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Static structure factors S{q) were measured by laser light scattering for very concentrated sys-

tems of spherical, near-monosized, sterically stabilized particles dispersed in nonpolar liquids. A
range of systems with particle concentrations beyond that corresponding to the disorder to order
transition configurations were found to have amorphous structures. As the particles were stabilized

by means of very short chain polymers, these systems were thought to closely approximate the fun-

damentally important amorphous, hard-sphere system. Subsequent analysis of S{q) carried out by
means of data generated by the molecular-dynamics method for very concentrated, amorphous
states of the hard-sphere system confirmed this interpretation. Thus we were able, by a combination
of experiment and simulation, to give an extensive analysis and description of the structure of the
amorphous state of a system of hard spheres. This study complements past work on the thermo-
dynamic and transport properties of metastable, amorphous states of a system of hard spheres.

I. INTRODUCTION

Concentrated dispersions of small particles in liquids
form the basic ingredients of many materials, such as
paints, cosmetics, soils, and the presintered state of
ceramics. Obviously, an understanding of, and the ability
to control their properties, is of considerable technologi-
cal value. For example, studies of ceramic processing
suggest a strong correlation between the mechanical
strength of the final product and the state of aggregation
of the presintered dispersion. ' Further, the economics
of the sintering process are significantly improved by us-
ing dispersions at high volume fractions with particles as
close to monodisperse as possible. The ease with which
a stable dispersion can be (osmotically) compressed de-
pends on the range and strength of the forces between the
particles and one way to achieve the large solids content,
desirable in many applications, is by employing particles
stabilized by very thin adsorbed polymer layers. A
"model" or laboratory prepared dispersion that meets
this specification comprises near micron sized spherical
polymethylmethacrylate (PMMA) particles (or "cores")
stabilized by a chemically adsorbed layer of poly-12-
hydroxystearic acid (PHSA) chains of approximately 10-
nm thickness. These particles can be prepared with very
narrow particle size distribution and be dispersed in a
variety of nonpolar liquids including liquid mixtures
whose refractive index closely matches that of the parti-
cles. The resulting optically matched, nearly transparent
dispersions are then suitable for light scattering stud-
ies. '

As the volume fraction P of these dispersions is in-
creased they display the transition from a Auidlike or
disordered phase to the crystal phase similar to that ex-
pected for an atomic Auid. The difference in the volume
fractions of the coexisting crystalline and disordered

phases is close to that known for the simple hard-sphere
system; this is an indication of the very short range of
repulsion forces between the particles. Laser light
scattering has been applied to these dispersions to deter-
mine their static structure factors as well as the coherent
and incoherent dynamic structure factors. '

A particularly interesting and possibly useful charac-
teristic of a dispersion of near micron sized particles is
that the structural relaxation times ~ as measured from
the decay of the dynamic structure factors are many or-
ders of magnitude greater than those for fluids of inert
atoms. ' For dispersions near the crystallization transi-
tion ~ is typically of order 0.1 sec and lengthens appreci-
ably with increasing tb. This characteristic not only per-
mits a direct study of the metastable Quid state, but al-
lows sufficiently rapid compression to metastable states
for which ~ exceeds any reasonable experimental time.
The volume fraction Ps around which r increases abrupt-
ly by several orders of magnitude (to r) 10 sec) coin-
cides almost perfectly with the macroscopically observed
glass transition (GT), i.e., above &P no homogeneously
nucleated crystallization is observed. By contrast
compression (or cooling) of simple atomic fluids
suKciently rapidly to bypass crystallization is presently
not possible by experimental means. ' However,
compression rates which exceed structural relaxation in
atomic liquids can be achieved in computer simulation. '

A comparison of the particle dynamics of the PMMA
dispersions, discussed above, with those of simple atomic
Auids, in the vicinity of the GT as predicted by computer
simulation and theory, will be discussed elsewhere. In
this paper we compare the (static) structure factors ob-
tained by molecular-dynamics computer simulations on
dense (metastable) hard-sphere fluids with those mea-
sured by light scattering on concentrated PMMA disper-
slons.
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II. EXPERIMENTAL DETAILS
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FICz. 5. Schematic phase diagram of the hard-sphere system.

III. STRUCTURE OF THE HARD-SPHERE SYSTEM

A variety of statistical mechanical techniques has been
used to map out the phase diagram of a system of hard
spheres a schematic representation of this phase dia-
gram is shown in Fig. 5. For P & PF the system exists in a

4

1O 14
qd

FICx. 4. Same as for Fig. 1 but p* = 1.18.

ties are expected to be most pronounced in the region of
the minimum in P(q) which, for optically homogeneous
hard spheres, roughly coincides with the first minimum
in S(q). In the future we hope to obtain more rehable
data. At present, however, these are the only data extant
for the structure factors of the metastable and glassy
phases and are, we think, reliable enough for a prelimi-
nary analysis.

The experimental values of S(q), obtained in this way,
are shown in Figs. 1 —4 for a range of volume fractions.
The experimental uncertainties mentioned above and the
limited range of scattering vectors over which S(q) can
be measured preclude the computation of g (r) by means
of the inverse of Eq. (3). So we rely on the hard-sphere
model (see below) to provide further interpretation of the
experimental data.

thermodynamic equilibrium Quid phase with significant
short range but no long-range spatial correlation among
the particles. The equilibrium state for P) P is an or-
dered or crystalline arrangement of particles in hexago-
nally packed planes. The structure indicated by
molecular-dynamics (MD) studies is face-centered cubic
(fcc) whereas the crystal phase of the dispersions, dis-
cussed in Sec. II, displays a strongly faulted stacking of
the hexagonal planes, ' i.e., a combination of fcc and hex-
agonal close packing (hcp). It is this faulty stacking that
gives rise to the spectacular diffraction colours in these
dispersions and precious opal. ' For volume fractions
between PF and P the disordered and crystal phases
coexist in equilibrium.

It has recently been shown that it is possible, on a time
scale accessible to molecular-dynamics computer simula-
tion, to compress a hard-sphere Quid to volume fractions
beyond P at a rate where crystallization is prevented. '

For P) P the particles in the metastable state so pro-
duced may still diff'use over appreciable distances (in
comparison with the interparticle spacing), so that in
time the system will tend to go to the equilibrium crystal
phase. ' However, continued compression before any ap-
preciable equilibration, or relaxation of the structure, will
produce an amorphous state at a volume fraction P for
which the structural relaxation time is (essentially)
infinite and long-ranged particle diffusion has ceased, i.e.,
a glass. ' Using several criteria, such as the vanishing
particle diffusivity, an estimate of the location of this
hard-sphere glass transition is P =0.568. '

The properties of the glass state are dependent on the
method of preparation and the criteria used for locating
the glass transition. This is borne out by the result of
Woodcock's work that the maximum volume fraction

,„obtained for the amorphous state (glass) depends on
the rate of compression of Auid initially in equilibrium.
Very rapid compression yields $,„=0.637 which corre-
sponds to the limit obtained by Bernal in experiments
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with steel ball bearings. Slower compression, but still
preventing crystallization, gives P,„=0.654. '

The radial distribution function is known in the form
of an excellent algebraic fit to computer simulation re-
sults for the equilibrium hard-sphere Auid' and crystal. '

Corresponding empirical results or tested theoretica1 pre-
dictions for the metastable Auid and glass are presently
not available. We have, therefore, carried out several
MD computer calculations on hard spheres in order to
obtain g (r) and S (q) for the metastable and glass states to
investigate their structure more fully than in previous
work' and also to compare with the experimental results
discussed above.

The MD calculations performed here use the algorithm
of Alder and Wainwright, ' and the compression or
densification scheme originally suggested by Woodcock
which involves expansion of the diameters of the parti-
cles, every AN collision, until the two closest spheres just
touch. N =500 spheres at a volume fraction /=0. 47
were placed on an fcc lattice subject to the usual periodic
boundary conditions. The MD computation was com-
menced allowing this system to melt and attain equilibri-
um from whence the computation was continued and g (r)
and the compressibility factor pv/NkT calculated until
they agreed with the results of Barker and Henderson '

for the equilibrium fiuid (see Table I). From the final
(equilibrium) particle configuration a compression se-
quence, with AN = 10 collisions, was commenced in order
to simulate a rapidly compressed Auid. The compression
was interrupted at various volume fractions (or densities)
and the MD computation allowed to proceed (at this den-

P( N, r)
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0.2
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FIG. 6. Nearest-neighbor coordination numbers P(N, r) vs N
for rapidity quenched states, N= coordination number,
r = 1.45d. (a) p = 1.044, (b) p* = 1.10, (c) p* = 1.14, (d)
p*=1.155, {e)p*=1.18.

TABLE I. Compressibility factors, Z =pViNkT for the hard-sphere states generated in this study.
The free-volume approximations are included to illustrate the fact that they accurately describe the be-
havior of the two extreme amorphous solids, i.e., those produced by rapid and slow compression.

Rapid
compression

Slow
compression "Equilibrium"

Free-
volume

approximation'

0.90
1.044
1.10

1.14'

1.155
1.180

10.7
19.9
28.8

(28. 1')

43.6
52.5
89.3

19.1
25.4'
17.7g

( 13.6")

10.7'
18.5
233

31.1
36.0
50.0

10.5
20.2
30.5

47.1

59.0
100.0

9.6
17.0
23.6

32.4
37.5
50.7

'pu/NkT= [1—(p/p~)' ') ', p~ =1.2158.
"pu/NkT=[1 —(p/p, )' '] ', p. =1.2525.
'Reference 21.
"Reference 13~

'Glass, this work.
Reference 20.
Imperfect crystal, this work.

"fcc crystal, K. R. Hall, J. Chem. Phys. 57, 2252 (1972).
p —pd
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sity) until stable values for g(r), pV/NkT, and several
other properties (discussed below) were obtained. A
second set of computations, discussed in Sec. V, was per-
formed at a much lower rate of compression.

Further insight to the structure of the system is provid-
ed by the probability distribution P(n, r) of the nearest-
neighbor coordination number n, which we calculated at
the arbitrarily chosen value of r = l.45 (expressed in units
of the particle diameter) corresponding roughly with the
first coordination shell. As can be seen from Fig. 6 there
is, as for the glassy state of Lennard-Jones atoms, a
wide distribution of n. This contrasts the stable crystal
for which n is fixed. Although not shown here, similar
results were obtained for the second and third coordina-
tion shells.

The second peak of g (r) (Figs. 7 and 8) shows the split-
ting characteristic of the amorphous state of systems of
particle interacting with hard potentials. From an
analysis of close-packed amorphous structures of hard
spheres it has been shown that the longer of the two pre-
ferred distances, which causes this splitting, corresponds
to a collinear arrangement of triplets of particles while
the shorter arises from the distance of closest approach of
a second nearest neighbor across an intervening pair of
particles in the nearest-neighbor shell. Subsequent
peaks in g(r), on the other hand, appear very similar to
those of the (less dense) equilibrium Iluid except that

significant structure extends to larger distances.
In order to compare the structure obtained by the MD

computations with experimental data we must compute
S(q). One can do this directly from the MD generated
configurations but this turns out to be too slowly conver-
gent and, also, can only be done for a few discrete values
of q. 24 Thus, we have computed S(q) from g (r) by using
Eq. (3). In order to get accurate results by this method
one needs to carefully extrapolate g (r) beyond r =L /2
where L is the length of the cubic cell containing the 2V

particles, since the MD method only gives g(r) in the
range 0& r &L/2.

As in previously published work we have chosen to
extrapolate g (r) with the function:

f (r) =1+Aexp( —Br)cos(Cr +D)/r,

where the parameters 3, 8, C, and D are obtained by
fitting f (r) to the larger r portion of the MD radial distri-
bution function. This method has been shown to be of
sufhcient accuracy by comparison with directly calculat-
ed values of S(q) calculated from very long computer
runs at some selected densities for both soft- and hard-
sphere systems. Its accuracy was further checked for
very dense amorphous states by the following scheme.
The Percus-Yevick (PY) theory for hard spheres provides
analytical expressions for both g(r) and S(q), thus a

g(r 3 g{r3

1.5

fb3 (b3

{a) (a3

Second and third peaks of g (r) for rapidly
compressed fluid and glass. (a) p =0.90, (b) p =1.044, (c)p*= l. 10.

FICr. 8. Same as for Fig. 7 but (a) p*=1.14, (b) p*=1.155, (c)
p*= 1.18.



43 STRUCTURE OF COLLOIDAL GLASSES CALCULATED BY THE. . . 6905

comparison of this analytical S(q) with that generated
numerically by truncating the PY g (r) at I./2, extrapo-
lating and numerically integrating by the above pro-
cedure gives a direct measure of the accuracy of our
values of S(q). This direct comparison reveals the follow-
ing difFerences: (i) for the height of the first maximum a
difFerence of about 1% at P =P~ and about 7% at

P =0.61, (ii) for subsequent minima and maxima
ditferences of about 1%, and (iii) diff'erences of about l%%uo

for the positions of the maxima and minima. In fact as
the features of g (r) (e.g. , peak heights) are overestimated
by the PY approximation then the above comparison will
give an upper bound to the errors in our method.

IV. COMPARISON OF EXPERIMENT
AND MOLECULAR DYNAMICS

Figures 1 —4 show a comparison of the structure fac-
tors calculated by the MD method and measured by light
scattering for the equilibrium Quid phase at freezing
(P=PF) and for three volume fractions in the amorphous
phase. Considering the uncertainties in the experimental
data, discussed above, the agreement between the two
sets of results is reasonable. Several points emerge from
Figs. 1 —4.

(i) Except for the primary maximum for the fluid at
freezing, the positions of the minima and maxima are in
good agreement.

(ii) The first minimum is quite broad and fiat.
(iii) The height of the first peak in S(q) does not in-

crease very sharply with increasing P, in contrast with
the predictions of the Percus-Yevick theory for hard
spheres (see Table II).

(iv) Within the accuracy of the data neither experiment
nor MD suggest a split of the second maximum of S (q).
This is at variance with recent theoretical work.

(v) The ratios of the magnitudes of the first and second
maxima as well as maxima to minimum ratios also agree
quite well (see Table II). One must be cautious, however,
in making too much of quantitative comparisons in the
region of the first minimum and second maximum. This
is because S(q) was obtained by dividing I(q) by P(q) and
in these regions P (q) is very small and quite uncertain in
magnitude.

The most severe differences between experiment and
the MD results occur in the vicinity of the main peak of
S(q) (Figs. 1 —4). To appreciate these discrepancies it
must be noted that the PMMA particles in the refractive

index matching liquid can be regarded optically as homo-
geneous Rayleigh Gans-Debye scatterers, for which the
form factor P(q) decreases most steeply with q around
the position of the maximum q,„ in S(q). Thus, small
errors in the measurements of either I(q) or Io(q) may
translate into more significant uncertainties in S(q). In
addition, errors in q, resulting from the refraction correc-
tions for the sample cells of the square cross section used
in these experiments, may be significant especially in the
forward angles (8 & 25').

V. EFFECT OF THK RATE OF COMPRESSION

In order to investigate the effects of the rate of
compression on the structure of the hard-sphere metasta-
ble system we performed a MD computation commenc-
ing from the equilibrium fiuid at P =0.47 with a compres-
sion step every 51V =2000 collisions. Having reached the
volume fraction of /=0. 547 it was held fixed and the
MD computation was allowed to proceed for 2X10 col-
lisions. The pressure calculated for this state is marginal-
ly larger than %'oodcock's' so-called "equilibrium meta-
stable fiuid" at the same volume fraction (see Table I).
The slow compression (b,N=2000) was then continued to
P =0.563 followed by a rapid compression ( b,N = 10) to
/=0. 576. As found by Woodcock, ' the rapid compres-
sion was necessary at this stage to avoid crystallization.
Table I shows that the pressure [and therefore also the
height of the first peak in g(r)] of this glass (/=0. 576)
obtained with several slow compression stages is
significantly lower than that for the rapidly compressed
glass although still slightly greater than Woodcock's'
"equilibrium glass. " The lowering of the pressure of the
glass at /=0. 576 is simply a refiection of the extra
structural relaxation that can be accommodated during
the slower compression. This suggestion is supported by
the fact that the pressure of the equilibrium crystal, and
an imperfect crystal (see below), are very much lower
again (see Table I). Also a comparison of the radial dis-
tribution functions of the (/=0. 576) glasses obtained by
slow and rapid compression (Fig. 9) shows that the slow
compression yields the more compact structure; an in-
crease in the height of the first component of the split
second peak relative to the first component, and more
strongly depleted minima are observed for the slower
compression rate. Similar features have previously been
observed for glasses of Lennard-Jones atoms and also
for a hard sphere glass' at /=0. 628. These di6'erences

TABLE II. Comparison of Perkus-Yevick, molecular-dynamics, and experimental estimates of certain features of S(q).

S(q),„ /S(q);„
PY MD Expt. PY

S(q),„ /S(q), „

MD Expt. PY

S(q),„ /S (q);„
MD Expt.

0.943
1.10

1 ~ 14

1.18

5.7
14.1

18.7

26.3

5.2
9.0

—10.3
9.9

11.7

4.7
8.4

8.5
—9.8

9.7

2.2
3.0

3.3

3.5

2.1

2.5
—2.8

2.5

2.5

1.7
2.1

2.1
—2.2

1.9

2.6
4.7

5.7

2.5
3.5

—3.7
4.0

4.7

2.7
4.0

4.1
—4.6

5.0
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VI. CONCLUSIONS

In this paper we have reported structure factors S(q)
and their interpretation in terms of the hard-sphere sys-
tem for a well-defined model sterically stabilized colloidal
system. Hopefully, studies of this type will lead to as
Inuch understanding of the state of aggregation and prop-
erties of these systems as aqueous suspensions of polymer
lattices have for charge stabilized systems. This system
shows Quid, crystal and glasslike structure and also coex-
istence between fluid and crystal structures.

These phases are important from several points of
view.

(i) Glassy phases may be used to explain and model
shear thickening behavior.

(ii) Ordered colloids are useful for modeling systems
with a yield value.

(iii) They are important for ceramic processing (this is
especially relevant as the polymer used here may be used
to stabilize oxide particles).

(iv) They may be used to study glass formation and dy-
namics.

(v) They provide useful systems in which to observe
both homogeneous and heterogeneous crystallization.

To continue on point (iii), although random close-packed
states may be of lower volume fraction (/=0. 64) than
regular (hexagonal) close packing (/=0. 74), the latter
tends, on a macroscopic scale, to be polycrystalline. A
ceramic produced from this state may possess mechanical
weaknesses, possibly exacerbated by sintering, in the vi-
cinity of the grain boundaries. Not only is the random
arrangement of particles more likely to be free from such
macroscopic faults, but it is more easily and quickly pro-
duced than the (imperfect) crystalline phase.

Finally, this study complements that of Woodcock on
the thermodynamic properties, formation, and transport
properties of the hard-sphere glass in that we have pro-
vided some insight into the structure of these systems as a
function of density and rate of formation.
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