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Ginzburg-Landau equation: A nonlinear model for the radiation field of a free-electron laser
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It is shown that the nonlinear dynamics of the radiation Geld in a free-electron laser can be
modeled by the Ginzburg-Landau equation. The refractive index of the electron beam in the non-
linear regime and the saturation intensity of the radiation field are obtained from WKB theory. Al-
though the Ginzburg-Landau equation does not permit soliton solutions, it is shown that certain
types of solitary-wave solutions have a strong resemblance to spikes observed in simulations and ex-
periments.

Free-electron-laser (FEL) theory has been very success-
ful in describing FEL operation in the linear regime, and
various predictions of linear theory have been shown to
be in good agreement with experiments. ' However, in
the regime of saturated growth, which is strongly
infIuenced by nonlinear effects, FEL physics has been
studied largely in connection with specific problems such
as efriciency enhancement techniques and trapped-
particle phenomena. The latter includes the important
sideband instability, which is a consequence of the syn-
chrotron oscillation of the electrons trapped in potential
wells of the electron bunches, together with the finite slip-
page of the optical wave with respect to the moving elec-
trons. A basic understanding of these nonlinear effects
has been developed through analytical studies in idealized
models. While these analyses provide qualitative results
and insights for specific problems, the burden of a general
nonlinear description has rested on computer simula-
tions, which have played a very important role both in
the design of FEL's and the interpretation of experi-
ments.

This paper is motivated in part by an interesting and
somewhat less studied phenomenon called "spiking, "
which has been observed in computer simulations and
more recently, in experiments carried out by the Warren,
Goldstein, and Newnam, " Dodd and Marshall, and
Richman, Madey, and Szarmes. "Spikes" generally
occur in the high-power, saturated-signal regime, and are
narrow, high-intensity radiation pulses that are generated
spontaneously. A qualitative physical mechanism has
been outlined by Warren and co-workers, who attribute
the generation of spikes to the growth of sidebands.

In this paper, we propose a simple, yet fairly general,
model for the nonlinear evolution of the radiation field in
a FEL. This model enables us to understand the spatial
and temporal structure of the radiation field in the non-
linear regime. Preliminary results of this work were
presented elsewhere. We show that the radiation field
obeys approximately the Ginzburg-Landau equation
(CrLE),
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where z is the direction of propagation of the electron
and optical beams and also coincides with the undulator

the distance along the undulator axis, t'=t —zlu is the
retarded time for a radiation pulse propagating with
group velocity Us, and a, I3, and A,o are complex constants
to be given later. The appearance of the GLE in a model
of FEL nonlinear dynamics is less surprising than may
appear at first glance. After all, there exists a useful anal-
ogy between an optical fiber and an electron beam, and
in certain types of dielectric fibers, it is known that the
radiation field obeys a nonlinear Schrodinger equation,
which is nothing but a special case of the GLE. In order
to strengthen further the analogy between an electron
beam and a fiber, we derive an approximate expression
for the refractive index of the electron beam in the non-
linear regime from a WKB theory. This is one of the im-
portant results of the present theory.

The GLE is a nonintegrable partial differential equa-
tion, and does not have soliton solutions. We are, there-
fore, led to the conclusion that it is not possible to gen-
erate optical solitons spontaneously from FEL dynamics.
We note that solitons can still be created in principle, as
they are in conventional lasers, by propagating the radia-
tion output from a FEL through a dielectric fiber, ' but
this is not the subject of the present paper.

Though the GLE does not admit soliton solutions, it
has solitary-wave solutions, " which can be obtained by
sophisticated variants of the Painleve analysis. ' ' We
show that a class of these solutions exhibits "spiking" be-
havior with characteristic widths that appear to be in
fairly good agreement with experimental measure-
ments and numerical solutions.

We begin our analysis with the well-known one-
dimensional equations for a Compton FEL: '
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dA =l 5c4 + lgX
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axis, g. +P is the relative phase of the electron (of rest
mass m) with respect to the radiation field, and y mc is
its energy; the vector potential A= A + A„
a„=eA /mc, a, =eA, /mc; k, k, =co/c are the wave
numbers of the undulator and radiation fields, respective-
ly; ro is the carrier frequency, u =a, exp(iP) is the com-
plex amplitude of the radiation field, and
y„=I k, (I+a )/2k ]'~ is the resonant energy. It has
been shown in Ref. 15 that Eqs. (2) can be modeled by an
approximate reduced set of equations that involve only
the collective variables x = & expI i—(g —lit„)] ),
y =—

& I:(1',—r )/}'ojexPI: —i(4, —0, ) j &=—u exp(iP„), where P, is defined by the relation
alit„/dz =k„(1—y„/yp), and yp is the energy of the ini-
tially monoenergetic electron beam. In our notation,
these reduced equations can be written as

S, +(3Sp —i5)S, +(3S p
—2i5Sp)S, =Qyp, (6)

where Q—:—S p+2i5Sp —(Sp —Sp)Sp+i5(Sp —Sp)
+5 . %'e now transform from z to y0 as the new
independent variable by writing d /dz = (d I

A
I /

dz )(d /d I
A

I ), whereupon using the WKB representation
and the energy conservation relation we
obtain d /dz =(Sp+S p )yp(d /dyp) and d /dz
=(Sp+Sp) yp(d/dyp) to the lowest order in e. Equa-
tion (6) then reduces to

dSi
ayp +bSi =Qyp

0

where a =—(Sp+S p )(4Sp+S p
—i5) and b—:3S p 2i—5Sp

Equation (7) can be integrated with the initial condition
Si =0 when yp=0 (the linear regime). The solution is
Si=IQ/(a+b)]yp To O. (yp), we thus obtain the index
of refraction of the electron beam in the nonlinear re-
gime, n = 1+(Sp+ S, ) /ik, —:I +I,/k„where
+Pl Al', and

(Ap —5)(ip+2 Reip —5)

g 21m', pI 21mkp —i(3kp —5) j —3A,p+2M. p

+Zi 5xy p
—2if (x ' A + A *x )x, (3c)

where 5—:k~(1 —y„/yp), f—:k, a /(2yp), g =cp~ti /
(2k, @pc ), h—:k, (1+a )/yp are parameters, and

yp
=—& (1 J. 1 p)/1'p) . For a detailed derivation of Eqs.

(3), the reader is referred to Ref. 15. We note that Eqs.
(3) admit an energy conservation law, given explicitly by
yp+(f /g)(I AI —IapI )=0, where ap= A (z =0) is the
initial amplitude of the radiation field and is usually small
compared with A in the saturated regime.

Equations (3a) and (3b) can be rewritten, respectively,
as x = ( A i 5 A ) /(ig )

—and y =ix /h = ( A i 5 A ) /—(gh ),
where the overdot denotes d/dz. Substituting expres-
sions for x and y in Eq. (3c), we obtain a third-order
differential equation for A:

A (i 5 2i e—hy p )
—A +2ehyp(25 —ehyp ) A

We remark that the quadratic dependence of n on
I
A

I

means that in the saturation regime, even when gain is
negligible, refractive optica1 guiding can, in principle, aid
the confinement of radiation in a FEL. This effect has
been observed in numerical simulations, ' but remains
to be verified experimentally. '

In Fig. 1, we compare the numerical results obtained
by integrating the original FEL equations (2) with those
obtained from the reduced equations (3) for a typical set
of parameters. On the same plot, we show
A (z)=Apexp(ikz) obtained from the WKB analysis.
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+ (AA* —A *A)(A i5A)—
lg

ifgh A +2i ey p—5( shy p
—5) A =0, (4)

in which we have introduced a small parameter e to tag
all terms containing y0, which is a small quantity for
most FEL's. We will eventually set e to unity.

Equation (4) can be solved by a WKB method. We
write A =ApexpI(g„" pe" 'S„),where Ap is a constant
and S„=S„(z}are slowly varying functions of z. We as-
sume that S„=eS„(n =0, 1,2, . . . ) and Sp = e Sp. Using
the conservation relation y p + (f /g )( I

A
I

—
I
a p I ) =0 and

the assumption I
A

I
)) Iap I, we can then solve Eq. (5) by

equating coefficients of e". To O(e ), we obtain

8
6

102

IAI

I Apl

1

0 20 40
S p i5S p ifg—h =0, — (5)

which reduces to the well-known linear cubic eigenvalue
equation' Ap

—Mp+fgh =0 if we set Sp=ikp To O(e}, .
Eq. (4) gives

FIG. l. Comparison of
I AI and P calculated from the origi-

nal equations (2) (solid lines), reduced equations (3) (dashed-
dotted lines), and WKB analysis (dotted lines).
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Whereas the analytical solution is remarkably good in
predicting the phase shift, the prediction for

I Al is less
accurate. In particular, the analysis predicts the approxi-
mate average saturation level for

I Al, but cannot repro-
duce the oscillations caused by synchrotron motion. [The
average intensity of the saturated radiation field can be
estimated by simply setting Im(n)=0, and is given by

A
I

= —Imago/ImP. ] In order to account for the oscilla-
tions at saturation, higher-order WKB calculations are
needed. Note, however, that neglect of these higher-
order terms in the nonlinear analysis for

I
A

I
does not

mean that the physics of synchrotron oscillations has
been eliminated altogether. These oscillations are impli-
citly contained in the electron dynamical equations that
involve Eqs. (3b) and (3c).

We have considered so far the single-frequency FEL
equations. In the presence of multiple frequencies, it is
extremely dificult to obtain a description of FEL dynam-
ics in terms of a reduced set of equations involving collec-
tive variables. Instead, we exploit the analogy between
the electron beam and an optical fiber to obtain heuristi-
cally an equation for the radiation field. We consider an
optical signal of the form A(z, t) = A (z, t)exp(ikz i coot—),
where ko=coo/c, and A(z, t) is a slowly varying ampli-
tude. Note that by including the time dependence in the
amplitude A (z, t), we have allowed for the excitation of
multiple modes. At a given point z =zo, the Fourier
transformation of this signal is defined by the relation

1 + OO

A (zo, hco) = dt'exp(ikozo+i 6 rut') A (zo, t'),
277

where A~=co —coo. Each frequency component is ad-
vanced along z according to the relation

A(zo+dz, bee) =A(zo, hcu)exp[i[re/c+A(co)]dz ] .

The inverse Fourier transform of A(zo+dz, beg) in the
limit dz —+0 then gives

BA(z, t) l f +~dg f +~d rA( r)
Bz 27T

X exp[idee(t' —t ) ]

X +A, (co)
C

(10)

(10) yields

BA =i Ao(r. uo) A —
vg

Bz Bt

i(a;+ia2) g~A
, +iplAI'A,

(12)

which can be reduced to the GLE (1) by transforming to
variables z'=z, t'=t —z/u, a=ai+ia2gP

The GLE (1), with complex coefficients, is not integr-
able in general. ' This rules out the possibility of spon-
taneous soliton formation during the nonlinear evolution
of a FEL. However, special solitary wave solutions can
be constructed following the methods described in Refs.
11 and 12. These solutions are

q exp( —i Az')
A z', t' =

[exp(Kt')+exp( —Kt') ]'+'

where Ao=g iy—, P=P„+iP;,
g8( a, +i a)2( 1 +io )(2+i o )

P[a@( 1 —o ) +2o.a, ]

y[a, (1—cr ) —2oa2]

a2(1 cr )—+2cra,
1/2

2X
a2(o. —1)—2a, o.

(13)

(14a)

(14b)

(14c)

and o. satisfies the quadratic equation

a,p„+a2p;
cr —3 cr —2=0 .a „—a,

(15)

4cosh (K, t') (16)

Equation (15) has two real roots, and produces two fami-
lies of solitary-wave solutions. In order to obtain simple
analytical formulas for these solutions, we make certain
approximations. First, we note that for a FEL operating
near the maximum linear gain frequency coo, Re(n) is ap-
proximately a linear function of co. ' Therefore, we set
a, =0 in Eq. (15), which reduces to cr —3(p, /p„)o—2 =0. For the case

I p; I
)

I p„ I, which is satisfied by the
parameters of the FEL's considered here, the two roots
obey the inequalities o-', » 1 and o-', «1. When
o =o, ))1, K, =[2y/(a2o, )]'~ is real, and Eq. (13)
gives

For a FEL, A(co) usually has a narrow bandwidth around
the maximum linear gain frequency coo. We can, there-
fore, expand A, (co) in a Taylor series around coo, and write

+A, (co)=A,O(coo)+Pl Al +us 'b, co

The solution (16) for
I
A

I
has a

(z=vst) with the half-width At,
o.= cr2, K2 -i &2y/a2, —and Eq. (13)

A I2
Iql'

4cos (Kzt')

single peak at t'=0
=K, '. In the case
gives

+ —,'(a, +ia2)bru +
where ug =c/(1+cBA, /Bc@) is the group velocity of the
signal, a, +ia2=8 Ao/Bro I, a, is the group velocity

dispersion and az is the gain dispersion, and p is the com-
plex coefficient defined by Eq. (8). Substituting Eq. (11) in

The solution (17) exhibits periodic, finite-time singulari-
ties, as shown in Fig. 2. The width of each peak is given
by At2 -—K2 ', and the separation between neighboring
peaks is AT=~%2 . Clearly, at the singularities, our
model beaks down, and higher-order terms in the expan-
sion of A, (cu) become significant.
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