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The properties connected to the propagation of electromagnetic waves in rectangular waveguides
loaded by periodic dielectric gratings have been treated by extending the theory of dynamical
scattering by perfect atomic crystals. The theoretical formulation has been developed for the TE&o
excitation of the periodic load, but it remains valid in the same form when a TE,o (n ) 1) excitation
takes place. The analysis was first developed for two-dimensional periodicities, and later the results
were applied to one-dimensional periodicities without modifications to the formalism. The generali-
zation of Bragg s law to guided propagation has been obtained, and the conditions and limits of ap-
plicability of the theory have been discussed. It has been shown that, when a small permittivity con-
trast between supporting and loaded material is present, the electromagnetic field can be approxi-
mated by either one or two waves only. The expressions of the electromagnetic field supported by
the periodic medium and the dispersion relation have been obtained. The diffraction pattern, the
deviation from the generalized Bragg law, the width of the total reAection range, and the extinction
length have been evaluated for a regular array of cylindrical holes on a polyethylene support. We
have reported the results of an experiment carried out to verify the accuracy of the theory. The
comparison between theoretical and experimental results has shown excellent agreement.

I. INTRODUCTION

The theory of dynamical scattering (DST) has been ex-
tensively used to describe a variety of effects connected to
the diffraction of x-rays, neutrons, and electrons by crys-
tals. ' The properties connected to light diffraction by
cholesteric liquid crystals were explained by means of the
DST (Refs. 23 —2S) and an application to light diffraction
by colloidal crystals was suggested. Recently an exten-
sion of the theory has been proposed by the present au-
thors for the diffraction of electromagnetic waves by
periodic dielectric media, in a general form valid for a
wide frequency range, but with a particular interest in the
field of microwaves and millimeter waves. By consider-
ing the periodic structure as a macroscopic crystal lat-
tice, the theory makes possible a meaningful physical in-
terpretation of the propagation in terms of incident and
diffracted waves. The work of Ref. 27 defines conditions
and limits of the applicability of the theory in the form
developed, and points out some interesting effects con-
nected with the coupling between incident and diffracted
waves. The theoretical forecasts have been successfully
verified by means of an experiment involving the propa-
gation of microwaves in a two-dimensional periodic
medium inside a parallel-plate waveguide under cutoff, so
as to simulate the propagation of plane waves in an un-
bounded media.

The aim of the present paper is to show that the DST
can be successfully extended to the propagation of guided
electromagnetic waves in closed structures loaded at

periodic intervals with identical dielectric obstacles. The
propagation of electromagnetic radiation in guiding
periodic structures (waveguides and transmission lines
periodically loaded) is a subject of interest due to some
interesting and potentially useful properties both in the
microwave field and, more recently, in the optical
field. ' These include, in particular, the passband-
stopband characteristics and the ability to support waves
with phase velocities much less than the velocity of light.
The passband-stopband characteristics are connected
with the existence of frequency bands throughout which
the wave propagates without attenuation along the struc-
ture, separated by frequency bands throughout which the
wave is cut off and does not propagate, a property of in-
terest for its frequency filtering aspects.

The rectangular waveguide is the most commonly used
in microwave circuits and our analysis will be limited to
it. Nevertheless, the essential properties of hollow cylin-
drical waveguides are the same, so that an understanding
of the diffraction process in rectangular guides may pro-
vide suggestions for a more general extension of the
dynamical approach to different closed waveguides. The
theoretical formulation is developed for the case where
the periodic structure is fed by the fundamental mode
TE]o of the rectangular waveguide. This is the case of in-
terest in most applications since waveguides are typically
employed in single-mode propagation regime.

In contrast to the free space and the open waveguides,
the hollow closed waveguides do not support the propa-
gation of TEM waves. Their normal modes consist of the
TE and TM confined modes with wave vectors belonging
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to a discrete set of values. This fact gives the guided
propagation a peculiar character, which makes the exten-
sion of the DST an original and interesting problem. It
will be shown that it is still possible to discuss the cou-
pling of the modes in terms of incident and diffracted
waves following the basic lines of the theory developed
for the propagation of electromagnetic radiation in un-
bounded periodic media. This fact confirms once more
the power of the dynamical approach in the description
of the phenomena connected to the diffraction of waves
(matter and electromagnetic waves) by periodic struc-
tures. On the other hand, it offers a simple and physical-
ly meaningful instrument to study the guided propaga-
tion in periodically perturbed media in rectangular
waveguides.

Concerning the propagation in unbounded periodic
media, exact solutions, in some cases, are available. This
is the case, for instance, of the periodic layered media dis-
cussed in Refs. 32 and 33. Rigorous theories based on
the difFerential equation approach have also been
developed for the diffraction of electromagnetic waves
from gratings with one, ' two, and three periodic
grating vectors, but their application in the general
case is rather complex and requires efficient computer nu-
merical calculations. Qn the other hand, no general
theory providing exact solutions is available in the litera-
ture for the propagation of electromagnetic radiation in
periodically loaded closed waveguides. The approach
commonly used makes use of a circuit model involving
the construction of an equivalent network for a single
basic section (or unit cell) of the structure, followed by an
analysis to determine the voltage and current waves that
may propagate along the transmission line obtained by
the cascade connection of an infinite number of the basic
networks. It is also possible to consider a wave-analysis
approach, in terms of the forward- and backward-
propagating waves existing in each unit cell, which makes
use of the wave-amplitude transmission matrix and
Floquet's theorem. In both cases, a complete characteri-
zation of the periodic 1oad of the unit cell in terms of a
shunt susceptance is required, which is a matter of some
complexity in the general case and is often possible only
in particular cases and/or in approximate forms.

When the periodic load is realized by means of dielec-
tric obstacles, which is the case of interest, approximate
solutions of the propagation equation can also be ob-
tained by the coupled-mode theory. ' That is a general
approach where the periodic variation of the dielectric
constant is viewed as a perturbation that couples the un-
perturbed normal modes of the structure. The electric-
field vector of the electromagnetic wave is expressed by
means of a superimposition of the normal modes of the
unperturbed dielectric structure, with unknown ampli-
tude coefficients satisfying a set of coupled linear
differential equations. The solution is possible only in an
approximate form, when a limited number of modes are
strongly coupled ("resonant coupling" ). However, the
application of the theory requires the perturbed part of
the dielectric constant to possess only one-dimensional
periodicity, along the axis of the waveguide.

The theory proposed in this paper, on the contrary, is

II. THEORETICAL APPROACH

A. Preliminary considerations

The theory is at first developed for the case of two-
dimensional periodicities. At the tend of Sec. II E the re-
sults obtained in the following will be applied to one-
dimensional periodical structures without any
modification of the formalism.

Consider a rectangular waveguide, with cross-section
dimensions a and b (a )b), completely filled with a
periodic medium consisting of a dielectric substratum,
with dielectric constant e&, which supports a two-
dimensional regular array of dielectric cylindrical rods,
with dielectric constant ez. For the magnetic permeabili-
ty it is assumed that p&

-—p2—-po and both dielectrics are
supposed to be without losses. Because of the different
dielectric constants with respect to the dielectric matrix,
the rods act as scattering elements. A cross section of the
waveguide is schematically shown in Fig. 1(a), and Fig.
1(b) shows a top view of the structure. The propagation
of the electromagnetic field in a periodic medium is
governed by the following differential equation for the
displacement vector 0:

$2D
V D+VXVX(VD)=e, po

Bt
(2.1)

where

%'(r) =l-
e(r)

(2.2)

and the dielectric constant e(r) has the same periodicity
of the lattice.

The problem of the propagation in guiding structures
is to find a solution to Eq. (2.1) which satisfies the bound-
ary conditions imposed by the presence of the metallic
walls. A significant simplification in the electromagnetic
analysis results when we consider the periodic structure
fed by the fundamental mode TEio of the unperturbed
rectangular waveguide. The electromagnetic problem
considered consists in the incidence of a TEio mode (com-

valid for the more general case of two-dimensional
periodicities of the dielectric constant. The possibility of
a two-dimensional periodicity is important as it offers one
more degree of freedom in the design of periodically load-
ed guiding systems. Differently from the coupled-mode
theory, the present approach leads to a set of algebraic
linear equations for the amplitudes of the modes coupled
by the periodic perturbation. Furthermore, it provides a
clear physical insight to the mode coupling and to the
condition of weak perturbation, which defines the limits
of applicability of the approximations involved. It shows
the existence of interesting effects, such as the total
reAection, the deviation from the Bragg law, the so-called
"pendulum solution. " Finally, it allows for the introduc-
tion of a characteristic length of the periodic structure
(the extinction length), which gives a measure of the
length necessary for a strong coupling between incident
and diffracted wave to take place.
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TE o mode of the unperturbed waveguide, and, due to
the periodic nature of the load, D„(z) is a one-
dimensional periodic function

D„(z+ha, )=D„(z), h =0,+1,+2, . . . . (2.4)

By expanding D„(z) in Fourier series, Eq. (2.3) becomes

ppAg%' p (p, Q P gpss

D= g g sin(nvrx la)D„&exp[2mi(ft K„'I—, z)]u
n=1 h= —oo

(2.5)

OO with

K„'i, =K„'+h/a, , (2.6)

z 1(

FIG. 1. Schematic picture of the structure investigated. The
rectangular waveguide is filled with a two-dimensional periodic
dielectric medium consisting of a grating of dielectric cylindri-
cal rods supported by a difFerent dielectric substratum: (a) cross
section, (b) top view.

D= g sin(nrrxla)D„(z)e p[x2 ri(ift K„'z)]u-
n =1

(2.3)

where f is the frequency of the electromagnetic field,
K„' = [zips —(n /2a) ]'~ is the guide wave vector of the

ing from z = —~) upon the periodic load extending in
the region z & 0. This approach does not lead to the gen-
eral solution of the problem, i.e., the general expression
of the electromagnetic field supported by the periodic
medium, but gives the solution for a particular condition
of excitation. This is, in turn, the condition of greatest
interest for practical purposes where typically single-
mode propagation takes place.

The electromagnetic field in the periodic structure can
be expressed in terms of a superposition of normal modes
of the unperturbed waveguide. So, in the general case, all
TE and TM modes should be considered. However,
when a TE&o excitation takes place, the y uniformity of
both the exciting field and the periodic load makes it im-
possible for the excitation of modes with field com-
ponents that are nonuniform in the y direction. Hence all
TM and TEO modes cannot be excited and it is possible
to neglect them in the theoretical formulation. On the
contrary, all TE„o modes, which possess a y-uniform field
distribution, can be excited in the general case (in partic-
ular, if the periodic load is symmetric with respect to
x =a l2, only TE„0 modes with n odd are excited). Their
only nonzero component of the electric field is parallel to
the y axis.

According to the above considerations, in the presence
of a TE io excitation, we expect a general solution of Eq.
(2.1) for the displacement vector D of the form

which expresses the field in terms of only TE„O modes,
with wave vectors related by Eq. (2.6) and coefficients

D„l, to be determined so as to satisfy Eq. (2.1). Once Eq.
(2.1) for the displacement vector 0 is solved, the associat-
ed magnetic field is obtained from Maxwell's equations.

In the present paper we prefer to follow an alternative
way of solving the electromagnetic problem, by introduc-
ing an "equivalent" open waveguide (i.e., parallel-plate
waveguide), defined in Sec. IIB, and first studying the
propagation through it. That allows us to introduce
some simplifications in the theoretical treatment. As
shown in Sec. II D, the solution of the closed waveguide
problem can be easily derived from the solution of the
two-dimensional open equivalent problem. The propaga-
tion in the open structure, in turn, can be studied in the
framework of the theory developed by the authors in Ref.
27. This approach also points out that the nature of the
mode coupling for the TE„o modes in the periodically
loaded rectangular waveguide is just the same as the one
which takes place between the plane waves propagating
in unbounded periodic media.

B. Solution for the open equivalent structure

(2.7)

For this wave guide we consider the electromagnetic
problem analogous (or "equivalent" ) to the one discussed
in Sec. II A for the rectangular waveguide. It consists in
the determination of the electromagnetic field which rises
in the medium when it is excited by the fundamental
mode, i.e., the TEM mode for the parallel-plate
waveguide. The propagation of a TEM wave through a

Consider a parallel-plate waveguide, infinitely wide in
the x direction, with a separation of the conducting plates
b, completely filled with the same periodic medium filling
the rectangular waveguide. The structure is referred to
as an equivalent open wave guide, the sense of the
equivalence being clarified in Sec. II D. The unit cell of
the rectangular grating is shown in Fig. 2 and is defined
by the vectors a&, a2 in real space. The radius of the cir-
cular cross section of the cylindrical rods is denoted by R
and the origin of the reference system is chosen at a
corner of the unit cell.

In the unit cell e(r ) takes the following values:

e, , /r/)R

i
i&A.
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panded in the Fourier series:

%(r)= g %aexp( 2—vriBa r.)
H

with

%a= —I 4(r)exp(2miBa r)dS,=1
S s

(2.10)

(2.11)

bg

where S is the surface of the unit cell, BH =h 1&+kb2 is
the two-dimensional reciprocal lattice vector associated
with the h, k Miller indices, and b, and b2 are the unit
vectors of the reciprocal lattice, defined by the relation
a; b =5; (i,j = 1,2). The vectors b, and b2 are also
shown in Fig. 2. The sum over H means all possible
values of h, k. Taking into account Eqs. (2.2) and (2.7),
the Fourier coefficients (2.11) take the form

1'Pa=
S (1 &1~~2»a—

with

(2.12)

fa = exp(2vri Ba r)dS,
So

(2.13)

FIG. 2. Unit cell of the periodic grating. a& and a2 define the
unit cell in the real space; b& and b2 are the unit vectors of the
reciprocal lattice.

D(r) = g Daexp [2m.i (ft —Ka r) ],
H

where

(2.8)

KH =Ko+BH . (2.9)

Ko is the wave vector of the internal incident wave. Ko
and KH lie in the plane xz parallel to the conducting
plates and each DH =DHu„ is directed along the y axis.

'P(r) is a doubly periodic function of r and it can be ex-

y-uniform parallel-plate waveguide is a typical two-
dimensional problem. The wave vectors of incident and
diffracted waves lie along the x-z plane and all the physi-
cal parameters involved are y independent. In fact, the
uniformity with y both of the excitation and the periodic
load does not allow the propagation of modes with y-
dependent field components. No TE and TM mode is
then excited by the incident field, but only other TEM
waves which can propagate in different directions parallel
to the conducting planes. The excited fields have no
component of the electric field parallel to the plates of the
waveguide, so that the presence of the conducting plates
limiting the region of space interested in the propagation
is of no relevance in the theoretical treatment. The situa-
tion is then equivalent to the propagation of a uniform
plane wave (with the electric field along the y axis)
through a two-dimensional periodic unbounded medium
uniformly extending to infinity in the y direction.

Equation (2.1) still describes the propagation in the
two-dimensional media, where r indicates now the posi-
tion vector in the x-z plane. Because of the periodic na-
ture of the medium, and taking into account the above
considerations, the general solution of Eq. (2.1) can be ex-
pressed as a linear combination of Bloch waves:

where the integration surface So is the circular cross sec-
tion of the cylindrical rod, corresponding to ~r~ ~R.
Equation (2.13) defines the form factor of the scattering
element. The calculation of the integral in Eq. (2.13), by
expanding the exponential term in the Taylor series, gives
the expression of the form factor fa in the form of a rap-
idly convergent series

(2mBa) "
R ~2n+2~

(2n)! 2n +2 (2.14)

where

2n 1I2„— I2„—2, Io —2m .
2n

(2.15)

10'a =
S (1 e& le2)Fa

with

N

Fa = g fa„exp(2miBa r„)
n=1

(2.16)

(2.17)

with fa„ the structure factor of the nth scattering ele-
ment. Equation (2.17) defines the structure factor of the
unit cell. The form factor depends only on the geometry
of the scatterers, . while the structure factor is a function
only of their distribution inside the unit cell.

Using Eqs. (2.8) and (2.10) the product %D can be writ-
ten in the form of series

4D = g (VD)aexp[2vri( ft —Ka r)], (2.18)

where the Hth Fourier coefFicient is a sum over a11 the re-
ciprocal lattice points

For the more general structure with N scattering ele-
ments in the unit cell, centered in r„(n =1,2, . . . , X)
and with cross section surface S„(not necessarily circu-
lar), Eq. (2.12) modifies to the form
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(+D)H= g 4H LD-
L

(2.19)

«H &it
—d'»H=KH & +H-iDi

L
(2.20)

where f (e,po)' =K is the wave vector of a plane wave
with frequency f in a homogeneous medium of dielectric
constant e&. A solution of Eqs. (2.20) gives the unknown
amplitudes DH and the related wave vectors KH.

In analogy with Ref. 9 we define the "resonance error"
5H by the equation

KB=K(1+5H) . (2.21)

When the speed of one or more of the plane waves of ex-
pansion (2.8) approaches the speed of the light in the
homogeneous medium of dielectric constant e&,
U =(e,po) ', the corresponding resonance errors be-
come small in comparison with unity, and Eq. (2.20)
reduces to a close approximation:

1
DH

g X +H LDL—
2 H L

(2.22)

The presence of the terms 5H in the denominator causes a
resonance effect which makes the amplitudes of the cor-
responding waves dominant over all the others. These
waves can be taken as an approximation of the total field.
In these conditions ~KH ~

=K and the normal modes of
the periodically perturbed structure are close to normal
modes of the unperturbed structure. So, as a first approx-
imation, the periodic variation of the dielectric constant
can be considered as a perturbation that couples the un-
perturbed normal modes of the structure, in accordance
with the coupled-mode-theory approach. The modal
coupling condition is expressed by Eq. (2.9). The situa-
tion described occurs when the presence of the periodic
grating can be considered as a small perturbation of the
homogeneous supporting medium, i.e., when at least one
of the two following conditions: ei —-e2 or g„S„«S
(with the sum extended to a unit cell), is verified. When
this is so, the function ~%'(r)

~
is small in comparison with

unity "nearly" everywhere inside the unit cell.
The degree of approximation involved in the analysis is

related to the values of the resonance errors. The smaller
the resonance errors, the more accurate the approxima-
tions introduced. In x-ray and neutron diffraction the
resonance errors are of the order of 10 —10 and
sometimes even less. This is a consequence of the small-
ness of the function %(r), being typically
~%(r)~=10 —10 . In Ref. 27 it has been shown that
the two-wave approximation still gives reliable results
and with good accuracy when the term

~ %H ~, associated
with the Hth reflection, is of the order of 10 . This is
the case of interest in the microwave frequency range
and corresponds to resonance errors between 10 ' and
10 . In the millimeter-wavelength range it is possible to

The insertion of expansions (2.8) and (2.18) into Eq. (2.1),
after equating the corresponding Fourier coefficients of
the two sides, gives the following infinite set of linear
differential equations:

obtain values one order of magnitude smaller while still
lower values are achieved in the optical frequency range.
From this point of view, the condition of small perturba-
tion is equivalent to the presence of coefficients
equal to or smaller than —10 or, equivalently, reso-
nance errors lower than 10 '. The directions of the
waves of appreciable intensity can be found by using the
construction involving the Ewald sphere drawn in the re-
ciprocal space. ' '

Equation (2.8) gives the general solution to the propa-
gation problem for a parallel-plate waveguide excited by
a TEM wave propagating in an arbitrary direction Ko
parallel to the conducting planes. It expresses the fields
as a sum of normal modes of the open two-dimensional
structure consisting of uniform plane waves with wave
vectors in the xz plane and related by Eq. (2.9). To com-
plete the analogy with the rectangular waveguide prob-
lem we have to consider the incident TEM mode to prop-
agate along z. Moreover, when the periodic structure is
limited to the region z )0, the boundary conditions over
the limiting surface z =0 require DH=O for all waves
with wave vectors not parallel to the z axis. Equation
(2.8) then reduces to

D(z)= g D&exp[2iri(ft —K&z)]
Q = —oo

with

(2.23)

Kg =Ko+hb), h =0,+1,+2, . . . , (2.24)

where Ko=Kou, and the vector BH =h b, =B&
(h =0,+1,+2, . .. ) now moves along the direction b, of
the reciprocal lattice. So, in order to find the solution for
the closed structure, it is not necessary in the following to
consider the general solution of the parallel-plate
waveguide, but it is sufhcient to limit the field expansion
to the plane-wave terms (2.23) propagating along z and to
study the mode-coupling in this direction. On the other
hand, according to the equivalence stated in the Sec.
II D, expansion (2.23) really gives rise, for the rectangular
waveguide, to the general solution of the form expected
(2.5). In other terms, the normal modes of the closed
periodic structure investigated derive from the plane-
wave terms of Eq. (2.8) describing propagation along the
waveguide axis z.

Accordingly, we limit our analysis to the one-
dimensional solution (2.23) of the propagation equation
(2.1). Equations (2.8)—(2.22) are still valid in the same
form with H =(h, k) replaced by the index h. In particu-
lar, the system (2.22) for the field amplitudes reduces to

oo

Dh
g X +h —1DI25h

(2.25)

The mode-coupling can still be described by using the
Ewald sphere in the reciprocal lattice, as shown in Fig. 3.
The unidirectional character of the propagation involved
in the present analysis [Eq. (2.23)] results in the localiza-
tion of the center of the sphere over axis b, of the re-
ciprocal lattice, which is parallel to the direction of prop-
agation z. If Ko=Kou, is the wave vector of the incident
wave and H =(h, 0) any reciprocal-lattice point on axis
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where h = —h. Equations (2.28) have a nontrivial solu-
tion only if the determinant vanishes

(40—25o)(%0—25i, ) I +(, I
(2.29)

FIG. 3. Ewald sphere in the reciprocal space. 0 and H are,
respectively, the origin and a point of the reciprocal lattice, and
A is the center of the sphere. Ko is the wave vector of the in-
cident wave and KI& =Ko+80 the wave vector of the diffracted
wave.

b, other than 0, then, according to Eqs. (2.23) and (2.24),
KH=Ki, =Ko+B~=(K&+hb, )u, is the wave vector of
a possible constituent wave of the total field. Still, the
wave will have appreciable amplitude only if H lies very
close to the sphere, thus resulting in a small resonance er-
ror. In such a case we speak of "resonant coupling" be-
tween the corresponding waves, and the resonance error
can be considered as a measure of the degree of wave cou-
pling. The geometrical construction shows that no more
than two waves can be resonantly coupled and the cou-
pling, when present, can only be contradirectional, i.e.,
the incident and the coupled diffracted wave propagate
along opposite directions. In this case
~Ki, ~

=
~ Ko~ =If = I/A, and Eq. (2.24) becomes BI, -2K,

which is very nearly equal to the Bragg diffraction law
with grazing angle 0=~/2:

where we have set %z =(%i, )* as it results from relations
(2.16), (2.17), and (2.13). Equation (2.29) is the dispersion
equation.

The resonance error 5z is a function of 50, as shown
also by the geometrical construction in Fig. 3. Combin-
ing Eqs. (2.21) and (2.24) and neglecting the terms 5&

(I =O, h) with respect to 25i, the following linear relation
between 6I, and 50 can be found:

a
5 =—5+—

h g 0

where

(2.30)

a=(Bi, 2KB', —)/K
1/b =1—Bi, /K,

(2.31)

(2.32)

a=4(A, —Aii)/Aii . (2.33)

With the same order of approximation the quantity b
reduces to

(2.34)

It is useful to express the solution of Eq. (2.29) in terms of
the dimensionless quantity P defined by

and 8& =hb, . The parameter o, is a function of the wave-
length deviation from the value A,z corresponding to the
Bragg law.

In particular, for wavelength A, close to A,z, which is
the case of interest, Eq. (2.30) can be written to a close ap-
proximation:

hA, =2a) . (2.26)
+o —a/2 ~PO —2(A, —A,ii )/kii

(2.35)

When no reciprocal-lattice point other than the origin
lies near the Ewald sphere, the incident wave will pro-
duce dN'racted (rejected) waves of negligibly small ampli-
tude and the total field can be approximated by one wave.
We can set DI, =0 for h %0, and the system (2.25) reduces
to the equation

By inserting Eq. (2.30) into Eq. (2.29), one obtains an
equation in 50, the solution of which can be written

50
(2.36)

(1—e, /ez), (2.27)

By introducing the variable X =D&/D0 and solving the
dispersion equation in X, two solutions X, and X2 are ob-
tained:

where the last equality makes use of Eqs. (2.16) and
(2.17). The quantity ( I+5O) =n defines the refraction in-
dex n of the periodic medium relative to that of the sup-
porting medium.

When another reciprocal-lattice point h, other than the
origin, lies near the EwaM sphere, the field is essentially
made up of two dominant wave fields. By setting D& =0
for I&O, h, Eq. (2.25) reduces to the linear homogeneous
system

X]
X2 (2.37)

Since there are two possible values for 60 and for the am-
plitude ratio X, there are two internal incident waves and
two internal diffracted waves. The general form on the
incident wave field inside the medium is thus

(+o—25O)DO+VqDi, =0,
q', D, +(e, 2f, )D, =0, — (2.28)

z~ixz(D '&~'+D '&z')—

and for the diffracted wave field

(2.38)
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2ni(8), —k)z, —iP)z „i—Pzz
e 1 Oe 2 oe t (2.39)

where P) =2rrK5o, $2 =2rrK5o'. The terms in parentheses
in Eqs. (2.38) and (2.39) result in a modulation of the field
amplitude along the propagation direction z, which will
be discussed in more detail in Sec. II E.

C. Geometrical interpretation

It is possible to give a useful geometrical interpretation
of the results obtained in Sec. II B that allows a graphical
solution of the dispersion equation. We introduce two
variables go and gk

..

0o=~o —+o/2

k =6k 0'o/2,

(2.40)

(2.41)

In terms of these, Eqs. (2.29) and (2.30), respectively, take
the forms

4ogk
=

I +k I'/4,

Co+4 = —x~q'k

(2.42)

(2.43)

In the plane gogk, Eq. (2.42) defines an equilateral hyper-
bola with diameter D,D2=2'~ ~4k~ (the dispersion
curve), while Eq. (2.43) represents a straight line with
slope —1 and a known term depending on the wave-
length A, , as shown in Fig. 4. A given value of X fixes the
intercept of the straight line with axis of the variable P
[defined by Eq. (2.35)] and hence its position in the plane
according to the geometrical construction of the figure.
The intersections between the hyperbola and the straight

line give, according to Eqs. (2.40) and (2.41), the solution
6o, 5& to the dispersion equation. It is also possible to ob-
tain a geometrical solution for the amplitude ratio X in
terms of go, g& by observing that, according to Eqs. (2.28),
& =Dk /Do=20o/+k =q'k /24.

The picture clearly shows the existence of a wavelength
range, corresponding to the interval

~ Y~ ( 1, where no in-
tersection takes place and consequently no real solution
for 60 is obtained. This situation corresponds to the exci-
tation of evanescent waves, with consequent total
reAection of the incident radiation. The total reflection
range coincides with the forbidden band of the classical
electromagnetic theory of periodic media. In the range

~
Y~ ) 1 two distinct solutions are obtained and the geome-

trical construction shows that it is always 5&=6&' and
50' =5&. Furthermore, it shows that the difI'erence

(go —
go ) =(gk' —

gk ) in the values of the two solutions in-
creases with

~
Y~ and this is relevant in connection with

the period of the above-mentioned spatial modulation of
the field amplitude, which is related to such difIIerence.

D. Equivalence between the parallel plate
and rectangular waveguide

In Sec. II B we discussed the solutions to the propaga-
tion problem for the parallel-plate waveguide. We found
that the field expressed by Eq. (2.23), with coefficients Dk
satisfying Eq. (2.25), is a solution for the propagation
along the z direction. When resonant coupling takes
place, a limited number of waves, with wave vectors
~Kk ~

-K, are considered and D becomes an explicit func-
tion of K. The field D=D(z, K)u satisfies the propaga-
tion equation (2.1), which, by expanding the term
V X V X(VD) = —V (%D)+VV' ('IID) and considering
that V.(O'D ) =0, can be written in the equivalent form

[(1—%)V +4~ K —V' %]D=O . (2.44)

Referring to the reference system of Fig. 1„we consider
now the derived field

D' = sin( n rrx /a )D (z, K' )u~ . (2.45)

&o

By definition the term D (z, K')u satisfies Eq. (2.44) with
K' instead of K. On using this result and neglecting 4(r)
with respect to unity, according to the considerations in
Sec. II B concerning the smallness of the function ~%'(r) ~,

the propagation Eq. (2.44) for D' reduces to

[K —K' —(n/2a) ]D'=0 .

Hence, to satisfy Eq. (2.46), we require that

K'=[K (n/2a) ]'—
(2.46)

(2.47)

FIG. 4. Geometrical description of the dispersion equation in
the plane go, g„. The equilateral hyperbola is the dispersion
curve. The intersections between the curve and the straight line
t give the solutions to the dispersion equation. Y is the dimen-
sionless parameter defined by Eq. (2.35) and its axis lies on the
bisector line of the first and third quadrants.

Provided that K' has this value, Eq. (2.45) describes a
field that is a solution of the propagation equation and
satisfies the boundary conditions at x =O, a. It is there-
fore appropriate to represent the field in a waveguide
with parameter a fed by a mode of the form sin(n vrx /a).
This result indicates that if an appropriate solution of the
electric field is found for a periodically loaded parallel-
plate region, the corresponding waveguide solution is
found by replacing K by K' everywhere, and multiplying
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the electric field by sin(nex/a). The associated magnetic
field is then found from Maxwell's equations. By sum-
ming the terms (2.45) over all integers n (n = 1,2, . . . ), it is
easily seen that the general solution has the form ex-
pressed by Eqs. (2.5) and (2.6), as anticipated in Sec. II B.

If the waveguide is fed by the fundamental TE,p mode
and single-mode propagation takes place, which is the
case of interest, then n =1 and K'=[K —(I/2a) ]'
The introduction of K' instead of K is equivalent to sub-
stituting the free-space wavelength A, = 1/K by the corre-
sponding TE,O mode guide wavelength A, '=1/K', related
to A, by the relation

X'=A, /[1 —(A, /2a) ]' (2.48)

Accordingly, the whole formulation of the theory and all
the considerations of the preceding sections concerning
the wave coupling, the geometrical constructions involv-
ing the Ewald sphere and the dispersion curve remain
valid in the same form provided X is replaced by A, '. In
particular, the resonant coupling condition, i.e., Bragg's
law, is now expressed in terms of the guide wavelength A,

'

in the form

2d =nA, ', n =1,2, 3, . . . (2.49)

0'0 —2(A,
' —

A, ii ) /A, ii
(2.50)

where X~ is the guide wavelength value that satisfies the
guide Bragg law.

E. Solution for the rectangular waveguide

When resonant coupling takes place the electric field in
the rectangular waveguide fed by the fundamental TE,p

mode is obtained from Eqs. (2.38) and (2.39) according to
the results of Sec.IID. The expressions of the electric
field of the incident and reflected waves are, respectively,

—2mK z I '&i' ~I
—'&z'E+=si (n~ lx)ea' '(Eoe ' +Eo e ' ),

2vri (,2K~ —K')zE =sin(mx /a)e
—iP)z —i $2zX(XiEoe ' +X2EO'e ' ),

where

(2.51)

(2.52)

where d = I /~Bh ~
is the interplanar distance of the family

of planes corresponding to the reAection B&. Equation
(2.49) can be considered the generalization of the Bragg
law (in backscattering condition) for the guided propaga-
tion, where the free-space wavelength is replaced by the
guide wavelength. We will refer to it as the guide Bragg
law.

Finally, the parameter Y, on which wave amplitudes
and resonance errors depend, is expressed by

D=e&E is valid "nearly everywhere" inside the unit cell,
as discussed in Sec. II B. The magnetic field is then ob-
tained from Maxwell's equations

H =—
( i—/capo)

BE—
az

H, =—(i ~/cupoa)cotan(~x /a)E

(2.53)

(2.54)

where co=2vrf and E+ and E are, respectively, given
by Eqs. (2.51) and (2.52). After introducing Eq. (2.51)
into Eq. (2.53) we obtain

(1+50)Eoe ' +(1+5O )Eoe
COP E '+E-pe pe

E+ .

(2.55)

Equation (2.55) can be simplified by noting that the reso-
nance errors are small with respect to unity, thus result-
ing in a close approximation

H, =+( —2vrK'/—cop)E (2.56)

where the result of the analogous calculation for H is
also reported. Each of the two waves, incident and
diffracted, coupled by the periodic perturbation consists
in the superimposition of two TE,p modes with wave vec-
tors close to K' (the wave vector of the fundamental
mode in the unperturbed waveguide), but slightly
different from each other. The associated spatial beat re-
sults in a modulation of the amplitude of the resulting
wave along the direction of propagation, as shown clearly
in the following.

The approximation leading to Eq. (2.56) is equivalent
to neglecting the slow spatial variation of the electric-
field amplitude A (z) associated with the spatial beat, that
is ~d 2 (z)/dz~ && ~2vrK'2 (z) ~. It is possible to show that,
for small resonance errors, d 3 (z) /dz« ~2vrK'd 2 (z) ldz~, also results which is known as para-
bolic approximation and is used to characterize "weak
perturbations" in the framework of the coupled-mode
theory. ' The electromagnetic field expressed by Eqs.
(2.51)—(2.54) gives the general solution to the propaga-
tion problem when the periodic medium is unlimited in
both directions +z, so that no boundary condition need
be assumed. If we consider a portion, limited by two
parallel-plane surfaces in z =O, L and a feeding TE&p
mode incident in z =0, by imposing the boundary condi-
tions over the limiting surfaces, it is possible to determine
the amplitudes of the excited fields and the diffraction
pattern, i.e., the ratio between the diffracted and the in-
cident power. If we suppose the waveguide filled with
supporting medium in the region z (0 and z )L, the
boundary conditions for the electric field in z =0 and L
become, respectively,

(2K~ —K') =2/X~ —I /A,
' = I/A. '=K', p, =2~K'50,

$2:21TK 50 Eo =Do /e] Eo =Do Iei

Ep+Ep' =Ep,

c)x &Ep +c~x2Ep 0

(2.57)

(2.58)

The last two equalities follow from the consideration
that, in the presence of a small perturbation, the relation

where c, =exp( iP,L), c2=exp( —ig2L), a—nd Eo is the
electric-field amplitude of the incident TE,p mode. In Eq.
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(2.57) the reliection at interface z =0 has been neglected
since the refraction index of the periodic medium is very
close to that of the supporting medium. Equation (2.58)
follows the consideration that the diffracted wave

emerges through the boundary z =0 while it must vanish
at the boundary z =L. After solving Eqs. (2.57) and
(2.58) the electric fields of the incident and diffracted
waves take the forms

i 2m' zE =Eosin(~x/a)e

f« I Yl ~ 1, and

—i2~z'~z ( Y —1)'~ cos[ A ( Y 1)'~—(L z)/L—]+I'Y sin[ A( Y —1)' (L z)/L]—E+ =Eosin(~x/a)e
( Y —1)'~ cos[ A ( Y —1)'~ j+i Y sin[ A ( Y 1—)'~ ]

i sin—[A ( Y —1)'~ (L z)/L]—
( Y 1)—' cos[ A ( Y —1)' ]+iYsin[A ( Y —1)'~ ]

s 2m.K&zE =Eosin(~x/a)e

i2—~x~z Ysinh[A(1 —Y )'~ (L z)/L—] i(1 ——Y )' cosh[A (1—Y )' (L z)/L—]E =Eosin(mx /a)e
Y'sinh[A (1 —Y )'~ ] i(1——Y )'~ cosh[A(1 —Y )'~ ]
—sinh[A (1—Y )'~ (L —z)/L]

Y sinh[A (1—Y )' ] i(1——Y )' cosh[A(1 —Y )'~ ]

(2.59)

(2.60)

(2.61)

(2.62)

for
~
Y ~ 1, where Kz = 1/A, z and A =mIC'L ~%'z

~
is a di-

mensionless parameter depending on the structure factor
and on the overall length L of the periodic medium.

From Eq. (2.56) it follows that the Poynting vector is
proportional to the square of the electric field. If we sup-
pose the external incident TE&o mode normalized to a
power Aow of 1 W in the z direction, then the power How
of the incident and diffracted (reflected) waves is given,
respectively, by P; (z) = A,.(z) and P„(z)=

~ A„(z) ~,
where A;(z) are A„(z) are the z-dependent terms of the
relative amplitudes. In the wavelength range correspond-
ing to

~ Y~ ~ 1 we obtain

(2.64) or, equivalently, Fig. 5 shows an important feature
connected with the total reAection regime. At a given
frequency in the total reAection range ( ~

Y ( 1), the
penetration depth of the fields inside the periodic medium
tends to a limit value with increasing L, which depends
on the frequency and on the structure factor. Once we
define the penetration g depth as the value of z corre-
sponding to an attenuation of the electromagnetic field of
a factor 1/e with respect to the value at the input surface,
we find

(2.65)

cosh [A(1—Y )'i (L z)/L] —Y—
cosh [A (1—Y )'i ]

—Y

sinh [A(1—Y )'~ (L z)/L]—
cosh [ A (1—Y )'~~] —Y2

(2.64)

The power exchange between the two coupled modes
in the region between z =0 and L is given by
P„(0)=

~ A„(0)~, as it can be seen in Fig. 5, where the

For sufficiently large arguments of the hyperbolic-cosine
and hyperbolic-sine functions, the incident mode power
drops off exponentially in the perturbation region. This
behavior is due not to absorption, but to the reAection of
power into the backward-traveling mode, and corre-
sponds to the excitation of evanescent waves. Equations
(2.63) and (2.64) satisfy the relation P,.(L)+P„(0)=1 and
the net power liow in the z direction [P;(z)—P„(z)] is
constant with z. Both the conditions are consistent with
the conservation of energy. A plot of the mode powers
P,.(z), and P„(z) as a function of z for this case is shown in
Fig. 5. The dashed line (the two curves for P, and P„are.
superimposed) is plotted for Y =0.5 and for a value
A =9.83, corresponding to the experimental situation
described in Sec. III. In this case the length of the
periodic medium is L =181.2 cm and corresponds to a
ratio L /L„= 5.33, L„being the "extinction length" dis-
cussed in more detail in the following. The solid lines in
the same figure are relative to the values X=0.5 and
2 =1.84, corresponding to a value L equal to one extinc-
tion length. An inspection of expressions (2.63) and

0.8
0

0.6

0.4
~ ~

0.2
0
Z 0

0 0.2 0.4
z/L

0.6 0.8

FIG. 5. Mode powers of the incident and rejected modes in
the periodic dielectric medium as a function of the depth z for a
frequency in the total reAection range. The solid lines refer to
Y=0.5 and 3 =1.84. The dashed line is relative to Y=0.5
and 3 =9.83, ~here the two curves for the incident and
rejected powers are superimposed. The arrows indicate the
direction of propagation along the z axis.
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mode power exchange as a function of z is well evident.
We note that the fractional power exchange decreases as
Y increases and a complete exchange only occurs
when Y=0, a condition close to but not exactly equal to
the guide Bragg diffraction law, as shown in more detail
in the following. Out of this condition, a complete ex-
change is possible only for large values of L (see the
dashed line).

In the range corresponding to
I YI ~ 1 we have

Y —cos [A(Y' —1)' (L —z)/L]
Y —cos [A(Y —1)' ]

sin [A( Y —1)' (L z)/L]—
Y —cos [A(Y —I)'~ ]

(2.66)

(2.67)

Ie„I(Y' —1)'" (2.68)

The reAectivity R is defined as the ratio of the reAected
to the incident power P„(0)/P;(0)= A„(0)/3;(0)I and
according to Eqs. (2.63), (2.64), (2.66), and (2.67) is given
by

sinh [A(1—Y )'~ ]
cosh [A(1—Y )'i ]

—Y
(2.69)

1.2

{Q

0.8

0.6

0.4

0.2
z

Again, P;(L)+P„(0)=1,results and the net power fiow
in the z direction is independent of z. The behavior of the
mode powers as a function of z, for this case, is shown in
Fig. 6. The figure refers to the experimental situation of
Sec. III, with Y=2. The solution expressed by Eqs.
(2.66) and (2.67) involves sinusoidal oscillations and is re-
ferred to as "pendulum solution" in the theory of x-ray
diffraction by crystals. It is a consequence of the spatial
beat between the two modes which make up the field,
both the incident and rejected ones. The period A of the
spatial beat depends, in particular, on the frequency of
the electromagnetic radiation and is given by

sin [A( Y —I)'~ ]
Y' —cos [A( Y —I)'~ ]

(2.70)

The corresponding frequency range can be found by us-
ing the relation between X' and f,

[1—(u /2a f) ]' (2.72)

following from Eq. (2.48). The full width at half max-
imum (FWHM) of the diff'raction peak corresponds to the
range

I YI ~ 2/V3 in the Y domain and, according to
Eqs. (2.50) and (2.72), to the frequency range

1/2 1/2
1 1

4a
1 1

4a
(2.73)hf =u

where A,z, =i,s(1+Co/2+I%'h I/&3). The peak value of
the reAectivity occurs in Y=O and its position is very
close to the center of the pattern. On the wavelength
scale its position, according to Eq. (2.50), is given by

A, c =A,s(1 +0'0/2) . (2.74)

This equation shows that the peak of the diffraction pat-
tern does not coincide with the guide wavelength A,~ cor-
responding to the guide Bragg law. The deviation from
the guide Bragg law (kc —A~) may be positive or nega-
tive depending upon the sign of 4'o. This effect is a conse-
quence of the refraction, which causes the guide wave-
length in the periodic medium to be slightly different
from the guide wavelength in the homogeneous substra-
tum by the relative refraction index factor
n =1+50=1+'PD/2. Equation (2.74) is a confirmation
of this fact and shows that the guide Bragg law is exactly
satisfied when the guide wavelength in the periodic medi-
um kc is considered.

From Eq. (2.21) with H =0, which gives the wave vec-
tor of the internal incident wave, and Eqs. (2.36) and
(2.50), we find the following relation between the propa-
gation constant in the periodic medium K' and the fre-
quency f:

A typical plot of the calculated reQectivity as a function
of Y and for different lengths of the periodic medium is
shown in Fig. 2 of Ref. 27. The spectrum consists of a
main peak centered in Y=0, with a sharp cutoff (for
sufficiently high L) and a series of sidelobes. An effect of
total refiection is evident in the range

I YI ~ 1 with in-
creasing L (the "Darwin width" in the theory of x-ray
diffraction by perfect crystals), as shown clearly also by
Eq. (2.69). The guide wavelength range corresponding to
total refiection is found by using Eq. (2.50),

(2.71)

0.2 0.4 0.6
z/L

0.8
IC' =ll'(A, '/A, ' + I [A, '/A, ' —(1+0' /2) ]'—

I +I, I'/4J '"),
FIG. 6. Mode powers of the incident and rejected modes in

the periodic dielectric medium as a function of the depth z for a
frequency out of the total reAection range ( Y=2). The curves
are plotted for numerical values corresponding to the experi-
mental situation described in Sec. III. The arrows indicate the
direction of propagation along the z axis.

(2.75)

where K'=1/A, ' and k' is related to the frequency ac-
cording to Eq. (2.72). Figure 7 shows the dispersion rela-
tion co(K') [obtained from Eqs. (2.72) and (2.75) with
co=2vrf] close to the frequency corresponding to the oc-
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1 ~ 09 den band ( Y =0) the simple relation holds

1.07
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o 1.03
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1 ~ 01

0 ~ 99s
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0.44 0.46 0.48 0.5 0.52 0.54 0.56

K'p (units of b])

FIG. 7. Dispersion relation co(K~) near a forbidden band
(solid line). The dispersion relation is plotted for the periodic
structure of the experiment described in Sec. III. The angular

frequency co is normalized to the value co„corresponding to the
center of the total reflection range. The dashed line represents
the wave vector of the fundamental mode in the unperturbed
waveguide.

L„= (2.76)

It is a measure of the length necessary for a strong-
coupling interaction between incident and diffracted
wave to set up. For a thickness L of the periodic layer
smaller than L„, a "kinetic" approach that neglects the
extinction of the primary wave and the multiple-
scattering effects is possible and sufficiently accurate.
With increasing L, the coupling between incident and
diffracted wave becomes more and more important and
the dynamical approach is necessary to describe the ex-
perimental evidences.

The extinction length and the penetration depth are re-
lated quantities. In particular, at the peak of the forbid-

currence of diffraction. The curve is plotted for particu-
lar numerical values of the constants 'Po and ~'Pl, ~, corre-
sponding to the experimental condition described in Sec.
III, but its behavior is quite general. Two values of the
wave vector correspond to each frequency out of the
stopband range, one of which is close to the I| ', the wave
vector of the unperturbed waveguide (shown in Fig. 7 by
the dashed line).

Figure 7 shows that the group velocity v =dao/dK'
progressively reduces to zero as the edges of the passband
are approached. We note that for a range of frequencies
such that ~A, '/A, ~

—(1+'Po/2)
~

& ~%'h
~
/2, Kt has an imag-

inary part. This is the "forbidden" region, in which the
evanescent behavior shown in Fig. 5 occurs and which is
formally analogous to the energy gap in semiconductors
when the periodic crystal potentials causes the electron
propagation constant to become complex.

Finally, we introduce the extinction length defined as
the length of the periodic structure above which the in-
tegrated intensity fR (Y)dY divers from its asymptotic
value vr (for L tending to infinite) in a quantity less than
5%%uo,

(2.77)

The peculiar effects expected by the DST can be con-
sidered to take place when the thickness L is a few extinc-
tion lengths.

In microwave frequency range and with coefficients
~ %z ~

of the order of 10,values of a few tens of centime-
ters are obtained for the extinction length. In a
millimeter-wave frequency range, values smaller than one
order of magnitude can be obtained with the same reso-
nance errors, while in the optical field values of a few tens
of micrometers can be achieved, which makes the appli-
cation in this field particularly attractive.

In conclusion, a brief discussion of one-dimensional
periodicities is reported, in connection with the impor-
tant role played by the periodic layered media in integrat-
ed optics. The simplest periodic layered medium consists
of two different materials with a dielectric constant
profile given by

e, , d/2& ~z~ &a, /2 (2.78)

with

e(z) =e(z +a, ), (2.79)

where the z axis is normal to the layer interfaces and a
&

is
the period. The treatment of this simple case shows how
to apply the previous results to one-dimensional periodi-
cities. An extension to more complex geometries is then
immediate.

The unit cell in the real space is defined by the vector
a, =a

&
u„while b, = (1/a, )u, defines the unit cell in the

one-dimensional reciprocal lattice. A vector Bz of the re-
ciprocal lattice is expressed by Bh = (h /a, )u,
(h =0, +1,+2, . . . ).

%(r) is now a periodic function of the only variable z
and the following expression of the coefficient 4& is ob-
tained:

sin(he. d /a, )

a, herd/a&
(2.80)

Once the expressions of the coefficients %h are deter-
mined, the rest of the analysis developed in the preceding
sections remains unchanged in the form. It can be shown
that the results obtained with this approach for the ex-
pressions of the electromagnetic fields, the diffraction
pattern, and the width of the forbidden band are in very
good agreement with the results that can be obtained by
the application of the coupled-mode theory.

III. EXPERIMENTAL SETUP

We carried out an experiment in order to verify the
theoretical predictions and to evaluate the accuracy of
the DST in the form proposed. In particular, the aim of
the experiment was to measure the diffraction pattern
around a diffraction peak, to show the presence of the to-
tal reAection effect, to measure the width of the total
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reAection range, and to verify the deviation from the
guide Bragg law.

The experiment was realized with a standard X-band
rectangular waveguide (a =2.286 cm, b = 1.016 cm).
The measurements were performed in the microwave fre-
quency range 7.4—8.6 GHz with a step of 3 MHz, which
is the maximum frequency resolution allowed by the
analyzer in the range of the measurement. The lower
value of the range was chosen so as to work sufFiciently
above the cutoff frequency of the fundamental TE&0 mode
f,o =6.557 GHz. In the frequency range of the measure-
ment single-mode propagation takes place. In fact, the
symmetry of the TE&o excitation field and of the periodic
load makes impossible the excitation of the first higher-
order mode TE2o, whose cutoff frequency in the dielectric
matrix (f20 =8.564 CrHz) is slightly lower than the upper
limit of the measurement range. Moreover, all the other
higher-order modes have cutoff frequencies greater than
8.6 GHz.

The rectangular waveguide, of overall length 230 cm,
was realized in aluminum 11S, which allowed good
mechanical processing, and the dielectric supporting
medium was in polyethylene. The measured relative
dielectric constant of the polyethylene was found to be
Aat over a wide range of frequency. For the real part we
measured E'i =2.345 and for the dissipation factor ei'/e',
we obtained a value lower than 10 . Due to the small
value of the dissipation factor the dielectric losses can be
neglected.

The periodic structure consists of a two-dimensional
grating of cylindrical holes with circular cross section,
made on the dielectric support. The lattice spacings are
a

&

= 15. 1 mm, a2 =3. 1 mm, and the radius of the circular
hole is R =0.75 mm. The unit cell contains only one cy-
lindrical hole centered at the origin and according to Eq.
(2.12), the coefficients 'Po and %i, , respectively, take the
form

vrR
0

Q)Q2
(3.1)

(3.2)

with fi, calculated according to Eq. (2.14). By inserting
the numerical values of the quantities we obtain
40= —5.0776 X 10 and %'~ = —5.0160X 10

The grating was realized by a computer-aided machine
and consists of 120 rows, each of them containing 7
holes, for a total number of 840 scattering elements in an
overall length of 181.2 cm. The extinction length calcu-
lated according to Eq. (2.76) is found to be tE ii =33.97
cm, so that the length of the periodic structure corre-
sponds to 5.33 extinction lengths.

A schematic picture of the experimental equipment is
shown in Fig. 8. The periodically loaded waveguide is
fed by the microwave power source through a coaxial
cable and a matched standard coaxial-waveguide transi-
tion. This is introduced to match the coaxial cable to the
empty rectangular waveguide and it allows us to reduce
the reAection coefBcient of the transition to values lower
than —30 dB over the entire frequency range of interest.
In the reflection measurement configuration, the 230-cm-
long aluminum waveguide containing the dielectric grat-
ing is terminated on a standard matched load. It acts as
an absorbing termination and avoids the reAection of the
transmitted power (the reflection coefficient is lower than—50 dB). In the transmission measurement config-
uration the output of the aluminum waveguide is con-
nected to the second port of the analyzer through a coax-
ial cable and a second matched coaxial-waveguide transi-
tion identical to the input one.

Microwave Network

Analyzer
Microwave

Generator

Coaxial

I-& I ~ l~ I

Matched
Coaxial —Waveguide

Transition

230 cm

ic die!

I ~ i I

Matched
Load

Tapered dielectric
terminations

FIG. 8. Schematic picture of the experimental setup in the configuration for the measurement of the reflection coefficient. In the
configuration for transmission coefficient measurements, the matched load is replaced by a matched coaxial-waveguide transition
connected, through a coaxial cable, to the second port of the analyzer.
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IV. RESULTS AND DISCUSSION

The measured reflection coefficient of the periodic
structure as a function of frequency is shown by the
heavy solid line in Fig. 9. The thin solid line in the same
figure represents the theoretical reflection coefficient cal-
culated by Eqs. (2.59)—(2.62). A high-refiectivity frequen-
cy range, corresponding to the total reflection range, is
well evident in the experimental pattern, together with
the presence of secondary maxima, as expected by the
theory.

Excellent agreement can be observed between the two
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FIG. 9. ReAection coefficient of the periodically loaded rec-
tangular waveguide of Fig. 8 as a function of frequency. The
thin solid line represents the theoretical pattern, the heavy solid
line shows the experimental result.

The measurements were performed with the mi-
crowave network analyzer HP8510 and the calibration of
the instrument was carried out at the terminal ports of
the aluminum waveguide. The analyzer has two input-
output connections which make it possible to measure
the reflection coefficient at the two calibration ports and
the port-to-port transmission coefficients. To reduce the
mismatch associated with the discontinuity of the dielec-
tric constant between the empty space and the dielectric
substratum, the dielectric bar was not abruptly truncated
at the edges, but it was tapered to a wedge-shaped profile.
In this way the reflection at the interface becomes negligi-
ble in accordance with the theory developed. The dis-
tance between the shaped profile and the periodic load is
enough to make all the excited higher-order modes
strongly attenuated at the input surface of the periodic
medium.

In the configuration for reflection coefficient measure-
ments (Fig. 8) the refiected wave field coming back to the
instrument is separated from the incident one by the
directional coupler of the analyzer and it is possible to
measure the refiection coefficient 1 = [ ~ A„(0) ~ /A, (0) ],
the square of which gives the diffraction pattern
[&„(0)/P;(0) ].

patterns. In particular, concerning the positions of the
peaks, we note that in the theoretical pattern the main
peak is centered at a frequency f =7.915 GHz and in the
experimental curve the center, measured as the middle
point between the two minima of the peak, corresponds
to a frequency f =7.913 GHz with an error of only
0.03%, which is smaller than the experimental resolution.
The very good coincidence in the position of the main
peak is the direct proof of the effect of deviation from the
guide Bragg law. The center of the peak, according to
the Bragg law, should occur at f =7.769 GHz, thus re-
sulting in a theoretical deviation of 146 MHz, a value
that is in excellent agreement with the value bf =144
MHz, which experimentally measured. A very good re-
sult is found also for the positions of the sidelobes. Apart
from the first one close to the main peak on the right-
hand side of the pattern, which is not clearly resolved,
the peaks in the theoretical and experimental patterns are
substantially superimposed in the frequency range
7.5 —8.5 GHz. Only a small but progressively increasing
shift of the positions seems to appear for the farther
peaks close to the upper and lower limits of the frequency
measurement band. Still the maximum deviation is very
small, corresponding to a relative error of about 0.2%.
This behavior can be justified by observing that the ap-
proximations involved in the theory, in particular, in the
derivation of the linear relation between 5& and 6o, are
accurate in a limited frequency range close to the central
peak and their accuracy progressively fails with increas-
ing the frequency deviation (from the central value). The
experimental results show that the theory gives very good
results in a frequency range of 1 GHz around the central
frequency f =7.91 GHz, which corresponds to a rela-
tively high value of the relative deviation (hf /f)100 of
approximately 13%%uo. Out of this frequency range, a
better agreement could, in principle, be obtained by re-
moving, in the theoretical treatment of Sec. II B, the as-
sumption 6I, &&5&, which progressively begins to fail as
the frequency deviation from the central value increases
(because of the frequency dependence of the resonance er-
rors). This approach leads to a fourth-order dispersion
equation in 6O,

' which results in incident and diffracted
wave fields made up of four waves. Still, the considerable
increase in the analytical treatment and the very good
quality of the present results do not justify the introduc-
tion of such a refinement, at least for the frequency range
investigated.

The main peak in the experimental pattern is close to
the theoretical unitary value, but it results a little lower
(with a maximum value of 0.97) and it is not perfectly fiat
in the range corresponding to total reflection. This is a
consequence of the conduction losses associated with the
finite conductivity of the waveguide walls, which, in con-
trast to the dielectric losses, are not negligible. We mea-
sured the conduction losses for the empty waveguide by
the measurement of the transmission coefficient. This
was not sufficient, however, to make a correction for the
conduction losses of the experimental curve since the
current distribution on the waveguide walls is consider-
able different in the two situations. On the other hand, a
theoretical calculation of the losses which takes into ac-
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count the actual current distribution appears particularly
complicated since the losses are not sufficiently small to
justify the classical first-order theoretical approach for
the determination of the attenuation constant. Still, if
we suppose, as a first approximation, that the losses in
the loaded waveguide are not notably difterent from those
of the empty waveguide, we find that the attenuation is
enough to account for the lower value of the experimen-
tal peak reflectivity.

The theoretical total reAection range (Darwin width),
calculated by Eqs. (2.71) and (2.72) or measured from the
pattern of Fig. 9, is 288 MHz. The slight smoothing of
the central peak in the experimental pattern associated
with the losses makes the singling out of the Darwin
range and the measurement of its width dificult. On the
other hand, we can compare the FTHM of the experi-
mental and theoretical reflection peaks. According to
Eq. (2.73) we find a value b f =333 MHz, for the FWHM
of the theoretical pattern, which agrees very well with the
value bf=335 MHz measured in the experimental pat-
tern. The small residual discrepancy between theoretical
and experimental pattern, consisting in the flexible mono-
tone behavior of the sidelobe amplitudes, is mostly due to
background associated with the imperfect match of the
tapered dielectric terminations.

Finally, Fig. 10 reports the transmission coefIicient

[ ~ A, (I.)
~ A, (0)

~ ] in logarithmic scale (dB) as a function of
the frequency, obtained by measuring the ratio of the
transmitted field amplitude to the incident field amplitude
with the experimental equipment in the transmission
measurement configuration. This figure shows the very
good quality of the investigated structure as a stopband
filter, due to the sharp cuto6' and to the high attenuation
level in a wide frequency range (about —70 dB in a range
of about 180 MHz).

The proposed theory extends the basic ideas of the
DST, developed for free propagation in unbounded
periodic media, to the propagation of electromagnetic ra-
diation in closed periodic guiding structures. It provides
a simple instrument to approximate the electromagnetic
field when the periodic load can be considered as a small
perturbation. The conditions and the limits of applicabil-
ity of the theory have been treated and in particular the
degree of the modal coupling and the entity of the pertur-
bation have been quantitatively discussed in terms of the
resonance error.

The theoretical formulation has been developed for the
TEio excitation of the rectangular waveguide, but it is
valid also for TE„o excitations. In fact, it is easily seen
from the theory of Sec. IIB and IID that if a TE„o
(n ) 1) can propagate in the waveguide, the electromag-
netic field excited in the periodic medium is readily ob-
tained from Eqs. (2.38) and (2.39) by multiplying the field
amplitudes by sin(nrrx/a) and replacing E by the guide
wave vector of the TE,o mode of the unperturbed
waveguide [Eq. (2.47)]. The results of Sec. II E apply, in
the same forms, to TE„omodes. A more general formula-
tion of the theory, which gives the general solution for
the electromagnetic field supported by the periodic medi-
um including TM and TEo modes, is another subject of
investigation by the present authors.

The theoretical treatment has been developed for two-
dimensional periodicities, and afterward the theory has
been applied to one-dimensional geometries where a very
good agreement with the results of the coupled-mode
theory can be found. The generalization of the Bragg law
to the guided propagation, as the condition for modal
coupling between incident and dift'racted waves, has been
obtained.

The experimental results show very good agreement
with the theory. In connection with the conclusions
made in Ref. 27, this fact can be considered as a further
confirmation of the validity of the theory in the case
when the resonance errors are of the order of 10

The subject of the present paper is of interest both
from a general physics and an applied point of view. On
the one hand, the proposed extension of the DST shows
once more the power of the dynamical approach in the
study of the phenomena connected to the diftraction by
periodic structures, both in free and guided propagation.
This is a meaningful result due to the peculiar character
of guided propagation with respect to free propagation.
On the other hand, the structures studied are character-
ized by some properties which make them interesting for
applications in the microwave and millimeter-wave field.
These are connected, in particular, to the possibility of
realizing filtering devices and slow-wave structures.

A further extension of the theory to dielectric
waveguides would be of interest in the optical field, where
the phenomena connected to the propagation of light in
periodic dielectric media are employed in many optical
devices such as dift'raction gratings, holograms, free-
electron lasers, distributed-feedback lasers, distributed-
Bragg-reflector jkasers, high-reflectance Brag g mirrors,
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acousto-optic filters, and so on. Nevertheless, the theory,
as an extension of the DST, suggests the possibility that
other interesting effects known for x-ray, neutron, and
electron diffraction by crystals, such as the Bormann
effect, the Pendellosung effect, the Fanckuchen effect, and
the angular amplification, "" could have applications
in these fields. In these directions, further investigations
are currently in progress by the present authors.
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