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Analogous to the theory of cholesteric liquid crystal, a theory for tilted chiral lipid bilayers

(TCLB) [briefly reported in Phys. Rev. Lett. 65, 1679 (1990)] is developed. The tilt equation and the

surface-shape-equilibrium equation have been derived. Application of the theory shows that on a
cylindrical surface, the field of tilt directions of TCLB molecules forms a right-handed helix with a
45 gradient angle for k, )0 or a left-handed helix with —45 gradient angle for k& & 0, where k ~ is

the chiral curvature modulus of the cholesteric liquid crystal. In addition, there exists another type
of helical structure that looks like twisted strips or helicoids. It is also shown that on a spherical
surface, the tilt field has at least two singular points. Based on these results, the succession of transi-

tions from a vesicular dispersion to a phase involving helical structures and then to tubes observed

in several laboratories can be reasonably explained. The general formula that explains the aggrega-
tion of narrow and prolate ribbon structures is derived. By including more terms of elasticity free

energy into the theory, the size of the helical structure is obtained and is shown to agree with exper-
imental observations.

I. INTRQDUCTIQN

The lipid bilayer is an attractive subject as it may serve
as a structural model for biological membranes and as
sca6'olding for synthetic functional systems. Theoretical
investigations of lipid bilayers, in the early stages, were
devoted to the explanations of the shapes of vesicles
(closed membranes). To explain the well-known
biconcave-discoid shape of red blood cells under normal
physiological conditions, Helfrich' has developed the
theory of curvature elasticity of lipid bilayers. In this
theory, the elastic energy of curvature per unit area of a
bilayer deformed with principal curvatures c& and cz is
written as

g~
= 2k(ci+c2 co) +kcic2

where k is the bending rigidity, k is the elastic modulus of
the Gaussian curvature, and co is the spontaneous curva-
ture describing the asymmetry of the membrane or its en-
vironment. The approach of this model is based on an
analogy with the elastic theory of uniaxial liquid crystals.
In fact if one takes the normal of the bilayers as the direc-
tion of liquid crystals, the expression (1) can be obtained
from the expression of Frank free energy for liquid crys-
tals and k, k. co is expressed by Frank elastic constants
as

k =k„t, k= —(k22+k2~)t, co=kgb/k„t,

where k; are di|I'erent Frank elasticity constants and t is
the thickness of the membrane.

Obviously, the above-mentioned theory can only be
used in the case in which the more or less Aexible hydro-

carbon chains have to be directed in the normal direction
of the bilayer, i.e., the case of the I, phase of membranes
[see Fig. 1(b)]. The cases of tilt of the lipid molecules (L&
phase) and tilt of the chiral molecules (L, phase) are
beyond the scope of the theory. For treating the latter
two cases, a new theory of curvature elasticity is needed.

This work is devoted, in particular, to the theory of
L + bilayers. The goal of this work is (1) to develop in

detail a theory (it has been briefly reported in a recent
Letter by us) that can be applied to the cae of the L +

P
phase of membranes and (2) to apply this theory to shed
some light on the recent experimental discovery of the
helical structures of various amphiphiles.

All the experimental observations " demonstrated
that the chemical structure of component amphiphiles, in
particular, their chirality, plays a crucial role in the for-
mation of the helical structures. So far there are two
types of helical structures that have been reported. The
first type of helical structure looks like a ribbon wound
around a cylinder with a spiraling gap. The gap some-
times appears to close up so that the ribbon transforms to
a prolate tube. Some tubes were multilamellar and look
like soda straws ( Fig. 3 in Ref. 9). A remarkable proper-
ty of this type of helical structures is that the gradient an-
gle g of the helix always appears to be nearly 45'. Anoth-
er type of helical structure observed in experiments is the
twisted strip or right helicoid which seems to be a cross-
over from vesicular dispersion to the first type of helical
structures [Figs. 1(A)—1(D) of Ref. 5]. Technically, these
structures can be used in making electro-optical elements,
microelectronic elements, reagent delivery vehicles, and
microsurgical materials. ' A recent significant advance is
the successful coating of the tubes with nickel and/or
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FIG. 1. Configuration of lipid bilayer: (a) geometry of bilayer, (b) molecule directions for the bilayer in diff'erent phases, (c)
geometry configuration on the curved surface.

copper to make them highly conductive. '

On the theoretical side, a major challenge is to under-
stand the mechanism of the winding of the lipid bilayers.
The first theoretical treatment of wound-ribbon helices is
developed by Helfrich' by assuming a competition of a
spontaneous torsion of the edges with the bending of
membranes. Later the tube formation was also explained
by de Gennes in terms of a buckling of Aat solid ribbons
due to the ferroelectric polarization charges on their
edges. ' Very recently, an improved theory was proposed
by Helfrich and Prost' in which they employed a new
linear term linked to molecular chirality in the bending
energy of membranes with C2 or D2 symmetry. Howev-
er, the second type of the observed helical structures, the
twisted strips, has not been theoretically handled yet. In
addition, the transition from vesicular dispersion to the
formation of helical structures observed in experiments

has not been discussed theoretically. And, the size of the
helical structures has not been determined by the previ-
ous theories yet.

In this paper, different from the above-mentioned ap-
proaches, we restrain ourselves in the approach analo-
gous with the Frank theory of uniaxial liquid crystals; in
particular, the cholesteric one. By taking into account
the effects of chirality of the molecules and the tilt of the
director of the liquid crystal, we derive the expression of
curvature energy for the tilted chiral lipid bilayers
(TCLB). The Euler-Lagrange equations, i.e., the surface-
shape-equilibrium equation and the polar-angle equations
of the tilt direction, given by variational calculus of the
curvature energy, are used to explain the experimental
findings mentioned above. The results show that on a cy-
lindrical surface the field of tilt directions of TCLB mole-
cules forms a right-handed helix with a 45' gradient angle
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for k2 & 0 or a left-handed helix with a —45' gradient an-
gle for kz(0, where k2 is the chiral curvature modulus
of a cholesteric liquid crystal. Also we found that the
right helicoid is a solution of the equations with little
higher free energy than that of the cylindrical surface and
on a spherical surface, which is also a solution of the
surface-equilibrium equation with the highest free energy,
the tilt field has at least two singular points. This se-
quence of free energy for different shapes of membranes
may explain the succession of the transition from a vescu-
lar dispersion to a phase involving helical structures and
then to a tube observed in experiments. In addition to
these results, a general formula in the form of differential
geometry for free energy of the TCLB is derived. In this
formula the surface integral terms, in the mound-ribbon
case, are identical to what is given by Helfrich and
Prost, ' while the other term in the form of a curve in-
tegral is a term derived for the first time. Also, using the
solutions obtained for the equations derived from the
chiral term of free energy to the expression of free ener-
gy, including other terms for nematics, the size of the hel-
ical structures in agreement with experimental observa-
tions is determined theoretically.

The paper is organized as follows. In Sec. II the ex-
pression of free energy of the TCLB is derived. In Sec.
III the polar-angle equations of tilt directions and the
surface-equilibrium equation are given. In Sec. IV the
applications of theory to helical structures and sphere are
presented. In Sec. V, by adding more terms in the free-
energy expression, the tube radius and helical pitch of the
helical structures are obtained. In the last section, Sec.
VI, a brief summary and some discussions are given.

II. FREE-ENERGY EXPRESSION FAR TCLB
Theoretically, the membranes of the lipid bilayer may

be described as a two-dimensional surface Y(u, u) with
uniform thickness r cosgo [Fig. 1(a)], where u, U are two
real parameters or material coordinates for the mem-
brane. For understanding the distinguished nature in the
diff'erent phases of the membrane [Fig. 1(b)] at the level of
a macroscopic or Frank theory, we note that it is neces-
sary to introduce a number of directions to completely
describe the orientation of the molecules. For the sim-
plest case of the I phase, the orientational direction is
consistent with the normal of the layer n, which is fully
determined by the surface Y as

n = (Y& X Y2)/v'g (3)

where Y, =B„Y, Y2=B,Y and g =det(g, ~. ) with

g,"=Y;.Y (i,j = 1,2). It is obvious that in the theory of
the L phase, as shown in Eq. (1), there is no need for ad-
ditional parameters. However, for both the L& phase [ti-
lted lipid bilayer (TLB)] and the L&+ phase one needs to
know the details of the orientational direction d(u, U) pro-
vided by the tilted angle 9 and azimuthal angle P as illus-
trated in Figs. 1(b) and 1(c). The uniform L& and L&~
phases of the bilayers are generally characterized by con-
stant tilt angle 0= Op of the molecule chains with respect
to the normal n and, in practice, the necessary new pa-
rameter is only the scalar function P(u, U). However, it is
not convenient to use P(u, U) straightforward on a curved

g,„=—k21.( V Xd), (6)

where the minus sign serves to be identical with the origi-
nal Frank expression. To reveal the role of chirality in
the TCLB, for simplicity, we use expression (6) as the en-
ergy density of the TCLB instead of the full one. In other
words, we discuss the case of the TCLB with a strong
chirality e6'ect.

Now we need to transform Eq. (6) to the form closely
associated with surface Y(u, U). The first step of the pro-
cedure is to represent the three-dimensional gradient
operator V by

V= V'+nB„,

where V' is the two-dimensional gradient operator on the
surface Y defined by'

and nB, is the gradient operator along the direction n.
The curl of d then can be written as

VXd=V'Xd+nXB„d .

surface because it is depending on the curve-coordinate
frame of reference. The decisive step taken in the present
theory is to use a coordinate-free description of orienta-
tion d by

d=di Y, +d2 Y2+cosOpn, (4)

where d, and d2 are two scalar functions of u, U. As in
the Frank theory of liquid crystals, d is just like the direc-
tor in liquid crystal and from d d=1 we have the follow-
ing relation:

g, .d, d —sin Ho=0 (ij =1,2) . (&)

Here and henceforth the repeated indices imply summa-
tion over them.

To calculate the free energy of the TCLB with the
Frank theory of curvature elasticity, we image the tilted
bilayer as a curved liquid-crystal layer sandwiched in be-
tween two surfaces Y(u, u) and Y(u, v)+t cos&on(u, u).
Given this, it is a relatively straightforward matter to in-
sert Eqs. (4) and (5) into the general expression of the
curvature-elastic energy for both nematic and cholesteric
liquid crystals. In this way a full formulation of the free
energy for both the TLB and the TCLB has been ob-
tained. ' lt is a lengthy and heavy formula related to all
the Frank elastic constants; therefore, it is rather difticult
to use this formula to analyze the practical structures of
the TLB and the TCLB. Since our purpose in this work
is to treat the practical problem rather than to give some
hard tractable heavy formulas, we turn to analyze the
physical aspects of the problem first and then decide
which terms of the heavy formula might play an essential
role for the problem.

As we pointed out at the beginning, all the experimen-
tal observations demonstrated that the chirality of mole-
cules plays a crucial role in the formation of helical struc-
tures of the TCLB. Therefore, we should consider the
chiral eA'ect as the main ingredient in this theory. In the
Frank theory, the chirality of cholesterics is character-
ized by the following energy-density term:
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n X B„d=n X (d,.B„Y,. +cosHpi3„n) .

Because n.n= 1, it follows that

a„n=o,

(10)

but the normal gradient of Y does not vanish. With some
geometric manipulation one obtains'

Using Eq. (4), the second term on the right-hand side of
Eq. (9) can be expressed as

proximation we used to give Eq. (20) is a reasonable one.
Given this, we may conceive the total curvature free en-
ergy of the TCLB by

fgTCLBdA (21)

with the surface density of free energy

gTCLB — k2t COSHpE3 'i [COSHpgik (dk j + I jidi )

2L,k—gitdkdt ]/3/g

B„Y;=—L;g Yk ) (12) + A(u, v)(g;,.d;d —sin Hp) . (22)

where L, is associated with the second fundamental form
of the surface Y [see below, Eq. (16)]. Equations (ll),
(12), and (3) then transform Eq. (10) into following form:

n X d„d=e3;,LjkdkY; /3/g

The symbol e; k is defined as
r

+1, (ijk) is an even permutation of (123)
e, k

= . —1, (ijk) is an odd permutation of (123)
0, otherwise .

(13)

(14)

where d&~ —=Bjdk and the Christoffel symbols I;~ as well
as L; are defined by

Y,, =a, a, Y=r,', Y„+L„-n . (16)

From Eqs. (9), (13), and (15) one can get the three-
dimensional curl of orientation d as

V X d =@3j [g k (dk j + Ijki di )n 2Ljk dk Y; ] /&g— (17)

The calculation of the two-dimensional curl of d needs
lengthy derivation; here we simply give the result

V' Xd=e3J, [(g,„dk
&
+g tPkjdk )n L,kdk v—]/Vg

(15)

The last term in Eq. (22) comes from the constraint Eq.
(5). In physics, the Lagrange function k(u, v) may be ex-
plained as a tension stress which, varying with the posi-
tion on the surface, is indeed induced by the coupling of
molecule tilt and the surface curvature.

5F 5f 3 ggTCLBd (23)

The Euler-Lagrange equations from variation of func-
tions d, (i = 1,2) are given by

M. Bd g gTCLB (24)

III. TILT AND SURFACE-EQUILIBRIUM
EQUATIONS

The basic principle involved in the application of the
fundamental equations (21) and (22) to the treatment of a
practical problem is that the equilibrium state of the tilt
field d as well as Y is always given by minimizing the to-
tal free energy of the system. In order to obtain the tilt
and surface-equilibrium equations one has to derive the
Euler-Lagrange diQ'erential equations by calculating the
variation of the free energy. By using Eq. (21) and noting
that d A =3/g du dv, we can write the variation as

As a simple check, we may consider the case of d~n,
i.e., Hp, d&, and dz~0. Obviously, in this case Eq. (17)
leads to

TXn=O,

Inserting Eq. (22) into Eq. (24) yields

2A&g g jdj+k3te3jk[2cosHp(gkiL j+gikLji)di
—cos Hp(gkil ';j+g; k)]=0 (i =1,2) . (25)

which is well known in smectics.
By using Eqs. (4), (6), and (17) one can obtain the bulk

energy density

gch 2 ji [ Pgik k, j jl

2Ljkgiidkdi ]/ g (19)

In order to find the final expressions for the curvature
free energy per unit area of the TCBL, we use the follow-
ing approximation:

F=fg,hdV=t cosHpf g,„dA, (20)

where dVis the volume element of the bulk TCLB, dA is
the area element of surface Y. Since the thickness t cos00
of the TCLB is about twice of the length of the amphi-
philic molecule (i.e., t/2) and it is negligibly small in
comparison with the linear size of the membrane, the ap-

Y'(u, v)= Y(u, v)+P(u, v)n, (26)

where g is a sufficiently small and smooth function of u, v.
The variation of free energy caused by g then reads as

5F=F(Y') F(Y) . — (27)

After tedious algebraic manipulations by using the rela-
tions derived in Ref. 19, correct to the first-order quantity
of i(i, we found that

This is the equation we are looking for. If the surface
Y(u, v) is given, one can completely determine d&(u, v),
dz(u, v), and k(u, v) by solving Eqs. (5) and (25). Hence
we call Eq. (25) the tilt-equilibrium equation.

To derive the surface-equilibrium equation one has to
calculate the part of 6I" that comes from the shape varia-
tion. We assume Y(u, v) is the equilibrium shape and
consider a slightly distorted surface defined by
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25F= J —c os Op k 2t E'3jj

X[(Kg „2H—L „)+(8Ok+8 I p)]ggd„d(

—2A,L, d;dj QdA, (28)

where H and E are the mean curvature and Gaussian
curvature of the surface defined as

H = ,'g'jL, —, K =Ljg, L =det(LJ ) . (29)

Since Y(u, v) is assumed as an equilibrium shape, it
satisfies the condition 5E =0 for any P(u, v), which leads
Eq. (28) to the surface-equilibrium condition

2
kit cosOQ E3jj [('Kgj„2HL, „—)

~Ak~p,

IV. APPLICATION TO HELICAL STRUCTURES
AND SPHERE

A. Wound-ribbon helix

Figure 2 shows a ribbon wound around a cylinder with
radius po. In cylindrical coordinates, u =P, U =z, the cy-
lindrical surface is described by

Y=(pocosg, posing, z) . (31)

The fundamental quantities associated with this surface
have been obtained' as

11 Po~ g12 21 ~ g22
2

n = (cosP, sing, O), I,.~ =0,
H= ——'Pp, K =0,
KL"=EL' =EL '=0, EL 1

Po

Substituting Eq. (32) into Eqs. (5) and (25) one has

(32)

+(BjBg+8~ I jk )]ggdgd( 2AL;.d;d. =0

(30)

With the algebraic equations (5) and (25) for A, and d;
(i =1,2), I, and d; can be completely expressed by the
differential geometry quantities g, , L,", and I;- of surface
Y(u, v). Substituting them into Eq. (30) will give a full
form of the surface-equilibrium equation in which d; and
A, disappear. However, this form of the equation is quite
involved, so instead we will use Eqs. (5), (25), and (30) to-
gether for analysis of practical problems in the following
sections.

The surface-equilibrium equation (30), from the view of
physics, represents the balance of normal force per unit
area of the surface while the tilt-equilibrium equation (25)
describes the balance of the moments of force under con-
dition (5). Both of them contain terms of complicated
stresses and torsions of curvature elasticity, respectively.
It is the torsion that induces the twist of the TCLB and
gives rise to the helical structures, as shown in the follow-
ing sections.

FIG. 2. Schematic illustrations of the wound-ribbon helix.
The arrows represent the local tilt direction.

and

pd +d —sin0=0 (33)

k 2 t cosOpd2 +Aped 1
=0

—k2t cosOod, +Ad2=0 .

Solving Eqs. (33)—(35), one finds

singp
d 1

=CX1
~ 2Pp

sinOo
ap

2

aik2t
cosHp,

&reap

(34)

(35)

(36)

Equation (37) reveals that the local azimuthal angle of
the director must be 45' or —135' for (a„az)=(+1,+1),
—45' or 135' for (a„a2)=(+1,+ 1). Compare this
theoretical result with experiments in which it is observed
that the gradient angle cp of the wound-ribbon edge is al-
ways near +45, it indicates that the edge line of the rib-
bon is parallel to the azimuthal direction of the director.
This choice is consistent with the assumption taken by
Helfrich. '

The question that remains to be answered is how to
determine the sign of cp? To answer this question one has
to calculate the free energy of the ribbon with an arbi-
trary winding sense, the correct winding sense should
correspond to the configuration with lower free energy.

where (a&, a2)=(+1,+1) or (+1, +1) depending on the
sign of kz. The orientation field d is given by Eqs. (4),
(31), and (36) as

a, sin80 a2sin00d= — ( —sing, cosP, O)+ (0, 0, 1)+cosHon .
&2 ' ' &2

(37)
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By using Eqs. (32) and (36) one obtains from Eqs. (21) and
(22)

2o.'1o,'2k2 At cosOosin Oo

po
(38)

~2R~

k2t cosOod1d2 Apod 1 0 (39)

which is identical to Eq. (34). Therefore, the results ob-
tained in this section indicate that the experimentally ob-
served wound-ribbon helices do satisfy exactly the tilt-
equilibrium and surface-equilibrium equations derived in
Sec. III.

B. Twisted strip

In this section we wiH treat the second-type helical
structure of the TCLB, the twisted strips, which, to our
knowledge, has not been theoretically treated yet.

The geometry of this type of helical structure is shown
in Fig. 3; analytically we choose a helicoid to represent it.
In polar coordinates the helicoid is described as

Y = (p cosP, p sing, bP), (40)

where ~p ~

~ R, R is the radius of the helicoid, 0 ~ P ~ 2n vr,

and n is the spiraling number. The constant parameter b
characterizes the parity of the twisted strip, e.g. , a posi-
tive b represents a right-hand twisted strip and a negative
b represents a left-hand one; 2vr~b~ is the pitch of the
helix.

With u =p and U =P, a straightforward calculation
gives

Y,= (cosP, sing, O), Y2 = ( —p sing, p schmo, b ), (41)

where A is the total area of the ribbon. Since the titled
angle 80 is defined as an acute angle, from Eq. (38) one
immediately sees that the right-handed helix (a&a2=1)
has lower free energy than the left-handed helix
(a&a2= —1) whenever k2) 0, and k2 (0 will be favored
to form the left-handed helix. This result agrees with
cholesteric liquid crystals in which k2 & 0 and k2 &0 cor-
responds to the right-hand and left-hand twist patterns,
respectively.

Finally, one should test whether these cylindrical rib-
bons satisfy the surface-equilibrium equation (30). With
Eq. (32) and the fact that both di and d2 are constants,
one finds that equation (30) is reduced to

FICr. 3. Schematic illustrations of the twisted strip helix. (a)
The tilt field corresponds to Eq. (47). (b) The tilt field corre-
sponds to Eq. (48). The arrows represent the local tilt direction.

+( +b )d2 —sin g =0

d, [k2tb cos0o+A, (p +b )]=0,
d2[2k2tb cos90 —

A, (p +b )]=0 .

(44)

(45)

(46)

and

d1=0,
sinOO

d2=+
( 2+b 2)1/2

2k2tb cosOo

p2+b2

(47)

d1 =+sinOO,

d2=0,
k2tb cosOO

2+b2

(48)

Two sets of solutions for d1, d2, and k are obtained from
Eqs. (44) —(46) as

(b sing, bcosg, p)—
( 2+b2)1/2

g11 l~ 12 g21 0~ 822 g +b
bL11=0, L12 —L21= 2 2 1/2 ' L22 —0,

(p+b )

b2
H =Op K

(p+b )

12 21 2 b2 & 22 P
p +

(42)

(43)

The fields of azimuthal angle P corresponding to pqs.
(47) and (48) are schematically illustrated in Figs. 3(ai ~nd
3(b), respectively. These figures clearly show that for the
first kind of twisted strip represented by Eq. (47), the
orientation is along the edge line [Fig. 3(a)], while for the
second kind represented by Eq. (48), the orientation of
the director is perpendicular to the edge line [Fig. 3(b)].

One can easily verify that the surface-equilibrium equa-
tion is satisfied by both kinds of twisted strips given
above. Substituting Eqs. (41)—(43) into Eq. (30) yields

[k2t cos80[B (p +b ) —pB +8&]+2kb]d, d2=0 .

The other ChristofFer symbols are zero. In terms of the
above given quantities, Eqs. (5) and (25) become

There is no need of further derivation; one can see that
this equation is automatically satisfied by d1, d2, and A,
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given in Eqs. (47) and (48).
The calculation of free energy for both kinds of twisted

strips is rather involved; the final results are

tation Geld of the chiral molecules on a spherical surface.
In spherical polar coordinates, u =0, U =P, the spheri-

cal surface with radius rp is denoted by

2k& At cosOosin 8Lf (R /b)
(50)

Y=
r o( cosP sin 0, sing sin 9,cos6) ) . (54)

where I' T" and I' T' denote the free energy of twisted
strips corresponding to Eqs. (47) and (48), respectively, A
is the total area of the twisted strip, and f (R/b) is a
function of R jb with a rather complicated form as

f (x)=2x ln[x + (1+x )'/ ] (51)
x ( 1+x2) 1/2+ In[x + ( +x 2) i/2]

It is interesting to note that if one puts R =pp, then the
expression of free energy of twisted strips I' T" is similar
to that of the wound-ribbon helix given by Eq. (38) apart
from a factor f (polb). From the expression for FT" and
Eq. (51) one sees that for kz) 0, the right-hand twisted
strip (b )0) has lower free energy than the left-hand one
(b &0), while for kz (0, the left-hand twisted strip is en-
ergy favorable state. This conclusion is consistent with
what we got for the wound-ribbon helix and, of course,
with the property of the cholesteric liquid crystals.

However, using the same analysis for the expression of
I' T' for the second kind of twisted step represented by
Eq. (48), the situation is just reversed. According to the
general point of view, ' the sign of k2 should be deter-
mined by the chirality of the molecules. Therefore, this
analysis provides an interesting structure which shows
that the helical senses of macrostructure are not always
coincident with the microscopic chiral senses of the com-
posed molecules. Whether this kind of structure is only
an unphysical solution of the equation or it has some
significance in biological genetics depends on further ex-
perimental investigation.

In order to discuss the transition between the wound-
ribbon helix and the twisted strip, one has to evaluate the
values of factor function f (R /b) for given R /b. Numer-
ical analysis shows that

o~ 12 =L21 =0~ L22 = rosin O

1 1K=
1'p ~o

I1 I2 I1 I2 0 i 2OI2 I111 11 12 22 12 22

(55)

=sinOcosO .

With these quantities going through procedures similar
to Secs. IV A, and IV B, we obtained the equations which
determine d1, d2, and A, as

sin Op
d 1 +sin Od — =0

ro

k sinOd1 =0,
A, sin Od2=0 .

(56)

(57)

(58)

Two sets of apparent solutions of Eqs. (56)—(58) are

d1=0,
sinOo

d2=+
rosinO

(59)

sinOo
d, =+

The basic differential geometric quantities of a spherical
surface with radius ro are

I f(R/b)I 0.984,

and
If (x) takes its maximum at

(52) d, =o,
A, =O .

(60)

R
2 34 (53)

C. Spherical vesicle

Some experimental studies ' observed that before the
growth of the helical structure from fibrous bilayers, the
chiral bilayers may close to form spherical vesicles.
Therefore there are some interests to calculate the orien-

Comparing Eq. (38) to Eq. (50) indicates that for a same
strip of the TCLB (i.e., A = A, po=R), the wound-ribbon
helix always has lower free energy than the twisted strip
does, regardless of which type of twisted strip the latter
belongs to. This, at least it seems to us, explains the
spontaneous transition from the twisted strip to the
wound-ribbon observed in experiments [see Figs.
1(A)—1(D) of Ref. 5].

With both solutions (59) and (60) is it readily shown that
such a spherical surface satisfies the surface-equilibrium
equation (30). The azimuthal angle fields of the tilted
director corresponding to both sets of solutions are
sketched in Figs. 4(a) and 4(b) as latitudinal lines and lon-
gitudinal lines on the spherical surface, respectively. In
both cases, the orientation of the director is found being
discontinuous at the north pole and the south pole. This
is by no means a surprise but a natural consequence of
the theorem of differential geometry which states that on
a closed surface of topological sphere a line field has at
least two singular points. Of course, from Eqs.
(56)—(58) one can find more solutions of d, , d2 in which A,

has to be zero. As an example, Fig. 4(c) shows one of
these solutions which is a proper combination of latitudi-
nal and longitudinal lines. It is worthy to point out that
this kind of fields has more points of singularity.

The above given analysis clearly shows that for the
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FIG. 4. Schematic illustrations of spherical vesicles. (a) The tilt field corresponds to Eq. (59). (b) The tilt field corresponds to Eq.
(60). (c) The tilt field corresponds to one of the other solutions of Eqs. (56)—(59). The arrows represent the local tilt direction.

field of the TCLB vesicle there are at least two defects
(singular points). If one assumes that these defects will
cause the leakage and fusion of vesicles, then the feature
of the orientation field in a spherical surface given above
provides a rather reasonable explanation for the experi-
mentally observed fact of transition from vesicular
dispersion to helical superstructure formation of the
TCLB [Figs. 1(A)—1(D) of Ref. 5].

In their experiment, Nakashima et al. observed that
with the decrease of temperature, there is a transition
process from vesicle-to-vesicle fusion, and finally to the
formation of aggregated helical structures. From our
point of view, this process may be conceived as a conse-
quence of a transition from the L phase of the bilayer
material (at this phase a vesicle has no tilt and defect of
orientation) to the L + phase. At the latter phase, ac-

cording to this theory, the tilt of molecules will cause the
orientation defects which may lead to the vesicle fusion
and the formation of helical structures.

In general, the transition from vesicle to helical struc-
tures can be seen from the energy point of view.

Using Eqs. (55), (59), and (60) one can calculate the free
energy of a vesicle from Eqs. (21) and (22) with condition
A, =O as

Fs = —k2t cosO0

f f ~3jm [cos80(gmkdk, g+g~if ~kdk )

2LJk gm—i dk di ]d 8 d p, (61)

where the intervals of integration for 8 and p are [0,~]
and [0,2m], respectively. Since for e3 only (j,m)=(1, 2)
has to be considered (e3z, = —1, e»z= 1) and gk is a di-
agonal tensor,

Fz = —k2t cosOO f f [cosOO(g22dz, +g221 ~i2d2

1glld1, 2 g11~22d1 )

—2(L „g22d, d2 —L~~d, d~

(62)

(63)=0.
Similarly, for the latitudinal tilt field given by Eq. (60).

—L,2g„d2d, )]dOdp .
Substituting the latitudinal tilt field given by Eq. (59) to
Eq. (62), one has

F"""=k t cos 8 f fg„I' d, dOdg
2 2= —k2t cos Oosin80ro dP sinOcosOdO

0 0

F~""'""d=—k~t cos'80 f f (g„d, , +g„I i2d, )dOdg

= —kit cos Oo dOdg(rosin 8) —ro sin80 +ro sinOosinO2 COS l . . l COSH

sin O sinO

=0. (64)

Therefore, for both tilt fields of vesicle the final result is

z, longitud z, latitud (65)

Comparing Eqs. (38), (50), and (52) with (65), there is a
free-energy sequence

illustrates this transition sequence of different shapes of
the membrane. Consider the conventional choice that
the local tilt direction should be along the edge line of the
helical structure; the second kind of twisted strip illus-
trated in Fig. 3(b) is ruled out from this sequence.

Fs &FT &F (66) D. A general formula of free energy of the TCLB

which confirms the observed transition from vesicular
dispersion to twisted strips and wound ribbon. Figure 5

To compare with other theories, in this section a gen-
eral formula for the free energy of the TCLB in the form
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(73)

The other quantity needs to be calculated is the follow-
ing integral:

~= f E3ji(gikdk, j+gilf'kj dk)du du

With the definition of I k. we have

f ~3ji~gikdkj 2(gkj, i gki, j gji, k)dk]du

(74)

OI

f 3ji ~~j (gikdk ) 2 (gkj, i+'gki, j gji k )]du

(75)

FIG. 5. Schematic illustration of the transition sequence
from the vesicle to helical structure. The arrows represent the
local tilt direction.

and

e3ji(gkj, i+gki, z
)=0

Noticing that e3j F3'j and gI =g &, it is easy to see
that

of differential geometry is given and its derivation is
presented. This formula, as shown later, may explain the
formation of a prolate tube from the wound-ribbon helix
on a straight cylinder.

As shown in Secs. IV A —IVC, the free energy of the
TCLB depends only on the project field on the TCLB sur-
face casted by d apart from some constant factors of 00.
Hence it should be possible to express the energy with
some basic geometry quantities associated with this pro-
ject line field. From Eq. (4), the project line field is noth-
ing but d; Y;. So we consider now the single infinite fami-
ly of curves on the surface Y(u, v), denoting
Y(l)=Y(u(l), v(l)) and taking dl along the direction
d; Y;, then the unit tangent at any point of the curve in
the family may be written as

3Jl gJl, k

Hence we have

o = f e3j; B (g;kdk )du 'du

(77)

(78)

By using Green's theorem, Eq. (78) can be written as a
line integral

a. = fg;kdkdu'= f (Y;.Yk)dkdu'=fd dl, (79)

where d =Ykdk+ n cos00 is of the same definition as Eq.
(4), and dl =Y;du' is the line element of the edge line of
the TCLB. Substituting Eqs. (72) and (73) [i.e., (79)] into
Eqs. (21) and (22) one obtains the general expression

F=f gTCL33dA = —k2t cos 80$ d dl —2k. z sin 80cos80

Y= =Y; =Y d;/sin80,
~ dY du'

(67)
X ~dA.

If one sets 00=0, which corresponds to Auid membranes
and dldl, then Eq. (80) gives F =0. This means that the
effect of the chiral curvature elasticity can be displayed
only when there is the tilt of the director.

It is well known that the geodesic torsion ~ may be
expressed as

and, similarly, one has

(68)

The last equation is followed from the Weingaten
theorem. The geodesic torsion of the local tilt field ~
then may be calculated as rs = (c, —cz )sing cosy, (81)

dIln= =n,.d; Isin80= L;jg j"Ykd, /sin80 . — .

r =n. (YXn)

(69)

'Ts = E3k g'"L, &g d; d /sin 80 (70)

Using the identity

~3km g ~3jk gkm
Jk

g

Eq. (70) is changed to

rs =@3,kgk L;jd;d /sin 80&'g

(71)

(72)

L; gj"Yk (Y Xn)d;d—/sin 80 .

Due to Yk XY =
@3k &g n, Eq. (69) can be rewritten as

where c, and c2 are the two principal curvatures and y is
the angle between one principle direction and the local
tilt direction. The angular dependence is just what Hel-
frich and Prost' found in the 5, model for the wound-
ribbon helix. However, the line-integral term did not ap-
pear in their work; it appears here for the first time and
has some important consequences. For half of the sphere
illustrated in Fig. 4(b), it implies a negative-edge energy if
k2 corresponds to the appropriate rotational sense. To
apply Eq. (81) to the wound-ribbon helix structure dis-
cussed in Sec. IV A is interesting. Since for the cylindri-
cal surface c& =0, c2= —I/2po, the corresponding Eq.
(81) becomes
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1
sing coscp,

2Po
(82)

which immediately gives that for the wound-ribbon helix,
since the first term of Eq. (80) is zero, the minimum of
free energy of the structure is reached at

Fx= fA, dV

= t cosop fg~d A

—
2 kN At( 1+S111 80)COSOO/po ~

(87)

y =+45' (83)
The total free-energy density for the wound-ribbon helix
then is

for k2 )0 and k2 &0, respectively. This result is in agree-
ment with what we obtained in Sec. IV A.

V. TUBE RADIUS AND HELICAL PITCH

F~~ —F~+F~
k~t 2/ k2/t

(1+sin 80) — sin Oo cos80,
2Po Po

(88)

In previous sections, by only keeping the chiral terms
in the Frank expression of elastic free energy we dis-
cussed the helical structures of the TCLB and obtained
fairly satisfactory explanations of the transition from the
vesicle to the formation of the helical superstructure ob-
served in experiments. This encouraging result shows
that the cholesteric tilt of the director indeed plays a cru-
cial role in the formation of helical structures of the
TCLB. As we mentioned in Sec. II, after the effect of the
chiral term in investigated and a rather successful under-
standing of this term is obtained, we now turn back to in-
clude other terms of the full expression of Frank free en-
ergy for consideration. We expect by doing this the
effects from other curvature energy terms can be revealed
and the problem can be understood deeper.

In the complete expression of Frank free energy for
cholesteric liquid crystal, the part of the curvature energy
density terms which satisfies D & symmetry

g~ =
—,
' [k))(V d) +kq2[d (V Xd)]

+k33(dXVXd) ] (84)

k~
g~= [(V d) +(VXd) ] . (85)

To express the formula to a curved surface the second
term on the right-hand side of the equation should be
treated as for Eq. (17), while the first term can be
transformed by taking

V-d=d, , +I J d; —2H cosO (86)

Using these and the other relevant formulas derived in
Sec. IV, the additional free-energy density for a wound-
ribbon helix is calculated and the result is

should be considered together with the chirality term of
free-energy density g,h given in Eq. (6), where k», k22,
and k33 are the splay, twist, and bend elastic constants.
Therefore, we naturally add this part of the energy densi-
ty to g,h for consideration. Since Eq. (84) is the full ex-
pression of the free-energy density for nematics (X), we
denote it by gz. Before getting into practical calculations
we simplify the expression of Eq. (84) by assuming
k 1 1 k 22 k 33 kgb By doing this the mathematical ma-
nipulations following are greatly simplified but, as shown
latter, the general behavior of the result is not affected.
After some algebraic manipulations, one has

p,h 1+sin Ho

Po
Sin Oo

(90)

Considering the fact that the gradient angle is +45, the
pitch of the wound-ribbon helix is given by

1+sin Oo
p 2~po peh

sin Oo
(91)

These last two expressions clearly demonstrated the
effects of chirality (p,h) and director tilt (80) on the for-
mation of helical structures and tubes. Since, if one takes
the limit cases of setting either Ho=0 or p,h= ~, then
from Eqs. (89)—(91),po, p ~ ~, which means that there is
no formation of the tube and helix at all.

Equations (89)—(91) numerically provide the size of the
tube and helix. Due to the fact that for usual cholesterics
p, h =0. 1 —100 p,m, then from Eqs. (89)—(91) one immedi-
ately concludes that the radius of the tube and the helix
pitch are of the order of magnitude 0.1 —100 pm. This is
in agreement with experimental observations. " For
instance, at a temperature near the formation tempera-
ture of helical structure T„Nakashima and co-workers
observed that the pitch of a long helix of 2C12-L-Glu-
C&&N+ is about 3 pm.

Careful readers may already notice the difference be-
tween expressions (87)—(91) and the corresponding ex-
pressions in Ref. 4; it comes from different definitions of
the thickness of the layer in two papers. The similar cal-
culations show that for twisted strips both po and p also
have the same order of magnitude, the difference is only a
factor close to unity.

where we have set a,a2kz = k2 ~.

It is interesting to see that in the expression of free en-
ergy (88) two terms are competing with each other. For
lowering the free energy, the first term, i.e., the nematic
term, tends to increase po while the second term
representing the chiral effect tends to reduce po. It is this
competition between two effects that determines the size
of the helical structure po. The minimization of Eq. (82)
with respect to po yields

k~ (1+sin 80)
po (89)

sin 8O

where the ratio kz/~ k2 ~

is nothing but p,h/m, p, h being
the pitch of cholesterics. ' Hence we find the tube radius
of the wound-ribbon helix is
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Besides giving the size of helical structures by Eqs.
(89)—(91), Eqs. (87) and (88) indicate that, as the area 3
increases, the total free energy I'~T becomes more nega-
tive. This may explain the formation of prolate tube and
multilamellar aggregation.

VI. CONCLUSIONS

In this work, a theory of tilted cholesteric lipid bilayers
is developed and the application of the theory to helical
structures of the TCLB is presented. The results ob-
tained show that even only taking the chiral term of the
curvature terms in the Frank theory of cholesteric liquid
crystals into consideration, the transition from vesicular
dispersion to the formation of two types of helical super-
structure of the TCLB is elucidated in good agreement
with experimental observations. This may imply that the
basic idea of the theory hits the key point of the mecha-
nism behind the phenomena in discussion. From the cal-
culations of free energy and equilibrium equations for
both direction orientation and the surface several con-
clusions can be drawn as follows.

Firstly, the orientation field of a TCLB vesicle has to
involve more than two points of singularity, ' these defects
may cause the dispersion of the vesicle. In other words,
the L to I. + transition can induce the fission of the
membrane vesicle. This eFect may have some physiologi-
cal significance.

Secondly, although the spherical vesicle, the twisted
strip, and the wound-ribbon helix with some appreciated
orientation fields, respectively, are observed in experi-
ments and satisfy the equilibrium equations derived in
this work, these three states of the TCLB propose a se-
quence from higher free energy to a lower one. This se-
quence of free energy indicates a correct transition direc-
tion of the states of the TCLB observed in experiments.

Thirdly, as we have shown in the calculations, the heli-
cal senses for both the wound-ribbon helix (with the as-
sumption that the local direction of the tilt along the

edge line) and the first kind of twisted strip coincide with
the cholesteric liquid crystal, i.e., the molecular chirality.
And, all the experimentally observed helical structures
reported up to now support this result. However, for the
second kind of twisted strip, and the wound-ribbon struc-
ture obtained under the assumption that the local tilt
direction is perpendicular to the edge line of the ribbon,
this principle fails to apply. At this stage, though these
structures are not observed in experiment, it seems
worthy to note these structures to biological geneticists.
Whether they are only unphysical solutions of the equa-
tions derived in this work or they may relate with some
anomalies in biology is an open question.

Finally, we would like to stress that the theory present-
ed in this work is based on the assumption that the chiral
eAect is much stronger than the efFects of other terms in
the Frank free-energy expression, and the calculation car-
ried out for the helical structures of the TCLB is started
from the variation of the chiral term of elasticity free en-
ergy. Though quite reasonable results were obtained to
apply this theory to helical structures observed in experi-
ments, the calculation in Sec. V apparently shows that in-
cluding other terms in elasticity free energy is important.
Therefore, to thoroughly understand the helical struc-
tures, a more complete theory which may consider both
the chiral e6'ect and other efFects is urgently needed. In
this sense the present work may be considered as the first
step of the new theory.
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