster. The cross-
correlation CRR, (r) [(4.34)] was calculated from the time
dependence of the global phases, averaged over an inter-
val of 2 X 10 /T&, for three values of b.oo (Fig. 11). Note
that the decay time of the cross-correlations is long, of
order 1/Tl -40/Tz —for the parameters used in the simu-
lations. The fluctuations in the cross-correlations for
AOO= 1.50. reAect insufIicient averaging time.

The equal-time cross-correlation determined from the
simulations, i.e., CRR (0), is shown along with analytical
results in Fig. 10. The agreement between the analytical
results and the results of the numerical simulations is
very good. The correlation is nearly CRR =1 for AOO=O
and decreases quadratica11y for small values of AOO, in ac-
cordance with (3.6). For large values of b, &o the cross-
correlation decreases rapidly. It vanishes for 60o=2o. , in
agreement with (3.15). However, already at 60&=o the
cross-correlation decreases by a factor of 2 compared
with the value at 60=0.

B. Extended bar

As the length of the bar increases, the correlation be-
tween a pair of excited clusters is enhanced. To demon-
strate this efFect, we evaluated CRR. for the case of a

straight bar that spans K receptive fields and thus ac-
tivates K clusters. The energy function can be written as

X
R R'(~R)

(5.4)

The calculation of CRR. is presented in Appendix C.
Qualitatively, the value of the correlation depends on the
length K relative to the characteristic length K~, where

+C = Tf L~RR ' (5.5)

The correlation is small for K/Kc «1 and is saturated
at a value near 1 for K/Kc ))1. Examples of the depen-
dence of CRz on K for two values of Kz are shown in

Fig. 12. The enhancement of the coherence with increas-
ing values of K is pronounced for Xc (1 (Fig. 12). There
is only modest enhancement in the correlation for the op-
posite case K& ) 1 since the correlation saturates even
when two receptive fields are activated. The experimen-
tal evidence for an enhanced correlation when the
stimulus is a long bar suggests that K& 5 1.

C. Extended curved objects

The curvature of stimuli that span several receptive
fields can be used to segment a stimulus into separate ob-
jects. We illustrate this by considering the coherence be-
tween clusters in the presence of K bars with orientations
that vary in space. The bars were arranged in either a
smooth, continuous manner, representing a single object
[Fig. 13(a)], or in a discontinuous manner, representing
two distinct objects [Fig. 13(b)]. The total angle spanned
by the stimulus 60o is the same for both arrangements.
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FIG. 11. The cross-correlation CRR (~) between the global
phases O'R of two clusters as a function of the difference in
orientations of the respective stimuli Aoo. These results were
derived from numerical simulations of (4.6), using the parame-
ters given in the legend to Fig. 10. The insert shows the time
dependence near &=0 on an expanded scale for comparison
with Fig. 8.

FIG. 12. The enhancement in the correlation between two
spatially separated clusters that are stimulated by a single mov-
ing long bar, as opposed to two collinear short bars [(5.4)]. The
length of the bar K is expressed as the number of receptive fields
that it spans. The upper curve is for a characteristic length
Kc = 1 and the lower curve is for Kc =0. 1 [(5.5)].
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SMOOTH DISCONTINUOUS 2. Discontinuous stimulus

z
4

We assume that JRR (b,8o)-0. The neurons in each
group of K/2 clusters will fire coherently, but there is
negligible coherence between the two groups. Thus the
network forms two separate coherent regimes [Fig.
13(b)]. The regimes represent a segmentation of the
stimulus into two distinct objects.

VI. TIME DELAYS AND PHASE SHIFTS

-0—
O
UJ
CL -0—0

Lk JLk
V V V V T T

]

0
TIME T

JJJJi
0

TIME T

FIG. 13. Segmentation of four oriented bars that span several
receptive fields. The bars are of equal length and spacing and
are arranged to subtend the same total angle (WL /T=7). (a)
Bars arranged as a smoothly varying stimulus. (b) Bars ar-
ranged as discontinuous stimuli. (c) The pairwise correlations
between adjacent clusters are equal [C,2=C„=C34 0.6 with
b, 8o=0.26 rad (15')]. Neurons in all of the active clusters fire
coherently and the end-to-end correlation is C&4=(C») =0.2.
(d) The pairwise correlations between adjacent clusters are
C~2=C34=0. 8 [68o=0] and C23=0 [b,g =n/4 rad (45')].
The end-to-end correlation is C&4 =0.

+a(r ) =~o—J sin[+R(r )
—+R (r —

rD )],
(r):ci)o J sin[% R (r ) %tt(r rD )]

(6.1)

We have assumed so far that the interactions between
phases are predominantly positive and have zero time de-
lays. Thus the absence of phase shifts is expected. How-
ever, the local connections between cortical neurons are
mediated by unmyelinated axons with slow propagation
speeds, i.e., approximately 1 mm/ms. It is thus impor-
tant to investigate the effect of time delays on the synch-
ronization of oscillations and, in particular, on the phase
shifts between the output of different neurons.

The propagation delay time for distances of the order
of 1 mm is approximately 1 ms, which is much smaller
than the period of the oscillations 2m/co-25 ms. Thus
the delays are not expected to affect the synchronization
within a cluster. On the other hand, the axonal delays
between synchronized neurons that are separated by
7—10 mm cannot be ignored. To study the effect of the
delays in the long-range connections, we consider the
synchronization of two active clusters described by phase
equations with delayed interactions, i.e.,

We chose 68o=m/4 rad (45') for the examples shown in
Fig. 13.

1. Continuous stimulus

The interactions between proximal clusters will induce
correlations among the neurons in all of the clusters.
This represents a classification of the stimulus as a single
object. To calculate the strength of the correlations be-
tween pairs of clusters, let us assume that the only
significant interactions are those between nearest neigh-
bors, i.e., JRR. (58o), where 58o=b, 8o/(K —1). The sys-
tern is then equivalent to a finite chain of phases that are
coupled by a nearest-neighbor interaction with an energy
function

co=coo —J cosa sinco~D . (6.2)

where %R and +R ~ are the average phases of the clusters
at locations R and R', respectively, ~D represents the
average propagation delay time between pairs of neurons
in the two clusters, J:—JRR, and we have neglected
noise. The above equations describing a pair of phase os-
cillators with a delayed interactions is a special case of
the model studied by Schuster and Wagner, where
different driving frequencies for the two oscillators were
included.

Assuming a solution of the form O' R(t ) =cot+a/2, and
%R (t) =cot —a/2, the equation for the frequency of the
system is

K —1

E= —T~JRR'(58o) X cos(g; —t(';+, ) . (5.6)

The phase shift a can be either 0 or m. A linear stability
shows that the above solutions are stable if and only if
they obey

The resultant correlation function between the ith and
the jth clusters C, , is

(5.7)

0, cosco7 D )0

77, coscovD & 0
(6.3)

and is characteristic of the form of correlation functions
found for one-dimensional systems. If PL JRR (58o) is not
too small, substantial correlations will exist even between
neurons that are far apart [Fig. 13(a)].

The low-frequency branches and their stability for
rD = I /ruo and 2/coo are shown in Fig. 14.

The above results imply that synchronized states with
zero phase shifts are stable only if the propagation delay
obeys 0 & ~D & ~/2'. More generally,



H. SOMPOLINSKY, D. GOLOMB, AND D. KLEINFELD 43

3
3

(o) s —I
'

I
'

i
'

l(b)
~,=&r~p o = 2/(up

weak, i.e., of order e [(4.30)], and there is only one stable
solution for a given value of rD (Fig. 14).
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FIG. 14. The true frequency ~ of two clusters whose interac-
tion JaR. is delayed by a propagation time ~D [(6.1)]. The driv-

ing frequency of each cluster is coo. Solid symbols correspond to
stable solutions of the dynamic equations and open symbols cor-
respond to unstable solutions [(6.2)]. Circles correspond to solu-
tions with zero phase shift, i.e., a=O, and triangles correspond
to those with a phase shift a=+ [(6.3)]. (a) A time delay of
~D =1/coo. The delay is less than (m/2)/co and thus for small
values of JRR ~ there are no phase shifts associated with the
stable solution [(6.3)]. (b) A time delay of ~D =2/ct)p. For small
values of JRR there is a phase shift of ~ associated with the
stable solution [(6.3)].

(4n —1)vr (4n + 1)~
&WD (2' 2' (6.4)

It is important to note that the bounds on ~D are in terms
of the true frequency of the system co and not in terms of
the driving frequency coo. For the case of the oscillations
in the visual cortex, these results imply that the synch-
ronization between neurons is not disrupted for ~D & -6
ms. This bound corresponds to a propagation delay be-
tween neurons that are separated by roughly 5 mm.

As noted in Ref. 33 and shown in Fig. 14, increasing
the value of J leads to the appearance of multiple, stable
solutions with different frequencies and phase shifts. Nu-
merical simulations of (6.1) indicates that each of the two
stable low-frequency branches have a substantial basin of
attraction. In our model, however, the coupling JRR is

1

VII. DIRECTIONAL SELECTIVITY

We have considered so far neurons that are sensitive
only to the orientation of the stimulus (Fig. 2). For these
cells, there is no difference between an oriented bar that
moves forward along a fixed axis and one that moves
backward along the same axis. It is well known, ' how-
ever, that neurons may be sensitive to the direction as
well as the orientation of a moving bar. We now consider
an architecture in which a fraction of the cells in each
cluster encode direction as well as orientation. Motivat-
ed by experimental evidence and computational con-
siderations, we seek an effective interaction between clus-
ters that allows their phases to remain uncorrelated when
bars with similar orientation move in opposite directions
through their respective receptive fields.

To incorporate both direction and orientation, we
define the tuning curves on the interval from 0 to 2m.

rather than from 0 to m. Neurons that encode both direc-
tion and orientation have a single peak in their tuning
curve. In contrast, neurons that encode only orientation
have two peaks in their tuning curve, at 0 and 0+~. For
simplicity, the double-peaked tuning curves are described
as the sum of the tuning curves of two directional sensi-
tive cells, one peaked at 0 and the other at 0+~.

There are three sets of long-range connections that
may exist in this system. One corresponds to the connec-
tions between cells that are orientation selective but are
insensitive to directions, i.e., FI (8 9) [(2.7)], and —has a
periodicity of vr. A second, designated FL(8—8'), de-
scribes the connections between cells that are sensitive to
direction and has a periodicity of 2~. A third type de-
scribes the connections between neurons that are sensi-
tive to direction and those that are not. These connec-
tions are taken to be zero, a simplification that will not
effect the essence of our conclusions.

We consider the effective interaction for two experi-
mental paradigms (Fig. 15). The first involves stationary,
oriented stimuli, such as Gashing bars, that stimulate neu-
rons in different clusters. The most general form of the
effective interaction for this paradigm, denoted JRR, is

JRR = WL j I d8d8' VR(8) Ia, FI (9 9) +a [2F (I9—8')+FL (8 8—'+~)]]VR (8'—),
(2~) o o

(7.1)

where a, and a2 are positive constants [Fig. 15(a)]. The interaction JR/. has a period of rr, as required for stationary
stimuli.

The second paradigm involves moving stimuli. The most general form of the effective interaction for this case, denot-

JRi7'=Wl 2 I f d8d8'VR(8)[a3FL(9 —8')+a4FI'(8 8')]VR (8')—
(2ir) o o

(7.2)

where a3 and a& are constants [Figs. 15(a) and 15(b)].
The interaction JRR" has a period 2m, as required. How-
ever, the contribution from Fl (8—8') has periodicity m.

Thus if FL (8—9') has a maximum at 8—8'=0, its contri-

l

bution to JRR" will result in a maximum in JzR" for both
50O=O and ~. This will tend to synchronize clusters
when the bars move in opposite directions through their
respective receptive fields. To counter this effect, the
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the other hand, such symmetries do not exist for the cod-
ing of other features, such as stimulus velocity, spatial
frequency, or color. It is thus plausible that there is a
systematic dependence of local properties, in particular
the local driving frequency, on these features. Indeed,
there is experimental evidence of a substantial increase in
the frequency of oscillations in the cat visual cortex with
an increase in the velocity of a moving bar stimulus. '

Such a dependence may provide a complementary mech-
anism of discriminating between disparate features by the
temporal coherence of the neural response.

To examine the implications of a systematic variation
of frequency with stimulus properties, let us assume that
a single moving bar generates an oscillatory response in a
cluster with a frequency that depends on the velocity of
the bar. When two bars that move with different veloci-
ties are present, the dynamics of the two stimulated clus-
ters can be described by equations similar to (5.1), i.e.,

4R(t ) = coR —J sin[VR(t) —%R (t ) ],
%R (t) =coR ~

—J sin[VR (t )
—O' R(t) ], (8.1)

'@+=co+ ) (8.2a)

where, as before, 'P& and I'R are the average phases of
the two clusters. The local driving frequencies ~R and
coR correspond to the driving frequencies for each cluster
in the absence of a stimulus in the other receptive field in
other cluster. Equations of this form have been stud-
ied. ' Denoting 4'+ =—O'R+WR and co+ =—coR+coR, one
obtains

CRR (r) = A (Ar)cos[ —,'e+r+y(Qr)], (8.7)

where both the amplitude 3 and the phase y are periodic
functions of their arguments, with period 2m.

The above analysis [(8.4) and (8.7)] shows that the in-
duction of a frequency difference between two clusters
will affect the magnitude of the correlation and, more im-
portantly, its time dependence. In principle, this change
can be used to discriminate between stimuli with
disparate local features, e.g. , two objects moving with
different velocities. Whether this mechanism is actually
used by the nervous system remains to be seen. An in-
teresting experiment would be to measure the oscillatory
output of neurons that are simultaneously stimulated by
bars moving with different velocities. Our analysis sug-
gests that a break of the phase coherence, accompanied
by an appearance of a modulation frequency, will develop
as the difference in the velocity of the two stimuli is in-
creased. Since the driving frequencies of each cluster can
be measured by stimulation with a single bar, these mea-
surements can lead to an estimate of the effective interac-
tion JRR between oscillating clusters.

In addition to systematic effects, random variation in
the driving frequency of each neuron may be present.
This variation may serve as an additional, potential
source of noise. Networks of coupled oscillators with a
distribution of driving frequencies will remain coherently
active provided that the width of this distribution is small
relative to the strength of the interactions within a clus-
ter, i.e., ~5co ( I/rs [(4.25)].

=co —2J sin+ (8.2b) IX. DISCUSSION

The behavior of the system depends on the strength of J
relative to co

Small frequency difference: 2J/co
~
) 1. In this re-

gime, the solution to (8.2b) is constant in time, i.e.,

CO

=sin
2J

(8.3)

The phases of the two clusters are locked with a fixed
difference in their phase. Evaluating the cross-
correlation function of the two phases, one obtains

CRR (r) = ( cos[VR(t+r) 4R (t ) ]—)
—cos( 2 co+7 +4 ) (8.4)

(t) =2 tan ' tan( —,
' Qt ) + 2J

CO CO

(8.5)

with

(
2 4J2)1/2 (8.6)

The system undergoes a quasiperiodic motion, with fre-
quencies co+/2 and Q. The cross-correlation function of
the two phases 'PR and O' R. has the form

Large frequency difference: 2J/co
~

(1. In this re-
gime the solution of (8.2b) is a periodic function of time,
1.e.)

We have presented a phenomenological model of seg-
mentation of visual scenes by a network of oscillatory
neurons. The dynamics of each neuron is described by a
phase variable. This description does not consider the
origin of the oscillations and oversimplifies the neuronal
dynamics. Nevertheless, such an approach is justified at
present, given the lack of experimental guidance on the
neuronal circuitry that generates and modulates the ob-
served oscillations. Our phenomenological model pro-
vides a framework that defines the minimal requirements
to realize a neuronal circuit that generates coherent ac-
tivity similar to that observed in the cat visual cortex.
Furthermore, it specifies how these oscillations can be
used to link and segment stimuli that span multiple re-
ceptive fields.

An advantage of our phenomenological approach is
that the description of the temporal and spatial coher-
ence in the neurons involves few parameters, e.g., the
scales of short-range and long-range connection strength
and the level of noise. These parameters can, in princi-
ple, be determined from the amplitude and time depen-
dence of the measured correlation functions. Further-
more, there are predicted relationships among the corre-
lation functions [(4.27) and (4.33)]. An additional advan-
tage of our approach is that it provides a means to com-
pare different models of visual processing that incorpo-
rate a microscopic description of the underlying neuronal
circuitry. Under appropriate conditions, such detailed
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models may reduce to a phase description, with the
effective scales of connection strength and noise ex-
pressed in terms of the underlying microscopic variables.
Finally, the phase description provides a convenient com-
putational model that can be tested against other schemes

for global visual tasks.

A. Assumptions that underly the model

l. Architecture of connectiuity

Our model assumed that neurons that share the same
receptive field are grouped in clusters. The interactions
between neurons within clusters are strong and depend
only moderately on the orientation preference of the neu-
rons. The interactions between neurons in different clus-
ters are relatively weak and depend critically on their
orientation preference.

This architecture offers a number of attractive compu-
tational features, some of which have been alluded to
above (Figs. 10—13). Quite generally, this architecture al-
lows proximal stimuli with disparate features to be linked
as a single object. Consider, for example, the recognition
of the connected versus the disconnected pattern in Fig.
16. For the connected pattern, the neurons that respond
to orthogonal segments interact via short-range connec-
tions. Thus the output of all of the neurons oscillates
coherently. For the disconnected pattern, the neurons
that respond to orthogonal segments do not interact.
Thus their output is segmented into two coherent popula-
tions. In addition, the architecture in our model may
provide a mechanism for linking several features, e.g.,
orientation and color, that are processed by different neu-
rons that share the same receptive field.

The notion that the specificity of cortical connections
depends on the orientation preference of cells is support-
ed by physiological and anatomical data. ' The majori-
ty of the evidence indicates that there are excitatory in-
teractions between cells with similar preferences. Fur-
thermore, there are claims of inhibitory interactions be-

FIG. 16. Patterns formed from orthogonal lines. (a) A con-
tinuous pattern. (b) A discontinuous pattern. The circles corre-
spond to the assumed upper bound on the size of a receptive
field. Within the framework of our model, the neurons that
respond to the continuous pattern are fully synchronized, while
those that respond to the discontinuous object are segmented
into two populations.

tween cells with different orientation preferences.
The relative nonspecificity of the short-range interac-

tion assumed in our model is supported by the relative in-
sensitivity of the coherence of proximal neurons to their
orientational preference. ' ' However, other physiologi-
cal data on orientation specificity of connections does not
reveal a clear difterence between short-range and long-
range connections. Furthermore, there are recent indi-
cations that the coherence of the oscillations of proximal
neurons, stimulated by two moving bars, is sensitive to
the relative orientation of the bars. ' This important is-
sue deserves further experimental and theoretical study.

2. Activity-dependent connections and discrimination

In order to achieve dependence of the coherence be-
tween the phases of a pair of neurons phases on the orien-
tation of their respective stimuli, the coupling between
the phases must depend on their levels of activity. We
have modeled this dependence in a Hebb-like manner
(2.4). However, the levels of activity, as represented by
the tuning curves, are typically relatively broad. Our
analysis implies that a simple linear dependence of the
connections on each activity level, i.e., V(r) = I (r) [(2.5)],
leads to relatively poor and computationally uninterest-
ing discrimination for the case of purely excitatory con-
nections (Appendix A). In the present work, we achieve
an enhanced discrimination by adopting a highly non-
linear dependence of the connections on the average local
levels of activity. The particular nonlinearity we chose
was a threshold function, so that only neurons whose ac-
tivity is above a minimum, substantial value can contrib-
ute to the interaction [(3.14)]. An alternate possibility is
to assume that the interactions depend on a power of the
local activity, e.g. , J(r, r ') = I "(r)W(r, r ')I "(r ') with
n ) 1. The nonlinearities for either scheme can, in princi-
ple, be mediated by interneurons.

A sharp angular dependence of the effective interaction
between neurons in different clusters can also be achieved
when the interactions between neuronal phases have a
linear dependence on the average levels of local activities.
This requires the use of inhibitory as well as excitatory
long-range connections. ' The exact form of the
dependence of the long-range connections on the orienta-
tion preference of the neurons is a sensitive function of
the shape of the tuning curve (Appendix A). A sophisti-
cated model may combine both inhibitory connections
and nonlinear schemes.

The required activity dependence is suggestive of a
fast, Hebb-like modification of the strength of the under-
lying synaptic connections. ' A possible biophysical
basis for these fast changes are excitatory synaptic
currents that are mediated by n-methyl-D-aspartate
(NMDA) receptors. Indeed, there are recent experimen-
tal findings that suggest that NMDA receptors mediate a
significant fraction of the synaptic currents in the pri-
mary visual cortex. Hebb-like activity dependence may
also reAect a modulation of interactions by appropriate
circuits of interneurons.

The results of recent studies' ' ' suggest that
activity-dependent coupling between phases may emerge
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as a consequence of the interactions among neuronal os-
cillators in which both amplitudes and phases are dynam-
ic variables. In such a network, the coupling between the
phase of the neuronal oscillations will depend on activity
of the neurons even when the underlying synaptic in-
teractions have a fixed strength. This dynamic effect
may, in principle, account for the required dependence of
the phase coherence on the activity of the pre- and post-
synaptic cell. Indeed, a preliminary analysis of this effect
using a model of analog neurons suggests that the synch-
ronization of a pair of oscillatory neurons depends
strongly on their levels of activity. This important issue
is currently under study.

3. Transient behavior

The usefulness of a network for the discrimination of
stimuli that evolve in time depends on the transient be-
havior of the network. A particularly important element
is the time necessary for correlations between the output
of different clusters to form or to decay as the stimulus
changes. Roughly, this time should not exceed a few
times the period of oscillations. Indeed, the experimental
evidence suggests that the correlations are formed within
at most a few periods.

The architecture employed in our model assumes that
the synchronizing, long-range connections between
different clusters are weak. The advantage of this scaling
is that the local coherence is relatively insensitive to the
global properties of the stimulus. On the other hand, the
time to establish synchronization between spatially
separate regions can be quite long with weak long-range
connections. Specifically, the time required to establish
substantial correlations among different clusters scales as
rl —1/WL, which can be significantly longer than the
time required for the onset of coherent output within
each cluster, i.e., rs —1/Ws [(4.25)]. The time for the
output of different clusters to dephase following a drop in
the strength of their effective interaction is governed by
the level of the correlated noise. This noise scales as
1/TL —1/8'I and thus the dephasing time is also on the
order of 7I .

B. Relation to our earlier work

In the present work we extend our original model
in a number of ways that significantly improve its compu-
tational effectiveness. One issue involves the necessity for
the correlation between clusters to respond rapidly to
changes in the orientation of the stimuli. The response
time depends on the time required for the output of two
clusters to dephase (see above), which is set by the residu-
al noise in a cluster. In our original formulation, the re-
sidual noise level resulted from the presence of a finite
number of active neuronal oscillators in each cluster,
each with an independent, local noise. The level of this
residual noise is approximately Tz/X, where T& is the
variance of the local noise and X is the number of neu-
rons in a cluster. It can be very low when the number of
neurons is large. In the present work, we include an ad-
ditional source of noise, correlated across a cluster, so

that the residual noise level is an independent parameter.
The two scales of noise in the present network, localized
noise and relatively weak correlated noise [(2.8)], are
analogous to the two scales of connection strength
[(2.12)]. We suggest that it is reasonable for the noise to
have a component that is correlated on the length scale of
the local connectivity, roughly equivalent to that of a hy-
percolumn in the visual cortex.

A second issue involves the ability of the network to
discriminate between short bars with different orienta-
tion, each in a separate receptive field. The sharpness of
this discrimination depends on the form of the effective
interaction between pairs of clusters. In our original
work we assumed that the effective interaction was
linearly mediated by the firing rate of each neuron and
used a pattern of long-range connectivity that consisted
of inhibitory as well as excitatory interactions. Although
this scheme allows the network to achieve sharp discrim-
ination (Fig. 4), we observed numerically that it is overly
sensitive to the shape of the tuning curve as well as to
small variations in the form of the long-range connec-
tions. Here we adopted an alternate, robust scheme in
which the effective interaction between neuronal phases is
mediated by a nonlinear function of the rate of firing (Fig.
5).

A final issue concerns the discrimination between bars
that move with the same orientation but in different
directions. Previously, we considered a particular
scheme for the pattern of connectivity in which only neu-
rons sensitive to direction as well as orientation mediate
the long-range interactions. In the present work we con-
sider a general formulation of the problem, in which the
connections that mediate discrimination by the direction
of movement are decoupled from those that mediate
discrimination based on orientation. In this scheme the
connections between neurons that are sensitive to direc-
tion must be inhibitory for neurons with similar orienta-
tion preference but opposite directional preference (Fig.
15). More generally, it is well known that visual stimuli
are coded for a multitude of features, e.g., spatial fre-
quency and color, in addition to orientation. Our
analysis suggests how the long-range connections can
cause phase coherence to be unfavorable when there is
discordance in any feature between neighboring stimuli
(see also Ref. 21).

C. The issue of read-out

An important issue is the time required to make a
discrimination on the basis of the correlation among the
neuronal phases. In the presence of noise, determination
of these correlations necessitates the need to temporally
average the output from different clusters. The details of
this averaging will depend on the assumed scheme to
"read-out" the correlations, an open question at the
present time. Qualitatively, the time required for averag-
ing will be determined largely by the ratio of the long-
range interactions to the correlated noise, i.e., O'L /TL.
This ratio can, in principle, be estimated from the equilib-
rium value of CRR (0).
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D. Extension to other features

We have presented a detailed model of processing of
orientation-coded stimuli. Recognition of complex visual
stimuli requires the processing of several features. Our
model may provide a framework for such processing.
Local interactions may link different features within a re-
ceptive field. Processing of sensory input across many
fields will be mediated by the dependence of long-range
interactions and local frequencies on the stimulus. Ac-
complishing this goal may require the incorporation of
more biologically realistic and computationally power-
ful neuronal receptive fields.
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APPENDIX A: LINEAR MECHANISM
FOR A SHARP JRR

The strength of the effective interaction JRR is a func-
tion of the difference in the orientation of stimuli between
two clusters 600. The sharpness of the interaction de-
pends on the functional relationship between VR(0) and
1R(0) and on the form of long-range connectivity
F'(0 0'). In the—text, we focused on VR(0) that were
thresholded versions of the tuning curves, so that
VR(0)=0 for ~0~ &o. Here, as in our previouswork,
we consider in detail the case of VR(0) that are nonzero
for all orientations.

The linear relation between JRR. (b,00) and Ez(0 —0')
can be cast into a convenient form by Fourier transform-
ing (3.1). Denoting the transforms of JR&.(b,00), FL(0)
and V(0) by JRR, (l),Fz(l), and Vz(l), respectively,
yields

JR„'(I)= O'' V(I)l'F'(I) .

The angular range of this interaction is roughly twice the
width of the neuronal tuning curve [Fig. 4(b)].

Within the framework of a linear relationship between
VR(0) and I R(0), a sharp dependence of JRR on b, 00 for
forms of VR(0) that decay smoothly to zero requires the
use of inhibitory as well as excitatory long-range connec-
tions. For the exponential form of VR(0) [(A2)], an in-
teresting form of such connectivity is

2 2
—x2 2F.(0—0')= 1 — — e

p Bx
2

1 —2 — (x —1)
P

4

+ — (x' —6x+3) e "~, (A4)
p

where x:—(0—0')/p and p is a free parameter that con-
trols the angular range of the effective interaction. A
reasonable choice for this parameter is p ~ K'. The
effective interaction, found from (Al), is

—(600) /2p
JRR = ~ze (A5)

For Fz(0 —0') with p=0. 4x, the range of JRR. is about
0.5v.

APPENDIX B". TIME DEPENDENCE
OF THE AUTOCORRELATION FUNCTIONS

and (ii) at low noise levels, where 6$&(O, t) is small and
(4.22) can be linearized, i.e.,

1
5$R(O, t), (B2)

where r' is defined in (4.25).
The autocorrelation function is (4.21)

The autocorrelation function CR(0, &) can be calculat-
ed analytically for two limiting cases of the local noise
level Tz. These are (i) at high levels of noise, i.e.,
Ts )Tc, where the order parameter M =0 and the equa-
tion for noisy components of the phases [(4.22)] reduce to

5$R(O, t) =(R(O, t);

For concreteness, we take an exponential form for VR(0)
[(3.7)], i.e.,

CR(O, r) = (cosz ), (B3)

—(80(R)—e(R) /a.
VRO=e (A2)

where

z= QR(O, t) ——
p (0R, t+ ).r (B4)

where ~ is the width of the tuning curve. We consider
first the possibility that the long-range connections are
purely excitatory and occur only between neurons with
similar orientation preferences, i.e., FL(9—0')
=~5(0—0'). This hypothesis leads to

For both limiting noise levels, z is a Gaussian variable
with zero mean and variance 6 . At high noise levels

z= I dt'g„(O, t') (B5)

/aO, [

JRR ('00)=~i 1+
—/ao /g~

e (A3)
and

(B6)

The resultant orientation dependence is relatively weak. At low levels of noise and for large averaging times
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z= f dt'g„(8, t')e ' —f dt'g„(8, t')e

=2rsTs(I —e ) .

(87)

(88)

E=—

where S—:QR, SR.
The partition function of the system is

»2~, ~, llsll'
dSRe

R

(C2)

(C3)

Substituting (86) yields, for high levels of noise,

CR(0, r) =e

Substituting (86) yields, for low levels of noise,

S)
C (0,r)=e

(810)

(811)

fhe mean-field result for CR(0, t ) [(4.21)] and the long-
time limit of (811) imply

m a(0) =e

When Tsrs ((I, (811)can be approximated by

CR(0, r)=-1 r~Ts(1 ——e )

(812)

The autocorrelation function is calculated by Gaussian
integration, i.e.,

—z /2A

CR(0, r) = dz cosz =e
(2~3. )'

where the integration over dSR is restricted to the unit
circle. Using the well-known Hubbard-Strantonovitch
transformation, we obtain

Z= ' f" dxe-'" 'f gds„e'" "
277

(C4)

—1/2x +K lnJ'O«P~ 8'i ) x)Z= f "xdxe (C5)

where Jo(x ) is the zeroth-order modified Bessel function.
The average value of the energy (E ) can be calculated

from (C5) by the standard relation

( )
t) lilz
t)PL

(C6)

Using (C2), one can write the average value as

where X is a two-dimensional variable. Using polar coor-
dinates (x, 8) for X, (C4) reduces to an integral over a sin-
gle variable, i.e.,

I

=[1—mR(8)]e +mR(0) . (813) 8'L
(E)= — [K(K —l)CRR +K], (C7)

The above equation is a useful approximation for
CR(0, &) even if the linear approximation [(82)] is not val-

id, so long as m R(0) is not small.

where the equivalence of all of the pairwise correlations
in this system has been employed. Using (C6) and (C7),
we find

APPENDIX C: CORRELATION FUNCTION
FOR A LONG BAR

We calculate the intercluster cross-correlation function
for the case of a straight bar that spans K receptive fields
and is described by the energy function given by (5.4). It
is useful to define the two-dimensional unit-length vectors

1 1
RR' , ~~ (x&((PI 8'~ )' x ) ) —1

K —1 (pp

where

(f ( ) )
™

d f( )
—i /2 +K 1 Jo( (/3t L ) )

Z 0

(C8)

(C9)
(Cl)

in order to evaluate the equilibrium properties of the sys-
tem of phases with this energy [(5.4)]. Up to a constant,
irrelevant term, the energy can be written as

and &(x)=J&(x)!Jo(x), where J,(x) is the first-order
modified Bessel function. Equations (C8) and (C9) can be
evaluated numerically to yield CRR for all values of the
parameters PL, WL, and K.
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