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It is shown that the nonlinear dynamics of the radiation field in a free-electron laser can be
modeled by the Ginzburg-Landau equation. The refractive index of the electron beam in the non-
linear regime and the saturation intensity of the radiation field are obtained from WKB theory. Al-
though the Ginzburg-Landau equation does not permit soliton solutions, it is shown that certain
types of solitary-wave solutions have a strong resemblance to spikes observed in simulations and ex-

periments.

Free-electron-laser (FEL) theory has been very success-
ful in describing FEL operation in the linear regime, and
various predictions of linear theory have been shown to
be in good agreement with experiments.! However, in
the regime of saturated growth, which is strongly
influenced by nonlinear effects, FEL physics has been
studied largely in connection with specific problems such
as efficiency enhancement techniques’ and trapped-
particle phenomena. The latter includes the important
sideband instability,® which is a consequence of the syn-
chrotron oscillation of the electrons trapped in potential
wells of the electron bunches, together with the finite slip-
page of the optical wave with respect to the moving elec-
trons. A basic understanding of these nonlinear effects
has been developed through analytical studies in idealized
models. While these analyses provide qualitative results
and insights for specific problems, the burden of a general
nonlinear description has rested on computer simula-
tions, which have played a very important role both in
the design of FEL’s and the interpretation of experi-
ments.

This paper is motivated in part by an interesting and
somewhat less studied phenomenon called ‘‘spiking,”
which has been observed in computer simulations and
more recently, in experiments carried out by the Warren,
Goldstein, and Newnam,* Dodd and Marshall,’ and
Richman, Madey, and Szarmes.® “Spikes” generally
occur in the high-power, saturated-signal regime, and are
narrow, high-intensity radiation pulses that are generated
spontaneously. A qualitative physical mechanism has
been outlined by Warren and co-workers, who attribute
the generation of spikes to the growth of sidebands.*

In this paper, we propose a simple, yet fairly general,
model for the nonlinear evolution of the radiation field in
a FEL. This model enables us to understand the spatial
and temporal structure of the radiation field in the non-
linear regime. Preliminary results of this work were
presented elsewhere.” We show that the radiation field
obeys approximately the Ginzburg-Landau equation
(GLE),
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the distance along the undulator axis, "=t —z /v, is the
retarded time for a radiation pulse propagating with
group velocity v,, and a, B, and A, are complex constants
to be given later. The appearance of the GLE in a model
of FEL nonlinear dynamics is less surprising than may
appear at first glance. After all, there exists a useful anal-
ogy between an optical fiber and an electron beam,® and
in certain types of dielectric fibers, it is known that the
radiation field obeys a nonlinear Schrodinger equation,’
which is nothing but a special case of the GLE. In order
to strengthen further the analogy between an electron
beam and a fiber, we derive an approximate expression
for the refractive index of the electron beam in the non-
linear regime from a WKB theory. This is one of the im-
portant results of the present theory.

The GLE is a nonintegrable partial differential equa-
tion, and does not have soliton solutions. We are, there-
fore, led to the conclusion that it is not possible to gen-
erate optical solitons spontaneously from FEL dynamics.
We note that solitons can still be created in principle, as
they are in conventional lasers, by propagating the radia-
tion output from a FEL through a dielectric fiber,' but
this is not the subject of the present paper.

Though the GLE does not admit soliton solutions, it
has solitary-wave solutions,!! which can be obtained by
sophisticated variants of the Painlevé analysis.!>!3 We
show that a class of these solutions exhibits “spiking” be-
havior with characteristic widths that appear to be in
fairly good agreement with experimental measure-
ments*~® and numerical solutions.

We begin our analysis with the well-known one-
dimensional equations for a Compton FEL:>1*

dyj _ ksasaw .

o 7, sin(¢; +¢) , (2a)
dwj ‘}’3 ] ksawas
—=k, [1- + 20 cos(; + ) (2b)
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where z is the direction of propagation of the electron
and optical beams and also coincides with the undulator

6934 ©1991 The American Physical Society



43 GINZBURG-LANDAU EQUATION:

axis, ¥; +¢ is the relative phase of the electron (of rest
mass m) with respect to the radiation field, and y jmc2 is
its energy; the vector potential A=A + A,
a,=ed,/mc? a,=eA;,/mc? k,, k,=w/c are the wave
numbers of the undulator and radiation fields, respective-
ly; w is the carrier frequency, u =a exp(i¢) is the com-
plex amplitude of the radiation field, and
y,=[k,(1+a2)/2k,]'"? is the resonant energy. It has
been shown in Ref. 15 that Egs. (2) can be modeled by an
approximate reduced set of equations that involve only
the collective  variables x=<{(exp[—i(¢;—,)]),
y=(y;—vo)/volexpl =i, —¥,)]),  and 4
=u exp(iy,), where 1, is defined by the relation
dy,/dz=k,(1—y%/y3), and y, is the energy of the ini-
tially monoenergetic electron beam. In our notation,
these reduced equations can be written as

dA
a2z ——=i0A4+igx , (3a)
dx _
i = lhy s (3b)

dy _. .
i-=zfA —2ihyo(y —xy,)

+2idxy,—2if(x*A+ A*x)x , (3¢c)

where SEkw(l—y,/yo) f kia, /(2v}), g=wha,/
(2k,yoc?), h=k,(1+al)/y% are parameters, and
yOE((yJ——yO)/y0> For a detailed derivation of Egs.
(3), the reader is referred to Ref. 15. We note that Egs.
(3) admit an energy conservation law, given explicitly by
yo+(f/g)| A1>—|ay|*)=0, where a,= A4 (z=0) is the
initial amplitude of the radiation field and is usually small
compared with A4 in the saturated regime.

Equations (3a) and (3b) can be rewritten, respectively,
as x=(A—i8A)/(ig) and y=ix/h=(A—i8A)/(gh),
where the overdot denotes d /dz. Substituting expres-
sions for x and y in Eq. (3c), we obtain a third-order
differential equation for A:

—(i8—2iehyy) A +2ehy (28 —ehy,) A

Zefh(AA*
g

A*ANA—isA)

—ifghA+2iey,6(ehy,—8)4=0, (4)

in which we have introduced a small parameter € to tag
all terms containing y,, which is a small quantity for
most FEL’s. We will eventually set € to unity.

Equation (4) can be solved by a WKB method. We
write 4 = Agexp[(S7_€e" 'S, ), where 4, is a constant
and S, =S, (z) are slowly varying functions of z. We as-
sume that S, =eS,(n=0,1,2,...) and S, =€25,. Using
the conservation relation y,+(f/g)(| 412—|ay|*)=0 and
the assumption | 4| >>|a,|, we can then solve Eq. (5) by
equating coefficients of €. To O(€°), we obtain

S3—idS3—ifgh=0, 5

which reduces to the well-known linear cubic eigenvalue
equation'® A3—8A3+ fgh =0 if we set S;=i), To Of(e),
Eq. (4) gives
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+(38,—i8)S, +(382—2i85,)S,=Qy, , (6)
where Q=—S2+2i88,—(S;—S &Sy +i8(S;—S &)
+8%. We now transform from z to Yo as the new

independent variable by writing d/dz=(d|A4|*/
d/d| Al?), whereupon using the WKB representation
and the energy  conservation relation we
obtain  d/dz=(S,+S§)yo(d/dy,)  and d?*/dz*
=(S,+S ¥)y,(d /dy,) to the lowest order in €. Equa-
tion (6) then reduces to
D b8, = (7)
ayo dy, 1=Qyo »

where a =(S,+S ¥)(4S,+S & —i8) and b =38 3—2i8S,.
Equation (7) can be integrated with the initial condition
S,=0 when y,=0 (the linear regime). The solution is
S,=[Q/(a+b)ly,. To O(y,), we thus obtain the index
of refraction of the electron beam in the nonlinear re-

gime, n=1+(S,+8S,)/ik,=1+A/k,, where A=A,
+pB| A4]% and
g 2ImAy[2ImAy,—i(3Ay—8)]—3A3+26A,

(8)

We remark that the quadratic dependence of n on | 4|
means that in the saturation regime, even when gain is
negligible, refractive optical guiding can, in principle, aid
the confinement of radiation in a FEL. This effect has
been observed in numerical simulations,”!” but remains
to be verified experimentally.'®

In Fig. 1, we compare the numerical results obtained
by integrating the original FEL equations (2) with those
obtained from the reduced equations (3) for a typical set
of parameters. On the same plot, we show

A (z)= Ayexp(iAz) obtained from the WKB analysis.
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FIG. 1. Comparison of | A| and ¢ calculated from the origi-
nal equations (2) (solid lines), reduced equations (3) (dashed-
dotted lines), and WKB analysis (dotted lines).
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Whereas the analytical solution is remarkably good in
predicting the phase shift, the prediction for | 4| is less
accurate. In particular, the analysis predicts the approxi-
mate average saturation level for | 4|, but cannot repro-
duce the oscillations caused by synchrotron motion. [The
average intensity of the saturated radiation field can be
estimated by simply setting Im(n)=0, and is given by
| 4|?= —ImAy/ImB.] In order to account for the oscilla-
tions at saturation, higher-order WKB calculations are
needed. Note, however, that neglect of these higher-
order terms in the nonlinear analysis for | 4| does not
mean that the physics of synchrotron oscillations has
been eliminated altogether. These oscillations are impli-
citly contained in the electron dynamical equations that
involve Egs. (3b) and (3c).

We have considered so far the single-frequency FEL
equations. In the presence of multiple frequencies, it is
extremely difficult to obtain a description of FEL dynam-
ics in terms of a reduced set of equations involving collec-
tive variables. Instead, we exploit the analogy between
the electron beam and an optical fiber to obtain heuristi-
cally an equation for the radiation field. We consider an
optical signal of the form A(z,t)= A (z,t)exp(ikz —iwgt),
where kyg=wmy/c, and A(z,t) is a slowly varying ampli-
tude. Note that by including the time dependence in the
amplitude A4(z,t), we have allowed for the excitation of
multiple modes. At a given point z =z,, the Fourier
transformation of this signal is defined by the relation

- 1

Alzg, Aw)= [T dttexplikozo+ibwt') Alzg,1')

Vg Y —w
9

where Aw=w—w, Each frequency component is ad-
vanced along z according to the relation

A(zg+dz,Aw)=A(zy, Aw)exp{i[w/c +Mw)]dz} .

The inverse Fourier transform of A(z,+dz,Aw) in the
limit dz —O0 then gives

dAd(zt) _ i p+e oo g ,
=5 Jdde [ Tdr )

Xexp[iAw(t'—t)]

Aw

X |—/— +Mw)
c

(10)

For a FEL, A(w) usually has a narrow bandwidth around
the maximum linear gain frequency w,. We can, there-
fore, expand A(w) in a Taylor series around wg, and write

29 4 (0)=Aol0g) +Bl A+, Aw

+ e, tiay)Ao?*+ - - -, (1

where v, =c/(14+c0A/0w) is the group velocity of the
signal, a1+ia2=827k0/8a)2|m:%, a, is the group velocity
dispersion and , is the gain dispersion, and 3 is the com-
plex coefficient defined by Eq. (8). Substituting Eq. (11) in
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(10) yields

34 34 ilaytiay) 924

—— =iAo(wg) 4 —v, o 5 a2 +iBl A4]* A4,

dz
(12)

which can be reduced to the GLE (1) by transforming to
variables z' =z, t'=t—z /v, a=a,tia,.

The GLE (1), with complex coefficients, is not integr-
able in general.!? This rules out the possibility of spon-
taneous soliton formation during the nonlinear evolution
of a FEL. However, special solitary wave solutions can
be constructed following the methods described in Refs.
11 and 12. These solutions are

q exp(—iQz')
[exp(Kt')+exp(—Kt')]!tie
where Ay=&—ix, B=8,+iB;,
8x(a;+iay)(1+io)2+io)

A(z',t')= , (13)

2=
, (14a)
i Blay 1—o?)+20a,]
x[a,(1—0?)—20a
=S 2] +¢, (14b)
ay(1—0o%)+20a,
172
K=|—7p2X (140)
a(o“—1)—2a,0
and o satisfies the quadratic equation
a8, +a,pB;
o2y dbreb L,y (15)

aZﬁr _alﬁi

Equation (15) has two real roots, and produces two fami-
lies of solitary-wave solutions. In order to obtain simple
analytical formulas for these solutions, we make certain
approximations. First, we note that for a FEL operating
near the maximum linear gain frequency w,, Re(n) is ap-
proximately a linear function of .7 Therefore, we set
a;=~0 in Eq. (15), which reduces to o*—3(8;/B,)o
—2~0. For the case |3;| > |B,|, which is satisfied by the
parameters of the FEL’s considered here, the two roots
obey the inequalities 02>>1 and o03<<1. When
0?=03>>1, K,~[2x/(a,0%)]'"? is real, and Eq. (13)
gives

jap=—laF (16)
4 cosh*(K t")

The solution (16) for |A|?> has a single peak at t'=0
(z=v,t) with the half-width At;~K7{! In the case
o=0,, K,~iV'2x/a,, and Eq. (13) gives

\Alzz———"ﬁ—— . amn
4cos’(K,t')

The solution (17) exhibits periodic, finite-time singulari-
ties, as shown in Fig. 2. The width of each peak is given
by At,~K;!, and the separation between neighboring
peaks is AT~7K; !. Clearly, at the singularities, our
model beaks down, and higher-order terms in the expan-
sion of A(w) become significant.
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We now show that the frequency of the periodic solu-
tion (17) has the same parametric dependence and is of
the same order of magnitude as the amplitude oscillation
frequency expected from sideband theory.> To see this,
we note that the frequency of solution (17) is
Aw=1"—2x/a,. Since at saturation | 4|=V"y/Imf, we
write Ao=[(—2a,/a,)VxImB]""2. From the cubic
equation A}—8A3+ fgh =0, assuming §=0, we obtain
Ad~—fgh, which gives (=—L(fgh)!? and
x=(V3/2)(fgh)'”?. Also, from the cubic equation, it
follows by  straightforward algebra that «,
=Im(3%Ay/d0?)~=[—V'3/(360*)][h%/(fgh)'*]. From
Eq. (8), we get ImB~(36V'3/241)(fh/g). Using these
expressions for a,, ¥, and Imf3, we then obtain

172
a;a, ]

1+a2

Aw=0.9 |20 (18)

The expression in parentheses on the right-hand side of
Eq. (18) is the same as the frequency separation of a side-
band from the carrier signal predicted by standard side-
band theory.> We also note that solutions resembling the
solitary-wave solutions can be generated by the time-
dependent FEL equations, which include the effect of
slippage. We have used our computer code'’ to carry out
simulations of the experiment in Ref. 5. The simulation
shows ‘‘spikes” of width Atr=~25 psec separated by
periods of 80 psec. [See Fig. 3(a) of Ref. 5.] For the FEL
described in Ref. 5, we calculate numerically the parame-
ters x=0.11 cm™! and a,=5.3X1072! sec’/cm. The
analytical solutions (17) then predict periodic spikes of
width A¢,~154 psec. The experimentally measured
width ~ 150 psec.

We now compare the analytical solutions with results
from the experiment of Ref. 4, for which A ,=2.7 cm,
a,=0.8, A,=9.85 um, I=39.3 A, r,=0.1 cm, and
Yo=4%2.7. From the linear cubic equation (5), we find
X=0.018 cm™! and @,=2.0X10"% sec’/cm; then Eq.
(17) gives At,=0.24 psec. The experimentally observed
width is 0.2 psec.*

Finally, in the FEL experiment in Ref. 6, the pulse sep-
aration (not width) is measured by an autocorrelation
technique and is confirmed by numerical simulations. By
using the parameters given in Ref. 6 (except that the en-
ergy spread is taken to be zero and the electron-beam ra-
dius to be 0.02 cm) in the cubic equation, we get
X=0.026 cm ™!, @,=1.24 X 10~ ** sec’/cm. The theoreti-
cally predicted pulse separation for the solution (17) is
AT =~0.22 psec. The experimentally measured separation
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FIG. 2. Solitary-wave solutions of the Ginzburg-Landau
equation. Solution (16) is plotted in (a) and solution (17) in (b).

is 0.8 psec.

We emphasize that our model is rather simple, and the
remarkable accord with experimental results (from Refs.
4 and 5) should therefore be taken with a grain of salt.
However, we believe that the essential idea of spikes as a
form of solitary wave propagating in the “fiber,” that is,
the electron beam, is qualitatively supported by experi-
mental results.

In comparing theory with experiments, we have so far
used the singular, periodic solution (17). The solution
(16), which is nonsingular but aperiodic, also predicts
spike widths that are of the same order as those obtained
from (17). Clearly, initial and boundary conditions, as
well as issues of stability, will determine the dominance of
particular solitary-wave solutions in a given experiment.

Note added in proof. After the completion of this
work, we found that for a small-gain oscillator, a
Ginzburg-Landau equation (of rather different form than
has been presented in this paper) has been given by Col-
son and Ride.?
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