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The adhesion of vesicles in two dimensions is studied by solving the shape equations that deter-

mine the state of lowest energy. Two ensembles are considered where for a Axed circumference of
the vesicle either a pressure difference between the exterior and the interior is applied or the en-

closed area is prescribed. First, a short discussion of the shape of free vesicles is given. Then, vesi-

cles confined to a wall by an attractive potential are considered for two cases: (i) For a contact po-

tential, a universal boundary condition determines the contact curvature as a function of the poten-

tial strength and the bending rigidity. Bound shapes are calculated, and an adhesion transition be-

tween bound and free states is found, which arises from the competition between bending and

adhesion energy. (ii) For adhesion in a potential with finite range, the crossover from the long-

ranged to the short-ranged case is studied. For a short-ranged potential, a decrease in the strength

of the potential can lead to a shape transition between a bound state and a "pinned" state, where the

vesicle acquires its free shape but remains pinned by the potential. In such a potential, Auctuations

lead to unbinding for which two different cases are found. Small vesicles unbind via fluctuations of
their position, while large vesicles unbind via shape fluctuations.

I. INTRODUCTION

Vesicles are closed bilayers of lipid molecules' and can
theoretically be characterized as two dimensio-nal (2D)
surfaces embedded in three-dimensional space. Their
shape is primarily determined by bending energy, i.e., by
curvature. Several theoretical studies have been de-
voted to an investigation of these shapes as a function of
the surface area and enclosed volume or applied (osmotic)
pressure difference. If one ignores Auctuations, these
shapes are determined by minimizing a free-energy func-
tional. Even for the restricted set of axisymmetric
shapes, a surprising variety of solutions to the corre-
sponding shape equations have been found, and the sys-
tematic phase diagram has only recently been obtained.
Nonaxisymmetric shapes and the inAuence of Auctuations
have been studied for small perturbations around the
spherical shape. ' Simulations of Quid vesicles are very
time consuming and only recently have results become
available. In experiments, shape transformations have

indeed been seen by varying the temperature, ' i.e., the10, 11

area of the vesicle. A comparison of such an experiment
with theoretical calculations shows good agreement. "
An analysis of thermally excited shape fluctuations allows

the determination of the bending rigidity quantitatively. '

As far as biological and biophysical applications are
concerned, studies of the interaction of vesicles with
membranes or other vesicles are important. Recently a
simple theoretical model for the adhesion of vesicles was
introduced and studied that led to various bound states
and an adhesion transition that is driven by the competi-
tion between adhesion and bending energies. ' ' This
transition already appears at the level of the solutions of
minimal energy and is thus different from the unbinding

transition of planar membranes driven by shape fluctu-

ations.

Given the complex behavior of vesicles in three dimen-
sions, it is useful to simplify the problem by reducing the
dimension and to study closed one-dimensional loops or
vesicles embedded in tao-dimensional space. ' ' The
shape of these vesicles in two dimensions is determined

by the curvature energy of their contour under the con-
straint of fixed enclosed area or an applied pressure
difference between the exterior and interior. These alter-
natives define the 3 and I' ensembles. The reduction in
dimension is especially effective for simulations that have
been performed in the P ensemble for free vesicles
and vesicles confined to a wall by a linear potential.
Different scaling regimes have been found in these stud-
ies. A crucial quantity for the characterization of the
typical configuration is the persistence length L, which
measures the length over which the orientation of the
vesicle's contour is correlated. In two dimensions L is

given by

L—:~/T,

where ~ denotes the bending rigidity of dimension energy
times length, awhile T is the temperature measured in
units of Boltzmann's constant. If the linear size R of the
vesicle is large compared to L, the bending energy be-
comes irrelevant and the vesicle behaves like a closed
self-avoiding walk.

For R &(L, however, the bending energy is relevant
and determines the shape together with the constraint on
the enclosed area or applied pressure difference. It is this
latter stiQ regime that is important in relation to the
three-dimensional problem, since in three dimensions the
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persistence length is exponential in ~/T and typically
much larger than the size of the vesicles. In this regime,
thermal fluctuations are relatively small and the real
shapes can well be approximated by the shapes of lowest
energy. These shapes will be determined in this paper for
two cases: (i) for free vesicles and (ii) for vesicles adher-
ing to a wall.

Compared to the three-dimensional case, free vesicles
in two dimensions exhibit two simplifying aspects: (i) the
spontaneous curvature has only a trivial effect' and (ii)
the difference between oblate and prolate ellipsoids of re-
volution is missing. Consequently the phase diagram,
which is determined by the shape of lowest energy, is fair-
ly simple. I will describe it in Sec. II since it will form
the basis for the study of adhering vesicle.

In Sec. III, the adhesion of vesicles to a contact poten-
tial is studied in detail. One finds a rather universal
boundary condition for the contact curvature and the oc-
currence of an adhesion transition between bound- and
free-vesicle states. Both features arise from the competi-
tion of bending and adhesion energy. I discuss this tran-
sition which can be of first or second order in both en-
sembles, and compare it with the three-dimensional
case. ' '

In Sec. IV, adhesion in a potential with finite range is
considered. The shape equations are derived for an ar-
bitrary potential and discussed for a two-parameter mod-
el potential. In such a potential the state of lowest energy
is always bound. The crossover from a long-ranged to
the short-ranged case is studied. For the latter case, the
adhesion transition found in the presence of a contact po-
tential case corresponds to a transition between a bound
and a "pinned" state. In the latter state, the vesicle is
merely pinned by the potentia1 but acquires its free shape.

The inAuence of fluctuations is studied qualitatively in
Sec. V for L ))R. These fluctuations lead to an unbind-
ing of the vesicle in a finite-range potential and introduce
a new length scale R, . If the strength of the potential de-
creases, two different cases must be distinguished, de-
pending on the linear size R of the vesicle. Vesicles with
R (R, unbind via fluctuations of their position, while the
unbinding of large vesicles with R &R, is driven by
shape Auctuations.

II. FREE VESICLE

A.. Shape equation

I consider free vesicles with a constant contour length
L:—2~R. The shape of a vesicle in the continuum
description can be parametrized by C (S), where C is the
local curvature and S the length along the contour. The
bending energy F is then given by

F—:(~ 2/) f dS[C(S)—Co] (2.1)
0

~ is the 2D bending rigidity with dimension energy times
length and Co denotes a spontaneous curvature that will
not enter the shape equations as shown below. '

Two different ensembles have to be distinguished. In
the P ensemble, a two-dimensional pressure difference P
between the exterior and the interior of the vesicle is ap-

plied. Shape transformations then involve the enthalpy
term

FI, ——PA, (2.2)

where 3 is the enclosed area. In the 3 ensemble, this
area

vrR—(1—e) (2.3)

is prescribed and defines e. In this case, P is a Lagrange
multiplier which has to be determined afterward in order
to ensure this prescribed area.

In both cases, the shapes of lowest energy are among
the stationary points of the free energy

F—=F,+FI, . (2.4)

It is convenient to scale the contour length L of the vesi-
cle to 2~, which leads to

F=(ir/R ) f ds —,'[c(s)—co] + (2.5)

Here

p—=PR /K (2.6)

is a scaled pressure, co ——C~R the scaled spontaneous cur-
vature, and s=—S/R the arc length along the rescaled
contour. The scaled shape is parametrized in two
different ways, namely 1((s) and p(8) as shown in Fig. l.
For a numerical study of the shape equations, the param-
etrization g(s) is more convenient, while p(8) is appropri-
ate for the analytical stability analysis of the circular vesi-
cle as given further below. I restrict my search for ex-
tremal solutions to those that have at least one axis of
symmetry which is denoted as the z axis. The coordi-
nates r and z then obey

z = —sing,
r' =cosP,

(2.7a)

(2.7b)

where the dot denotes a derivative with respect to the arc
length s. The free energy (2.5) can now be written

F=(2&/R )f ds[ —,'(p —co) +pr sin/+1'(r —cosp)] .

z

FIG. 1. Parametrization of the contour of the vesicle.

(2.8)

The last term with the Lagrange multiplier function y(s)
has to be introduced because r and 1(j are mutually depen-
dent via Eq. (2.7b). The complete set of Euler-Lagrange
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(EL) equations for the free energy (2.8) reads

u =pr cosg+y sing,

y =p sing,

r =costt .

The boundary conditions are

g(0) =0,
(~)=m,

(2.9a)

(2.9b)

(2.9c)

(2.9d)

(2.10a)

(2.10b)

and its curvature energy as

I'„=(a/R )f d8 ,'(-p' —2p' —pp")'/(p'+p')' '

=(a/R)m 1+—,
' g (k' —1)'(a +b')

k( & 1)

From (2.14) and (2.15), I find for the free energy

F=(a/R)m 1+p+ —,
' g (k —1)(k —1 —p)

k( ~ 1)

X(a„+bg )

(2.15)

(2.16)

r(0) =0,
r(~)=0 . (2.10d)

p, (k):—k —1 . (2.17)

(2.10c) This result shows that the k mode becomes a soft mode at

Note that the spontaneous curvature does not enter the
shape equations. ' Its constant contribution to F will be
omitted in the rest of the paper. Although these equa-
tions look simple, an analytic solution is not available in
general.

B. Stability analysis of the circular shape

For p =0, it can be shown that the circle g(s) =—s is the
only solution. First, observe that y is constant in this
case. Then g obeys the "mechanical" equation of motion
g= —BV/Bit, with V(g)=y cosg. For yAO, any solu-
tion of this equation with itj(0)=0 and g(m)=m' will lead
to focosg(s)ds=r(m) —r(0)%0, which contradicts the
boundary conditions for r. Thus y =0 and g(s) =s. It is
easy to verify that this circle is indeed a solution for any
p. It does not, however, correspond to a minimum of F in
the P ensemble for arbitrary p. This can be investigated
by a stability analysis of this circular solution as follows.

Consider a harmonic perturbation of the circle

p(8) =—Rp(8)

Moreover, the second-order contribution to F vanishes
for any p and 0= 1, which corresponds to a translation.

For p &3=p, (2)=p2, the circle is locally stable. At
p =p2, it becomes unstable with respect to the elliptical
k=2 deformation. A calculation to O(az) reveals that
the term O(a 2 ) is indeed positive for p pz, which leads
to a2-+(p —pz)'~2 for p )pz. Thus the shape for p )p2
evolves continuously from the circular shape at this
second-order transition (C&). Note that the shapes for
both signs of the amplitude a2 are identical apart from a
rotation about ~/2. Consequently, for vesicles in two di-
mensions there is no analog to the difFerence between ob-
late and prolate ellipsoids in D=3. For D=3, the shape
transformation from the sphere to the energetically lower
ellipsoid is of first order, while the metastable sphere be-
comes unstable with respect to the energetically higher
ellipsoid via a second-order transition of the type dis-
cussed here. ' This is a consequence of the fact that the
term O(ai2) does not vanish identically in D=3 at p =pi
as it does here for D=2.

=R 1+ao+ g (al, cosk8+bksink8
k( +1)

(2.1 1) C. Noncircular shapes

This vesicle has a contour length

L =R I d8(p +p )'~
0

=2~R 1+ao+ g (k'/4)(a„+b„')
k( ~ 1)

(2.12)

up to second order in ak and bk, where the prime denotes
a derivative with respect to 0. Since L =2mR is fixed, one
finds

ao= —g (k /4)(a„+b„) .
k(+1)

(2.13)

Clearly, the Auctuations absorb the length, and the mean
radius R(1+ao) of a noncircular shape is smaller than
that of a circle with the same contour length. The area A
of the deformed vesicle is given by

A=R I d8p /2

=R m 1 —
—,
' g (k 1)(ak+bk), —(2.14)

(k ~1)

For p )p2, the solutions of the EL equations have to be
found numerically. For fixed p, the free initial values u(0)
and y(0) are varied in order to fulfill (2.10b) and (2.10d).
Let me first focus on the solutions that evolve from the
k=2 instability. In Fig. 2, solutions of this branch for
difFerent values of p are shown and in Fig. 3 characteris-
tic quantities of these solutions are displayed. For
p=p3 ——3.34 the curvature vanishes at the top and bot-
tom of the vesicle [i.e., u (0)=u(~)=0] and for p )p3,
the shape becomes concave at the top and bottom. In
this regime, these 2D shapes resemble the contour of a
discocyte shape of red blood cells. At p=p4=5. 4, the
shape starts to self-intersect. For even larger pressure
one has to add a repulsive interaction term in order to
prevent the self-intersection. I do not consider such an
extended model here, but restrict the pressure to p &p4.

It would again be useful to perform a stability analysis
of these noncircular shapes, which represent the k=2
branch. This can, in principle, only be determined by a
calculation of the second variation 5 I". Since there is no
analytic expression available for these shapes, such a
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w= WR /ic,

r ' =L ' /(2R ),
(3.4a)

(3.4b)

Shapes of adhering vesicles are now found numerical-
ly by solving the EL equations (2.9) with the boundary
conditions

s =m. —r (3.4c)

The EL equations (2.9) remain valid even for the bound
vesicle, since the adhesion term F~ enters only in the
boundary conditions at s =s'.

(i) The contact angle obeys g(s*)=~, since any other
angle would imply an infinite curvature energy.

(ii) Variation of the point of contact s*, as shown in de-
tail in the Appendix, leads to the nontrivial boundary
condition

g(0) =0,
r(0) =0,

1t(s*)=~,
u(s*)=&2w
r* = r(s" ) =~ s* .—

(3.7a)

(3.7b)

(3.8a)

(3.8b)

(3.8c)

c(s*)—:itj(s* ) =&2w (3.5)

for the contact curUature. For the vesicle with contour
length I.=2mR, rescaling yields

C(S*)=C(s'R ) =(1/R)c(s*)=+2&/i~ . (3.6)

This is indeed the same boundary condition as for the
adhesion of vesicles in three dimensions. ' It results from
the balance between adhesion and curvature energy. This
condition is independent of the size of the vesicle and the
applied pressure or chosen area. Thus it holds in both
ensembles.

The initial values u(0) and y(0) as well as the integration
interval s* have to be varied for Axed p and w in order to
fulfill Eqs. (3.8). This procedure leads typically to several
solutions. Some of them are shown in Fig. 4. The phase
diagram is determined by the solution of lowest energy
including the free solution at the same conditions. The
result depends on the ensemble.

B. Adhesion transition in the I' ensemble

Here the relevant energy is F„+FI,+F~, with F~=0
for the free solution. The resulting phase diagram is
shown in Fig. 5. Depending on the pressure, one Gnds
different regimes which can be characterized as follows.

(i) For p (p, =1.39 and w) w, =
—,', I find solutions

that approach a circular shape as m approaches m, from
above [see Fig. 4(a)]. For these solutions, the length of
contact r* vanishes continuously as the critical value
w, (p) =

—,
' is approached:

r" —(w —w, ) . (3.9)

The energy difference AF between these adhering solu-
tions and the free circle behaves like

0,
hF- —(w —w, ) (3.10)

Consequently, the curve w, (p)= —,
' denotes a line of con-

W'

1/2 C a

(c) P„P, P, P„

0

FICx. 4. Adhering shapes for diA'erent pressure difference p
and increasing contact potential m. (a) p=0 and m=0. 5 (A);
w=2.0 (B); m=5.0 (C). (b) p =4.0 and m=0.0 (A); m=2.0 (B);
m=5.0 (C). Note that the shape for p=4.0 and m=0.0 is meta-
stable.

FIG. 5. Phase diagram in the P ensemble. Above the phase
boundary (C„S&,D„S3,D, ), which defines the curve w, (p),
the vesicle is bound; below it, it is free. C, and D, denote a con-
tinuous and discontinuous adhesion transition, respectively. C&
denotes the continuous transition between the free circular and
the free elliptical shapes. The curves w ", w, and u& denote
limits that are approached by metastable or unstable solutions
(see text for details).
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tinuous adhesion transitions (C, ). Note that for w= —,
'

the circle indeed fulfills the boundary condition (3.8) for
r*=0 and thus the circle is a solution to the variation
problem with a contact length r* =0.

The numerical value of p& follows from a stability
analysis of this circle adhering in one point. This solu-
tion becomes unstable with respect to a larger contact
length at a critical pressure p, &

—=p&, which is the smallest
positive solution of the implicit equation

tan(vr+1+p, )
= —~p, +1+p, . (3.11)

(ii) For p& (p &p2=3, one finds two solutions with
r *)0 for w, (p) (w (—,'. One of them has a lower energy
than the circle for w, (p) & w (—,

' with w&(p) & w, (p). The
other has a higher energy than the circle and approaches
the circle for w ~—,

' —. Both solutions merge for
w —+w&(p)+ and disappear for lower values of w. Thus
the phase boundary between free and adhering shapes for
this p range is given by a line of first-order transitions
(D, ) at w, (p).

(iii) The curves (C, ) and (D, ) meet at the tricritical
point (Si ) with p =p

&
and w =

—,'. In vicinity of (S
& ), the

phenomenology of the adhesion transitions described so
far may be understood in terms of a Landau-type theory
for the "order" parameter r*. The energy difference AF
between an adhering and the free circular solution reads

AF= d&kwr* d2hpr* +d3r*

with

(3.12)

Aw =w

~p =p p& ~

(3.13a)

(3.13b)

w (p) ——' ——&p' (3.14)

(iv) For p =pz, the free vesicle undergoes the second-
order transition (Cf) from the circular to an elliptical
shape. Consequently, the point (S2 ) at p =p2 and
w =w, (pz ) is a critical end point, where this free (critical)
shape coexists with an (uncritical) bound shape.

(v) For p2 &p &p3 -—3.43, the phase boundary w, (p)
and the curve w&(p) decrease continuously with p and
merge at w =0 and p =p3. These values define a higher-
order critical point (S3). For p =p3, the adhesion transi-
tion is again of second order with

1 /4 gF 5/4 (3.15)

Here d, 2 3 are smooth functions of Aw and Ap which as-
sume nonvanishing positive values at Aw =Ap =0. Ex-
tremizing AF leads to one local minimum for Ap &0 and
b, w )0 and the power laws (3.9) and (3.10). For bp )0
and hw & 0, AF has two extrema with r *)0 which corre-
spond to the solutions found numerically in this regime.
One of them is a local maximum and thus corresponds to
an unstable shape. For bp )0, the phase boundary (D, )

follows from (3.12) as

(vi) For p )p3 the phase boundary w, (p) between free
and adhering solutions increases and this transition (D, )

is of first-order again. One finds in the range
0(w (w, (p) adhering shapes which have a higher ener-

gy than the free discocytelike shapes which are thus only
metastable. In Fig. 4(b) bound shapes for p)p3 are
shown. For even larger pressure bound solutions also
self-intersect.

Summarizing, the shapes of lowest energy are bound
for w) w, (p) and free for w (w, (p). The transition be-
tween both is either of second order (for p &p& and

p =p3) or first order.
Let me brieAy comment on additional bound solutions

of the EL equations and the boundary conditions, which
correspond to locally unstable states. I already men-
tioned a second bound solution found for p& (p &p2 be-
tween w&(p) (w (—,'. Since this solution approaches the
circle for w~ —,

' —,it is influenced by the instability of
this circle at p =p2. Indeed, one finds for p )pz a bound
solution for w, (p) & w & w (p) approaching the free el-
liptical shape with the long axis parallel to the wall for
w~w (p) —.The numerical value of w (p) is given by
w =(u ) /2, where u is the minimal curvature of the
elliptical shape [compare Fig. 3 and Eq. (2.20)]. The rela-
tion between w and u follows from the fact that, for
this value of the contact potential, the free elliptical solu-
tion adhering in one point is indeed a solution of the EL
equations and the boundary conditions (3.8) as it is the
circle for w =

—,'. For w (p) & w & —,', one finds numerical-

ly solutions with r *(0, which are unphysical. For
—,
' (w & w+(p), with w+(p) = (u +

) /2, these shapes, how-

ever, possess r' )0 and approach the free elliptic shape
adhering in one point with the small axis parallel to the
wall for w —+w+(p) —.

A further class of unstable bound solutions bifurcates
from the circle at p=p, „, with n ~2, which correspond
to larger solutions of Eq. (3.11). These bound solutions
are related to the free k ~ 3 branches. Since p, , )p2 for
n 2, these bound solutions inherit the instability with
respect to the 4 =2 mode from the circle and thus corre-
spond to locally unstaMe solutions.

C. Adhesion transition in the A ensemble

The solutions discussed in Sec. II B as a function of p
also correspond to solutions as a function of e. Thus no
additional shapes occur in the 2 ensemble. The energy,
however, which determines the phase diagram, is now
given by F +F~ without the enthalpy term. The phase
diagram is shown in Fig. 6.

For 0~ e~ E'] with 6& —0.18 the state of lowest energy
is bound for w) w, (e)=w (e)=(u ) /2. Note that
w (e) is identical to w (p ), as discussed in Sec. II B, but
now considered as a function of e. From Eq. (2.20), one
finds the asymptotic behavior w, (e) = —,

' —i/6e. For
w~w, (e)+, the contact length r* and the energy
difference AF obey

This higher-order critical point is indeed an azeotropic
point for the following reason.

r*—[w —w, (e)],
bF- —[w —w, (e)]

(3.16a)

(3.16b)
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W W
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1 /2 i

FIG. 6. Phase diagram in the 3 ensemble. Above the phase
boundary (C„S3,D, ), which defines the curve m, (e), the vesicle

is bound; below it, it is free. The curves m+ and m2 denote lim-

its that are approached by rnetastable or unstable solutions (see

text for details).

Thus the adhesion transition is continuous (C, ) in this
range. Apart from this bound solution, I find in the
range w (e')(w &w2(e), with w (e)=(u ) /2, two ad-
ditional bound solutions with higher energy. The ener-
getically lower of them approaches the free ellipse for
w —+w+(e)+0, with the small semiaxis of the ellipse
parallel to the wa11. This solution is a local minimum and
thus corresponds to a metastable bound state. The ener-
getically higher bound solution corresponds to a max-
imum and is unstable. Both merge at w=w2(e) and
disappear for w )w2(e).

For e=e„ the free elliptical solution has a vanishing
curvature u, and solves the boundary condition (3.8) for
w =0 with r *=0. This solution is approached for m ~0
by bound states which have a lower energy than the free
state. This point (S3) corresponds to the azeotropic
point in the P ensemble. In the A ensemble, however, it
is a tricritical point, since for e) e&, the phase boundary
w, (e) increases again as w, (e) —(e—e&) . It separates
bound states with finite r' from the free discocytetype
states and denotes a discontinuous transition (D, ). With
increasing e self-intersecting states are reached.

Note that analogs to the curves m+ and w can also
be derived for the free shapes corresponding to the k ~ 3
branches, which are also approached by additional bound
states. These states have, however, a higher energy than
those derived from the k=2 branch discussed here and,
moreover, are presumably unstable with respect to the
k=2 mode.

IV. ADHESION IN A FINITE-RANGE POTENTIAL

The description given in Sec. III may also be con-
sidered as the limit where the range of the potential Zo is
small compared to the vesicle size R. For a long-ranged
potential the whole vesicle may be exposed to the
inAuence of the wall. It is of special interest to discuss
the crossover from a long-ranged to a short-ranged
adhesion potential. I address this question in this section.

Instead of the contact potential F~, now the potential
term F& with

F~= f dS V(Z(S)) (4. l)

is added to the free energy (2.4). Z(S) is the local dis-
tance of the vesicle of contour length L =2~R from the
wall at Z=O. After rescaling the contour length, one
finds

F~=(~/R )f ds v(z(s)), (4.2)

with z =—Z/R and the rescaled potential

effect is again the difference between prolate and oblate
ellipsoids for D= 3.

Consider, e.g. , the continuous transition (C, ) in the 3
ensemble and e(e&. For D=2, the bound shape ap-
proaches an elliptical shape for w —+w, (e)+. The analo-
gous situation for D=3 is the approach to a free oblate
ellipsoid with decreasing strength w. If, however, the
prolate ellipsoid is energetically lower than the oblate
one, a first-order adhesion transition between a bound ob-
late shape with small but finite area of contact and the
unbound prolate ellipsoid at the same volume must be en-
countered. The continuous transition between the bound
oblate shape and the free oblate is then a transition be-
tween metastable states. This is precisely the case in
D = 3 for zero spontaneous curvature. ' The second
reason for the additional transitions for D=3 is the ex-
istence of stomatocytelike shapes, which do not occur in
the model (2.4) as discussed in Sec. II C.

A more technical difference is the occurrence of loga-
rithmic factors in power laws such as Eq. (3.16) for D=3
which are absent here. They arise from singularities of
the shape equations at the axis of symmetry for D=3.

u(z)—= (R'/~)V(zR) . (4.3)

D. Comparison with the adhesion transition in D =3

The phase diagrams in Fig. 5 for the P ensemble and in
Fig. 6 for the A ensemble can be compared with the cor-
responding ones for D =3.' ' Of course, the A ensem-
ble discussed here for D =2 must be compared with the V
ensemble for D=3, where the volume is kept constant.
As a basic result, any of the transitions discussed here are
also found for D=3. The main difference, however, is
that for D=3 additional transitions occur and some of
the transitions discussed here for D =2 are transitions be-
tween metastable states in D=3. One reason for this

F' = (2v/R )f ds [—,
' P +pz cosg+ y( r —cosP)

+5(z+sing)+u(z)] . (4.4)

Note that I used a different but equivalent form the
enthalpy term and that a second Lagrange multiplier 5(s)
is introduced since the coordinate z shows up explicitly.
The complete set of the EL equations now reads

The total energy F' =F,+F~ +Fv can now be written
in the form
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u = —pz sing+ y sing+6 cosg,

j=0,
6=dv /dz+p cosP,

r =cosg,
z = sin

(4.5a)

(4.5b)

(4.5c)

(4.5d)

(4.5e)

(4.5fl

(a)

0 -""---

The boundary condition for g and r are

i'(0) =it(ir) =r(0) =r(ir) =0 . (4.6)

Since z(0) and z(ir) are arbitrary, these boundary values
must be varied too, which leads to the boundary condi-
tions for the Lagrange multiplier 5: (b)

5(0)=5(ir) =0 . (4.7)

zo zo
v(z) =v ——2

z z
(4.8)

Note that these boundary conditions automatically
guarantee an analytic shape at s =0 and ~. The explicit
boundary condition (3.5) for the contact curvature that
was present in the case of the contact potential has disap-
peared since there is no point of contact for a smooth po-
tential v(z). I anticipate, however, that this boundary
condition is recovered in the limit when the range of the
potential goes to zero.

For any given potential v (z) and pressure p, one now
has to solve the boundary value problem for P, r, and 5
with the adjustable initial values u(0), z(0), and y. As a
concrete example, I consider the following two-parameter
potentials:

2

I

0

A

FIG. 7. Vesicle shapes in the finite-range potential U(z), Eq.
(4.8), for p =0. The dotted line shows the minimum of the po-
tential, i.e., the vertical axis denotes z —zp. (a) U =2.0 and
zp =5.0 ( r4) zp = 1.0 (B); zp =0.03 (C). The shape ( C) should be
compared with the shape (B) in Fig. 4(a). (b) Same as (a), but
for U =0.4. Shape (C) is almost circular, but pinned by the po-
tential minimum.

This potential has a minimum for z=zo with a depth
v(zo)= —v, which read Zo=zoR and V —= (~/R )v in
the unscaled quantities, respectively. Any of the results
given further below will also hold for a general smooth
potential which vanishes for Z —+~ and can be charac-
terized by a depth V and a typical length scale of range
Zo ~

In Fig. 7, vesicle states bound in such a potential are
shown. These illustrate the general feature which can be
explained for both ensembles simultaneously. Two re-
gimes must be distinguished.

(i) For Zo ((R, which defines the short ranged case, -

only the adjacent part of the vesicle is directly inAuenced
by the potentia1 and the results can be compared with
those for a contact potential. First, consider v )w, (~)
fixed. [The notation (i,') denotes the dependence on p or e
in either ensemble. ] Then the vesicle indeed approaches,
for zo ~0, the same shape as in the presence of a contact
potential with w given by v [compare Fig. 7(a)]. Thus
the boundary condition (3.5) is recovered as a result of
the solution. If v (w, (~), however, the shape ap-
proaches, for zo ~0, the free shape at the same p or e, but
the vesicle remains pinned by the narrow potential well to
the wall and in this sense it is not unbound [compare Fig.
7(b)]. Multiplying the length of the contour exposed to

the potential with the potential depth, one finds that such
a pinned state gains an energy difference

IbF~ —V QZ0R for V & V', —:w, x/R (4.9)

compared to the unbound free shapes. Although this en-
ergy vanishes for Zo —+0, the state of lowest energy in a
potential with finite range is thus always bound. Conse-
quently, the role of the adhesion transitions (C, ) and
(D, ) found for a contact potential can be extended for a
finite-range potential as follows (Fig. 8).

The discontinuous transition (D, ) extends to a whole
sheet v, (zo, ~), with v, (0,~~)=w, (i,'). It denotes the shape
transition between two different bound states. One of
them corresponds to the bound state found for the con-
tact potential case, while the other is the pinned state
which approaches the free shape for zo~O. As for a con-
tact potential, this transition is governed by the competi-
tion between bending and adhesion energy. This sheet of
first-order transitions terminates in a curve v, [zo, (~)] of
second-order transitions which is the continuation of the
(C, ) transition (compare Fig. 8). Thus, for zo )zo, (with

zo, =0 if e & e, or p &p„respectively), there is only one
minimum shape in the potential. In this case the distinc-
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R «L„however, the inAuence of Auctuations is
moderate and can be studied perturbatively.

First, I consider the J' ensemble. For p &p„ the shape
of lowest energy for a free vesicle is a circle. Fluctuations
around this shape have already been introduced in Eq.
(2.11) for the stability analysis of Sec. II. Equation (2.16)
yields, for the mean amplitudes in the Gaussian approxi-
mation,

(a„')=(bk)=, , with k 2.R
vrL (k 1)(—k —1 —p)

FIG. 8. Schematic phase diagram for the P ensemble and
finite za. The sheets (D, ) given by U, (z0„) denote first-order
transitions between a bound state with finite contact length and
a pinned state with the free shape. These first-order transitions
terminate in a curve (C, ) of second-order transitions. The
dashed line denotes the projection of this curve onto the U =0
plane. For za)za, the distinction between the pinned and
bound states no longer holds. An analogous phase diagram
holds in the A ensemble.

tion between bound and pinned states no longer applies
and the vesicle approaches continuously its free shape
with decreasing depth of the potential.

(ii) For R ~ ZD, which defines the long ranged c-ase, the
whole bound vesicle is exposed to the adhesion potential
F~, which leads, in the P ensemble, to a deviation from
the circular shape at any p. Thus the transition (Cf ) for
free vesicles has been smeared out. The deviations from
the free shape at the same p are significant if the variation
of the potential along the vesicles contour becomes com-
parable to the energy F-~/R. This happens at an am-
plitude V = Vf, which can be estimated by expanding
the potential around its minimum as

Vf-~Z /R (4.10)

while for V ~ Vf the adhesion leads to significant devia-
tions from these free shapes.

V. INFI.UENCE OF FLUCTUATIONS

Thus, for V « Vf, the bound vesicles have more or less
their free shape and gain an energy

(4.11)

These Auctuations are small for R «L, provided
p «p2=3. Various characteristic quantities can now be
computed to order R/L such as, e.g. , the mean radius
(p) of the vesicle; compare Eqs. (2.11) and (2.13):

(P) =R (1+( aa ) ) =R (1—aR /L, ) .

Here, a, with

= 1 k
2~ k()p) (k 1)(k 1 p )

(5.2)

(5.3)

measures the fraction of length that is absorbed in the
Auctuations. Of course, at any finite T, a particular shape
with frozen Auctuations is noncircular. A possible mea-
sure of this effect is the mean aspherity S, which is
defined '

by S=(R~ )/(RG ), where RG are the
)

larger and smaller eigenvalues of the tensor of inertia for
the vesicle. One finds S —1-R /[L, (pz —p ) ]. The
sharp transition (Cf), which separates circular from non-
circular shapes for T=O, has thus disappeared. For
p =p2, even the Gaussian approximation breaks down
and higher order terms in Eq. (2.16) become relevant. For
pz «p &p4, however, the computation of Gaussian Auc-
tuations about the noncircular shape should be possible.
One expects that the amplitude a of the mode, which cor-
responds to the lowest shape deformation, also behaves
like (a )-R/L .

In the 3 ensemble, the problem is in principle even
more subtle, since the Auctuations have to respect the
two constraints of constant contour length and constant
area. Since no transitions between different shapes are
found in the analysis of the EL equations, I do not except
that Auctuations will modify the mean shapes
significantly provided R «L .

A. Shape Auctuations of free vesicles

The analysis given in Sec. II was based on a study of
the EL equations. These calculations give the state of
lowest energy and thus correspond formally to tempera-
ture T =0. At any finite temperature, Auctuations have
to be considered. The relevant criterion for the inAuence
of Auctuations on free vesicles is basically given by the re-
lation between the linear size R of the vesicle and the per-
sistence length L, [Eq. (1.1)]. For R ))L„fiuctuations
are strong and the vesicle must be described as a closed
self-avoiding walk. This regime has been studied by scal-
ing theories and Monte Carlo simulations. For

B. Fluctuations of vesicles in a finite-range potential

For a vesicle bound by a contact potential, a perturba-
tive discussion of shape Auctuations especially of the
bound part of the contour is not obvious. One may, how-
ever, consider the strength 8' of the contact potential as
an effective value which is already renormalized by Auc-
tuations. In the following, I discuss Auctuations for vesi-
cles bound in a potential with finite range. As above,
only in the case R «L, is considered.

For TAO the notion of a bound vesicle is only mean-
ingful if the typical Auctuation of the vesicle's position in
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the direction perpendicular to the wall is smaller than the
range of the potential ZQ. For larger Auctuations the
vesicle will unbind. Of course, there is no sharp transi-
tion between the characterization "bound" and "free,"
since the vesicle as a finite system will overcome the bar-
rier

~
b,F~, which is the energy difference between a bound

and a free state, in a finite time of the order of e l&FI ~T

Let me first comment on the case
~
AF

~
))T, for which

the bound state is suSciently long lived. Then shape Auc-
tuations of this state can be computed in principle within
the Gaussian approximation by diagonalizing the second
variation of I" in Eq. (4.4). Although this can only be
performed numerically and has not been attempted so
far, one expects again for a typical amplitude a, ( a ) —T.
At the second-order transition C, for u =u, (zo, ) (com-
pare Fig. 8), however, one of the modes becomes again a
soft mode which cannot be treated within the Gaussian
approximation.

For ~AF~ & T, the fluctuations will include one mode
that is related to the Auctuation of the position of the
vesicle perpendicular to the wall. An estimate for the po-
tential depth V„ for which that mode becom. es dominant
and thus the unbinding occurs can be obtained easily if
one takes the criterion that ~b,F

~

= T for V = V„. From
Eq. (4.9) and (4.11), one finds

V

Iboundl

:.:1pinnedl
' Why ~

U

free

U, OPen

~ ~
~ ~

Z, m::
~ ~
~ ~

1 ong-::.
ranged

R,
short-

R

FIG. 9. Schematic phase diagram for the adhesion of vesicles
in a finite-range potential including the effect of fluctuations.
For potential depth V ) Vf, V„V„,~,„ the vesicles are bound.
In the long-ranged case, they are deformed by the potential,
while in the short-ranged case they have a finite contact length.
In the shaded region, they are pinned, but have their free shape.
The transition between bound and pinned states exists only if,
for a contact potential at the same pressure or area, the
adhesion transition is of first order. For R & R„vesicles unbind
via fluctuations of their position at V„, while for R )R„ they
unbind via shape fluctuations at V„,~,„.

(T/R) for R &Zo
VQ

T/"t/RZO for Zo «R &R, .

The upper limit R„with

R:—I Z'
c k 0

(5.4)

(5.5)

VQ T
u, oPen ~ J /3Z2/3

0
(5.6)

Let me assume that for large bound vesicles, with a finite
fraction of their contour bound in the potential well, the
constraint of a fixed contour length becomes irrelevant
or the unbinding. Then the critical amplitude V„,pen

should also give the critical amplitude for the unbinding

arises from the consistency requirement that V„& V, ,
which was assumed when using Eq. (4.9) for ~b.I'~. The
breakdown of this relation for R & R, indicates that large
vesicles will not enter the pinned regime because the en-
ergy gain ~bF t of such a pinned state would be smaller
than the thermal energy T. Therefore these large vesicles
unbind at values of the potential depth V for which the
T=O analysis predicts bound vesicles with a finite con-
tact length. This regime R &R, can also be attacked
from a different point of view as follows.

Consider an open semiflexible polymer of length R
bound to a wall by a potential which decays faster than
-Z ~ . For R ~ co (with R &&L„ implicitly assumed)
such an open "vesicle" will unbind due to its shape fIuc-
tuations at a finite potential depth V„,p,„. ' For a
square-weil potential with a range ZQ and depth V, the
critical amplitude V„,„scales like

of closed vesicles provided the vesicle is indeed bound
with a finite fraction of its contour to the wall for T=O.
This latter condition restricts the whole argument to vesi-
cles with such a size that V, (R) & V„,~,„. This relation is
fulfilled for R )R, with the same crossover radius R, of
Eq. (5.5) appearing already in Eq. (5.4). If this reasoning
captures the essential physical mechanism, the results of
the simple estimates given in this section of the inhuence
of Auctuations on the unbinding of vesicles can be sum-
marized in the schematic phase diagram, Fig. 9.

In a long-ranged potential (R & Zo), a decreasing
depth V first leads to a smooth crossover at V = Vf
from the deformed to a nearly free shape and finally to
unbinding via fluctuations of the vesicles position at
Vo= V„. In a short-ranged potential (Zo «R), two
different regimes must be distinguished, depending on the
size of the vesicle.

(i) Small vesicles, with R &R„may first undergo a
transition from a bound state with finite contact length to
the pinned state with nearly free shape for V = V, . This
holds if, for a contact potential, the adhesion transition at
the same e or p is first order. Of course, this transition
between bound and pinned states will be smeared out be-
cause of the finite activation energy between these two
states. If the transition for a contact potential is second
order, the vesicle approaches continuously its free shape
with decreasing potential. In both cases, these small vesi-
cles unbind via fluctuations of their position with further
decreasing strength of the potential at V = V„.

(ii) Large vesicles, with R )R„cannot enter the re-
gime of pinned states since they wiH already have un-
bound via shape fluctuations especially of the bound part
of their contour at V = V p,„.
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VI. CONCLUSION APPENDIX

The main results derived in this paper on the adhesion
of vesicles in two dimensions may be summarized in three
points.

(i) A detailed investigation for adhesion in a contact
potential was given. As a basic analytic result, one finds
an universal boundary condition for the contact curva-
ture. Shapes of bound vesicles have been computed and a
first- or second-order adhesion transition was found in
both ensembles.

(ii) General features for the adhesion in a smooth po-
tential with finite range were studied illustratively for a
two-parameter potential. In such a model, the state of
lowest energy is always bound in the absence of fluctua-
tions. The adhesion transition found for a contact poten-
tial corresponds in this model to a transition between a
bound and a pinned state, where the vesicle acquires its
free shape but remains pinned in the potential minimum.

(iii) The inffuence of fiuctuations leads to two diff'erent

regimes for the unbinding. Small vesicles unbind via fluc-
tuations of their position, while large vesicles unbind via
shape fluctuations.

These results could be tested by computer simulations,
which have been performed so far only for a linear poten-
tial. For a potential with finite range, it would be espe-
cially valuable to investigate the pinned regime and the
crossover region R =R„where the energy-driven transi-
tion between the bound and pinned states interferes with
the unbinding induced by shape fluctuations. Simulations
at constant contour length and enclosed area should re-
veal the influence of these constraints on fluctuations.

An equivalent adhesion transition exists also in three
dimensions. ' ' The analysis given here for two dimen-
sions reveals already the same basic mechanisms, even
though the shape equations are simpler. In contrast to
this approach based on the minimization of the bending
energy, which can be transferred relatively easily between
two and three dimensions, the difference in time needed
for reliable computer simulations for both cases is enor-
mous. Therefore it may also be worthwhile to use
adhesion in two dimensions as a testing ground for the
three-dimensional problem and first to compare theory
and computer simulations for this case.

Finally note that the adhesion of long tubular vesicles
to a planar substrate in three dimensions is equivalent
to the problem studied here, as long as the tube does not
bend its axis. Therefore the results obtained by minimi-
zation in Secs. II—IV also hold for this adhesion problem,
while the unbinding due to shape fluctuations is quite
different since it involves bending modes of the whole
tube.

g(s) =go(s) +ei)&(s),

r(s) =rp(s)+ erj„(s),

(A2a)

(A2b)

where go and ro denote the extremal solution to be found.
(The subscript 0 has been omitted in the main part. )
These obey, as s0,

o(so ) =n,
rp(sp )=n.—so

Likewise, the varied solution has to fulfill

g(s*)=n,
r(s*)=n s*, —

with an unknown s*(e), which can be expanded as

(A38)

(A3b)

(A4a)

(A4b)

61s *
s*(e)=sp +e +O(e ).

~=0
(AS)

The boundary values in Eqs. (A4) can also be expanded as

Q(s (&))=gp(sp )+& g(sp )
d

+ily(sp )
@=0

+O(e ), (A6a)

dsr(s'(e))=ro(sp )+e r'(so ) +g„(sp )
0

+O(e ), (A6b)

Comparing Eqs. (A4) and (A6), using Eq. (A3) and the re-
lation r (so ) =cosg'(sp ) = —1, one arrives at

q„(sp )=0, (A7a)

I derive the boundary condition for the contact curva-
ture from the solution to the variational problem 5F' =0
with F' from Eq. (3.3). Generally speaking, this is a
variational problem with a variable end point (s*), an
auxiliary condition (r ='cosg), and a boundary function
[ wr—(s )]. The general solution to such a problem can
be found, e.g., in Ref. 31. I give here a simple version.

Write F' (with 2v/R= 1 without loss of generality) in
the form

F' = f f(g, P, r, r', y)ds+g(r( *)),
0

with f=2/ +pr sinP+y(r' —cosg) and g= —wr Co. n-
sider the variation

lp(so )= —g(sp )
d6'

~—0
(Ajb)
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Equation (A7a) restricts the admissible variations in r,
while (A7b) gives the variation of the "new" end point
s*(e) as a function of the variation in P and the curvature
g at the "old" end point so.

Now, return to F' in Eq. (Al). Inserting Eq. (A2) and
the upper boundary s*, Eq. (AS), into Eq. (Al), one finds,
after a partial integration, the derivative
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dF' I'o af d af af d af
dE' 0 a1/I ds attt ar ds ar

af af. ri~+
s=0

+ 'f„+'f„„
aj ' ar.

0

f+. ag ds
dE

(A8)

This expression has to vanish for any admissible variation. The integral is zero if the usual EL equations are fulfilled.
The boundary term at s =0 vanishes since ti&(0) =rf„(0)=0. Using Eq. (A7), the remainder can be brought in the form

. af ag
ar s=s* de

0 e=O
(A9)

This expression vanishes for arbitrary (ds /de) ~, o, which corresponds to arbitrary g&(so ) if the bracket is zero. This
condition is the transversality condition ' for this variational problem. Inserting f and g, this gives the boundary condi-
tion Eq. (3.5).

*Present address; Department of Physics, Simon Fraser Univer-

sity, Burnaby, British Columbia, Canada V5A 1S6.
See, e.g. , Physics of Amphiphilic Layers, edited by J. Meunier,

D. Langevin, and N. Boccara, Springer Proceedings in Phys-
ics Vol. 21 (Springer, Berlin, 1987).

W. Helfrich, Z. Naturforsch. 28e, 693 (1973).
3H. J. Deuling and W. Helfrich, J. Phys. (Paris) 37, 1335 (1976).
4J. T. Jenkins, J. Math. Biol. 4, 149 (1977).
~S. Svetina and B.Zeks, Eur. Biophys. J. 17, 101 (1989).
U. Seifert, K. Berndl, and R. Lipowsky, Phys. Rev. A (to be

published).
7M. B. Schneider, J. T. Jenkins, and W. W. Webb, J. Phys.

(Paris) 45, 1457 (1984).
S. T. Milner and S. A. Safan, Phys. Rev. A 36, 4371 (1987).

9A. Baumga. rtner and J. S. Ho, Phys. Rev. A 41, 5747 (1990).
E. Sackmann, H. P. Duwe, and H. Engelhardt, Faraday Dis-
cuss. Chem. Soc. 81, 281 (1986).
K. Berndl, J. Kas, R. Lipowsky, E. Sackmann, and U. Seifert,
Europhys. Lett. 13, 659 (1990).

2See, e.g. , H. P. Duwe, H. Engelhardt, A. Zilker, and E. Sack-
mann, Mol. Cryst. Liq. Cryst. 152, 1 (1987).
U. Seifert and R. Lipowsky, Phys. Rev. A 42, 4768 (1990).
R. Lipowsky and U. Seifert, Langmuir (to be published); Mol.
Cryst. Liq. Cryst. (to be published).

~5R. Lipowsky and S. Leibler, Phys. Rev. Lett. 56, 2541 (1986).
R. Lipowsky and B. Zielinska, Phys. Rev. Lett. 62, 1572
(1989).
M. Mutz and W. Helfrich, Phys. Rev. Lett. 62, 2881 (1989).

'8N. Ostrowsky and J. Peyraud, J. Chem. Phys. 77, 2081 (1982).
G. C. Barker and M. J. Grimson, J. Phys. (Paris) 48, 465
(1987).
S. Leibler, R. R. P. Singh, and M. E. Fisher, Phys. Rev. Lett.

59, 1989 (1987).
M. E. Fisher, Physica D 38, 112 (1989).

22A. C. Maggs and S. Leibler, Europhys. Lett. 12, 19 (1990).
E. Evans, Biophys. J. 48, 175 (1985).
M. A. Peterson, Phys. Rev. A 39, 2643 (1989).
For @=0 the shape equations (2.9) with the boundary condi-
tion (3.5) can be solved for any w ) —' in terms of elliptic func-

tions, which allows one to verify the power laws (3.9) and
(3.10) for this special case.

2 The derivation of this equation is lengthy but straightforward
if one used the general theory of the second variation and
solves the so-called accessoric problem. An excellent presen-
tation is given by P. Funk, Variationsrechnung und ihre
Anwendung in Physik und Technik (Springer, Berlin, 1962).
Moreover, the bound part of the vesicle contour shows oscilla-
tions which are, however, not visible on the scale of Fig. 7(a).
These oscillations follow from the effective energy F' for a
configuration Z(A ) of the bound part of the vesicle,
with F' = JdR[(tr/2)(d'Z/dR') +(r/2)Z'] and

=d J /dZ Iz=z Typical configurations of F' show
0

damped oscillations on a length scale of the order of
[Zoltr/V )' ]' . The shorter the range or the larger the
depth of the potential, the sma11er the scale of these oscilla-
tions. This has previously been observed in Ref. 23.
A. C. Maggs, D. A. Huse, and S. Leibler, Europhys. Lett. 8,
615 (1989).

9G. Gompper and T. W. Burkhardt, Phys. Rev. A 40, 6124
(1989).

W. Helfrich and W. Harbich, Chem. Scr. 25, 32 (1985).
3tSee, e.g. , R. Courant and D. Hilbert, Methods ofMathematical

Physics (Interscience, New York, 1953), Vol. 1.


