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The theory of zero-range potentials is investigated in an arbitrary number of dimensions. Except
for the trivial one-dimensional case the zero-range potentials are described by nonlocal operators
called Fermi pseudopotentials. It is shown that in odd dimensions the Fermi pseudopotentials in-
volve a very simple regularization operator. In even dimensions with the help of dimensional regu-
larization, explicit formulas for the Fermi pseudopotentials are derived. The Green’s functions, the
propagators, and the exact solutions of the Lippmann-Schwinger equations are derived in explicit
forms. In odd dimensions d =1 and 3 the Fermi pseudopotentials can be applied to describe multi-
photon processes of atoms and molecules with very short-range interactions. In even dimension
d =2 the Fermi pseudopotential can be applied to describe tunneling from laser-driven quantum
wells. Physical applications involving higher d are also possible.

I. INTRODUCTION

The simplest zero-range potential is given by a & func-
tion. Such a potential has been first introduced and used
by Fermi in 1936 in the investigation of the scattering of
neutrons with bound hydrogen atoms.! In later applica-
tions of this zero-range potential in nuclear physics®™* it
has been recognized that in three dimensions a tempered
operator of the form (3/0r )r is required in order to make
the Schridinger equation well behaved. Because of this
property a zero-range potential of the & type tempered by
a proper operator has been called the Fermi pseudopo-
tential. In one dimension the 8 potential has been exten-
sively used as an exactly soluble model of a many-body
theory.> The one- and the three-dimensional Fermi pseu-
dopotentials have been apllied to quark tunneling,® H
photodetachment and multiphoton ionization,” !! har-
monic generation by strong laser light,!? periodic lat-
tices,'> and in the theory of transport phenomena.!* The
five-dimensional Fermi pseudopotential has been used in
the problem of narrow resonances in infinite, linear, uni-
form arrays (Yagi-Uda antenna array).!> A theory of a
light particle moving in the field of two heavy projectiles
has also been treated by zero-range potentials.'®

Despite these very extensive applications in different
branches of physics, no systematic discussion of the Fer-
mi pseudopotential in arbitrary number of dimensions
can be found in the literature. With the exception of Ref.
15, in which the form of the pseudopotential has been in-
vestigated in five dimensions and possible tempering
operators conjectured for dimensions 2, 4, and 6, no ex-
plicit derivation of these potentials and their Green’s
functions appear to have been published so far.

It is the purpose of this paper to fill this gap and to
provide a more or less complete description of Fermi
pseudopotentials, and their tempering operators in any
number of dimensions.

Just formally, the 8 potential can be written in the fol-
lowing form:

V(r)=—a,;8%r), (1.1)

where d is the number of dimensions and a; is the
strength of this potential that can vary in form with d.
As has been recognized in the early investigations of this
zero-range interaction the formal form of the potential
(1.1) can lead to singularities which have to be tempered
by a proper regularization operator R 4- In such a case a
well-behaved Hamiltonian can be obtained if instead of
the formula (1.1), a regularized potential, the Fermi pseu-
dopotential denoted by V. is used. The Fermi pseudopo-
tential is accordingly defined by the following relation:

Vie(r)=—a,8'%r)R, . (1.2)

In this paper a systematic discussion of this pseudopo-
tential and its regularization operators R, is going to be
performed. It will be shown that if the time integration
and the limit of r—0 are performed in a certain order no
regularization is required for an odd number of dimen-
sions. In this case exact and explicit expressions for the
energy Green’s functions are derived. As a results exact
wave functions (including scattering amplitudes) in any
number of odd dimensions can be obtained. Explicit for-
mulas are derived for the time-dependent propagators in
one and three dimensions. In order to exchange the or-
dering of the time integration and the limit of r=0, regu-
larization operators are required. The form and the
structure of these regularization operators are derived.

In even number of dimensions the singularities associ-
ated with the zero-range potential are much more severe.
With the help of dimensional regularization it is shown
that the Fermi pseudopotential can be used in odd dimen-
sions with highly nontrivial regularization operators ﬁd.
The explicit formula for the Green’s function in two di-
mensions derived in this paper opens a new class of possi-
ble applications. Dynamical properties of quantum wells
on a surface are just an example of such possible applica-
tions.!”
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In general zero-range potentials are widely used in
model calculations involving very short-range interac-
tions of atoms and molecules.!®

This paper is organized in the following way. In Sec.
II we derive the exact expression for the energy Green’s
function using Laplace transform. From this expression
valid in any number of dimensions an exact solution of
the Lippmann-Schwinger equations is obtained. In Sec.
III the scattering and the bound-state problem in odd di-
mensions are discussed. Explicit formulas for d =1, 3,
and 5 are derived. In Sec. IV explicit expressions for the
energy Green’s function are obtained in odd dimensions.
An exact derivation of the temporal propagator in d =1
and 3 is presented. In Sec. V the problem of the Fermi
pseudopotentials in odd dimensions is investigated.
Proper regularization operators are derived and dis-
cussed. In Sec. VI the Green’s function in even dimen-
sions is derived. With the help of dimensional regulariza-
tion explicit expressions for the regularized propagator
are obtained. In Sec. VII a detailed discussion of the
two-dimensional Fermi potential is performed. Scatter-
ing amplitudes, the bound state, and regularization
operators are investigated. Finally Sec. VIII contains
some conclusions. The paper ends with two Appendices
devoted to technical derivations of the regularization
operators.

II. THE ENERGY GREEN’S FUNCTION

Instead of working with the Schrodinger equation, we
chose to study the integral equation for the full Green’s
function (propagator) with the zero-range potential. In d
dimensions this equation has the following form:

K (r,t;15,0)=K(r,2;1,,0)
i t d.,r gt ’
+ [ ds [drKonesvr)

XK (r',5;15,0) (2.1)

where we have set for convenience the initial time at
t =0. The free propagator in d dimension has the follow-
ing well-known form:

d/2
exp

im(r—r,)?

27t

Ko(r’t;r()yo): > (2-2)

m
ATt

where r and r;, are d-dimensional vectors. In the follow-
ing we shall solve this integral equation applying the La-
place transform to an initial value problem. We define
the Laplace-transformed Green’s function by the follow-
ing relation:

G(r;r0)=fowdtefz’K(r,t;ro,O) forzecCc!. (2.3)
For notational convenience we have dropped the complex
parameter z from the left-hand side of this relation. Us-
ing the Laplace transform and the explicit form of the &-
function potential we map the integral equation into an
algebraic equation which can be solved exactly. As a re-
sult we obtain that

G(r;1))=G,(r;19)+ G (1;1) , (2.4)

where G, is the Laplace transform of the free propagator
K, and G, is defined by the following algebraic expres-
sion:

iad Go(r;O)Go(O;ro)

#i 1—(ia,; /%#)Gy(0;0)

G (r;ry)= (2.5)

At this point we make a very important remark that in
order to calculate G((0;0) we have first set r=r,=0 in
Eq. (2.2) and then performed the Laplace transform with
respect to time. If this order is preserved no regulariza-
tion operator I/fd is required at this stage of the calcula-
tions. Equations (2.4) and (2.5) give the exact expression
for the energy propagator in the presence of zero-range
potential. We see that this exact solution is a sum of the
free propagator G, with a term G, which is given by a
simple algebraic expression (2.5). We stress again at this
point that this expression should be calculated preserving
the proper order of the integration and the limiting pro-
cedure. If this order is preserved, all the relevant func-
tions can be evaluated using standard integral tables.'
The Laplace transform of the free propagator is

Go(r,ro):ze([v/4)(—d/Zfl),n,*d/Zad/4+1/2

de/4~1/2R —d/2+1

XK _y,4+1(2R exp(—im/4)V az )

with zeC!, (2.6)

where R =|r—ry|, a=m/2#%, and K_,,,, is the
modified Bessel function.!®

In the same way we obtain (according to our ordering
of operations)

d/2
Go(0;0)= [ “dr e | =
d/2 d
=& | zdr-ip ——+1l. 2.7
i 2

Note that due to the given ordering of time integration
and the limiting procedure G,(0;0) cannot be obtained
from G(r,r,) as a simple limit of r=ry=0. In fact, this
limit, if performed in (2.6), turns out to be singular. On
the other hand, G,(0;0) from (2.7) is given by a T func-
tion which is an analytic function with simple poles for
—d/2+2=0,—1,—2,..., i.e., has a pole singularity
only in even dimensions. In odd dimensions this expres-
sion is regular everywhere and Egs. (2.4)—(2.7) describe
an explicit solution for the Green’s function in any odd
number of dimensions. Note that if the proper order of
integration and limiting procedure is followed, the zero-
range potential given by (1.1) can be inserted into the in-
tegral Eq. (2.1). In such a case the Fermi pseudopotential
(2.2) is not necessary. But this is true only in an odd
number of dimensions.

In the case of an even number of dimensions, Eq. (2.7)
is singular and the formal form of the potential (1.1) can-
not be used anymore. We shall study the properties and
the form of the Fermi pseudopotential in an odd number
of dimensions in Sec. VI.
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The exact and the explicit solution for the Green’s
function G, given by Egs. (2.4) and Eq. (2.5), allows an ex-
act solution of the scattering problem in the presence of
this zero-range potential. The outgoing scattered wave
function can be easily calculated from the Lippmann-
Schwinger equation using the Green’s function from Eq.
(2.4). As a result we obtain that the scattered wave is

iay G,y(r;0)

(+) = ik'r+-—‘
e e S ey /)G, (0;0)

(2.8)

where k is the wave vector of the incoming plane wave
and the complex parameter z has to evaluate at the point
z=e'"2k?/4a. The incoming scattered wave ¥ '(r)
can be obtained by a complex conjugation of Eq. (2.8).
The asymptotic scattered wave in d dimensions have the
following well-known form:

e ikr

d/2—1/2 ° (2.9)
r
Calculating the asymptotic behavior of the scattering
solution for r— o, we obtain from Eq. (2.8), the scatter-
in litude £ i bi di ion d:

g amplitude f* in an arbitrary dimension d:

ikr
: (+)( )=, —ik'T d__¢
Jim oy (r)=e T/ L2172

(2.10)
The actual form of the scattering amplitude follows from
the asymptotic properties of the modified Bessel func-
tions in the formula (2.6).

From the analytic properties of the scattering ampli-
tude in the complex-k plane, it is possible to establish
possible bound states of the particle coupled by a zero-
range potential. We shall investigate this problem in the
following section.

III. SCATTERING AND BOUND STATES
IN ODD DIMENSIONS

In this section we shall investigate the scattering ampli-
tude and possible bound states in odd dimensions. In or-
der to do this we shall set d =2n +1 with n =0,1,.. . in
all the relevant expressions derived in the preceding sec-
tion. From the asymptotic properties of the modified
Bessel function for » — oo we calculate the scattering am-
plitude (2.10)."° Simple algebraic manipulation leads to

—i T 2p — M2

&= , 3.1)
Ix pon—1y ;20— D"
Aoy +1X

where we have wused the relation T({—n)

=[(—1)"2"7?1/ 2n— 1.

Let us for the completeness of our arguments write
down the scattering amplitude and the scattering outgo-
ing wave functions for d =1, 3, and 5.

A. One-dimensional scattering

In this case from Eqgs. (3.1) and (2.8) for n =0, which is
equivalent to d =1, we obtain the following expressions:

1//(k+)(x):€ikx+f1(<l)ei!xlk , (3.2a)

f(”: 2aai 1
k # k—2aai/h’

where for shorthand notation we have denoted a =a;.
From Eq. (3.2) we see that the scattering amplitude has a
single pole in the physical k half plane, if @ = 0. This pole
of the scattering amplitude corresponds to the energy of
the single bound states, with the residue proportional to
the wave function of the bound state. The energy of this
single bound state is

(3.2b)

m

Ey=— E;a z,
A single bound state with the same energy can be ob-
tained from a one-dimensional square well with length L
and energy depth ¥V in the limit of L —0 and Vj— o
with fixed a =V L. The coupling constant @ has in this
case the interpretation of the ‘““area” of the potential. We
generalize this relation to any number of dimensions.
For arbitrary d the “area” of the potential a; can always
be written in the following form:

ad:VOLd N

(3.3)

(3.4

where ¥V, is a coupling constant of dimension energy and
where L is a characteristic length. We shall use this im-
portant relation in the section devoted to the Fermi pseu-
dopotential in even dimensions.

B. Three-dimensional scattering

In this case from Eq. (3.1) and Eq. (2.8) for n =1,
which is equivalent to d =3, we obtain the following ex-
pressions:

ikr
¢§(+’(r)=e’k'r+f1£3)£r‘ , (3.5a)
. ~1
=i [k+ "lﬁz (3.5b)
3

Note that 1" (r) given by Eq. (3.5a) is the exact (not the
asymptotic) outgoing solution of the Lippmann-
Schwinger equation in three dimensions. The scattering
amplitude has a single pole in the physical k half plane, if
a3 =0. Note that in the three dimensions in order to sus-
tain a single bound state, the coupling constant of the &
interaction has to change the sign comparing to the one-
dimensional case. The energy of this single bound state is
. 24872

m3a?

E,= (3.6)
If we impose an additional condition that this energy
should be equal to the bound-state energy in one dimen-
sion we obtain the following relation between the cou-
pling constants a and a;:
_ 2n#t

mZa

a;= (3.7

If we assume following Eq. (3.4) that a =V L and
a;=—V,L? (with V> 0) we obtain from Eq. (3.7) that
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L =~——ﬁ—(277)1/4 .

3.8
(mVy)'"2 G-

C. Five-dimensional scattering

In this case from Eq. (3.1) and Eq. (2.8) for n =2,
which is equivalent to d =5, we obtain the following ex-
pressions:

¢L+)(r):eik~r+2—1/2a5ﬂ,—5/2(_ik)3/2ar*3/2
Ko (i) |1 259K B (3.92)
—1r - ) Ja
372 6ﬁ7T2
pp=_faska ), fsa B (3.9b)
k 2im? 6#i? '

where k i 1s a five-dimensional vector with length k. Note
that 4{"(r) given by Eq. (3.9a) is the exact (not asymp-
totic) outgomg solution of the Lippmann-Schwinger
equation in five dimensions. The scattering amplitude
has a pole in the physical k half plane, if a5 =0. The en-
ergy of this bound state is

th 5
m3ail(—3)

1/3

Ey=— (3.10)

If we impose an additional condition that this energy
should be equal to the bound-state energy in one dimen-
sion we obtain the following relation between the cou-
pling constants a and a5:

J

1 —imsa |2 H!
G (r;r )=4laz”+1 e n+3/22n—1/2(rr
1Y% 20

a

m

0)‘-n+1/2

16% 877.5/2
as=—F > —— . (3.11)
g *a’T(—3)
If we assume following Eq. (3.4) that a =V,L and
as=V,L"> (with V> 0) we obtain from Eq. (3.11) that
1/8
#i

5/2
L , (3.12)
(mV())

r—2)

L=

where we have kept the I' function in order to indicate
the dimensionality dependence.

In conclusion of this section, let us investigate the clas-
sical limit of the scattering cross section in any odd di-
mension: d =2n +1. From Eq. (3.1) we obtain that

1
m dﬂ

<2y T2 (2n —1)M27
#—0

", (3.13)

where p =#ik is the momentum of the incoming scattered
particle. From this relation we conclude that in d =1
and in the classical limit the zero-range potential acts like
a mirror with an order # term getting through the mir-
ror.2! For d > 1 the cross section vanishes in the classical
limit.

IV. GREEN’S FUNCTION IN ODD DIMENSIONS

In odd dimensions (d =2n +1) the zero-range poten-
tial Green’s function (2.3) is given as a sum of potential-
free propagator G, and G, defined by the following for-
mula:

K_,11(2re “az K _, +1/2(2r0e “az )

’

Mo

7 zn—l/ZI\(_n+%)(a/Tn~)n+l/2

4.1)

where r and r, are lengths of n-dimensional vectors r and ry. This formula gives the exact expression for the energy
Green’s function with the zero-range interaction. The time-dependent Green’s function (propagator) for this interac-

tion can be written in the following form:

K (r,t;15,0)=K(r,2;15,0)+ K (r,2;1,,0) ,

4.2)

where K is the free propagator given by Eq. (2.2) and K, is the inverse Laplace transform of the expression (4.1).
In the following we shall present an explicit derivation of K in one and three dimensions.

A. One-dimensional propagator

Taking the inverse transform of Eq. (2.3) and using Eq. (4.1) with n =0 we obtain

e zt exp

2(|x|+ xo DV zaexp(—in/4)]

K (xt;x,0)= aa § 277'1 Vs
z

Vz —lia/BNa/i)?

(4.3)

where the z integration is along the imaginary axes with all the singularities on the left if # =2 0. Changing the integra-
tion variable z = —v? and deforming accordingly the integration contour, it is possible to rewrite the integration (4.3) as

an integration over a real axis v:

1 exp[—vzt -

2(]x] +xoDv(a/i)?]

2aa fw

iv—(ia/HNa/i)?

4.4)

The denominator in this integral can be removed with the help of the following integral trick: 1/b = f gdAe M Asa



72 K. WODKIEWICZ 43

result of this step the v integration involves only Gaussian functions and can be performed exactly. As a result we ob-

tain

iAa

a

Y2 A+ 20a /D x|+ xg D12

f “d exp P

i

This integral can be expressed in terms of the complex error function erfc(u)=(2 /) f Tdhe”

(4.5)

4t

2
A" As a result we ob-

tain the following final and exact expression for the one-dimensional propagator in the presence of zero-range potential:

172 .
ia(x —xg)*

K (x,t;x,,0)= ;

exp

it #

where {=|x|+|x,| and u =(a/DVHE/NVE —iat /7).

This formula has been derived in the literature by an explicit summation over the complete set of states?’

context of the Feymnan path-integral formalism.>! ~2

+ 2% explit2a/t +ulerfc(u) (4.6)

or in the

A different representation for the 8-potential propagation can be obtained if one recognizes that Eq. (4.5) with a
change of the integration variable A=2(a /i)!/?{’ leads to a weighted distribution of potential-free propagators.

2aa wV =i

K (x,t;x4,0)=K(x,t;x,,0)+

d{'exp

where K, is given by (2.2) and £=|x|+|x,].

aal’
#

Ky(z+¢',t;0,0), 4.7)

B. Three-dimensional propagator

Performing the inverse transform of Eq. (2.3) and using Eq. (4.1

the following expressions:

) for n =1), which is equivalent to d =3, we obtain

172 exp[ —zt —2(r +ry)Vzae ™/
K, (1,t;15,0)=¢ 74 % ngz—l—_ pl 0 ] 4.8)
21rrg 2mi V'z +explim/4)wthi/(2a;0°"?)
This integral can be written in the following form:
exp[ —zt —2(r +ry)Vzae "7/
K, (r,t;15,0)=— L 39 dz—l—. —p[~ g ] . (4.9)
4arrry Or 2mi Vz [Vz +explim/4)rth/(2a;a°"?)]

We recognize in this integral the one-dimensional integral
(4.3) provided that |x| and |x,| are identified with » and
ro and the three-dimensional coupling constant aj
satisfies the condition (3.7). As a result of this
identification we obtain the following exact expression for
the three-dimensional propagator in the presence of
zero-range potential:

3/2
K (r,t;1,,0)= Py explia(r—r,y)*/t]
- 9 —[exp(i&a/t +u?erfc(u)]
dmrry Or P ’

(4.10)

where now {=r +rq and u =(a /i) E/V't —iat /5).
The three-dimensional propagator can be written also
in the integral representation form (4.7)

K (r,t;15,0)=K(r, t'rO,O)

1 oV
27'rrr0 ar f dz exp(2aad’ /#)

Ko(E+E,650,0) .
@.11)

V. REGULARIZATION IN ODD DIMENSIONS

Our derivations of the scattering wave functions and
propagators have been so far trouble-free under the con-
dition of taking the limit of r and r; to zero first and in-
tegrating over the time next, in order to calculate (2.7).
With this order of steps the potential given by Eq. (1.1)
could be used without any difficulties provided that the
number of dimensions has been odd.

If nevertheless we insist that the interpretation and
limiting procedure should be interchangable we need to
modify this potential in the form given by Eq. (1.2) in or-
der to calculate G,(0;0) from the expression (2.6) in such
a way that no singularities in r and ry do occur. Only the
use of this Fermi pseudopotential allows for a free inter-
change of integration with the limiting procedure. The
singularities at the origin result from the definition of the
modified Bessel function which has the following form:'’

Vaszge s — it 5.1)

K (y)= —_— .
ni12t S 1n —DI(2p)!
In order to remove the singularities we introduce the

regularization operator Rd defined by the following con-

dition:
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Go(0;0)= lim R,(r)G,(r;0),

r—> 0

(5.2)

where the left-hand side of this equatlon is given by the
formula (2.7) and ﬁd acts on G(r;0) given by Eq. (2.6).
We note that in one dimension from Eq. (2.5) we have

172
Gy(x;0)= L 2 V2exp(—2|x|VZae i) (5.3a)
i
and the formula (2.6) gives
172
Go(0;0= || 27172, (5.3b)
i

We see that in this case Gy(0;0)=lim,  ,Gy(x;0)
without any singularities and accordingly the regulariza-
tion operator in d =1 is not required. This means that in
one dimension one can in a safe way interchange the time
integration with the limiting procedure of taking x —O0.
For d >1 this cannot be done and as a result in dimen-
sions higher than one a nontrivial regularization operator
is required in order to assure the relation (5.2). The expli-
cit form of the regularization operator can be derived us-
ing the formula (5.1) for the modified Bessel function.
The derivation is presented in Appendix A and here we
just quote the final result. In odd dimensions, the regu-
larization operator has the following form:

ﬁ2n+l

aZn*l
aanfl

=Von+1 r"~! for n>1and d =2n+1,

(5.4)

where the coefficient y,, , is given by the following for-
mula:

7 V(L —n)
. 2
Yan +1 n}:"I( I — (n—1+D2n —1)
P2 In—1—k)Xn+1)

(5.5)

As an example, let us write explicit expressions for three

Fermi pseudopotentials (1.2). We write
Ve(x)=—ab(x) ford=1, (5.6a)
Vo(r)= 228 8(3’(r)——r for d = (5.6b)
h 887T5/2 a}
Vilr)=———————8(r)——r> ford =5,
F 3m4a3l"(—%) 8r3r or
(5.6¢)

with coupling constants leading to the bound state with
equal energy.

VI. THE GREEN’S FUNCTION IN EVEN DIMENSIONS

So far our discussion has been limited only to odd di-
mensions. The expression (2.7) has been regular in odd
dimensions and had only single poles in even dimensions.
Such a situation is well known in quantum field theory
which leads to loop-integral divergences in a form of sim-

ple poles in d —4.2* With the help of dimensional regu-
larization it is possible to extract from the loop integrals
finite parts and remove the divergent parts by the renor-
malization counter terms.?> We shall apply this pro-
cedure of dimensional regularization to the problem of
zero-range potential in an even number of dimensions. In
order to perform this procedure we note first that the
Green’s function G,(0;0) from Eq. (2.7) is always multi-
plied by the coupling constant a;, which, according to
the formula (3.4), contains a term L% Because of this we
shall investigate a regular quantity L9G,(0;0) for
d =2(n —é€) and perform at the end of the limit e—0 in
order to establish the regular part of the Green’s function
in d =2n. This is the essence of the dimensional regulari-
zation. Following this procedure we obtain

1] €

i
azL?

a
Tl

LZnGO(O;O):Lann*I

XIT'(—n +1+e€) . (6.1)

We expand around d =2n using the formula?’

_ n—1
M—n+1+e=""" 1L sm+oce (6.2a)
(n—1) Je
where
¢(n)—_—1+i+ AU S
2 n—1 1
v being the Euler constant [¢¥(1)=—y=—0.5772...].
In addition to this expansion we use
mi E=exp €ln
azL? azL?
=l+eln—"5+0(e) . (6.2b)
azL

Combining (6.2a) and (6.2b) in the formula (6.1) we obtain
the following expression for the regular part of the
Green’s function in the limit of e —0:

o —g @ [ (=0t
[adGo(OyO)]reg_aznz i (n —1)
X ¢(n)+1n 7722 (6.3)
az

After the dimensional regularization, the regular part of
G(0;0) entering the formula (2.5) is well behaved in even
dimensions. The formula (2.5) with the expression (6.3)
gives an exact and an explicit solution of the zero-range
potential in even numbers of dimension. We note, as in
the case of odd dimensions, that the explicit form of the
propagator (6.3) cannot be obtained from the formula
(2.6) by a simple limit of r and ry,—0. In order to repro-
duce the formula (6.3) a proper regularization operator
Rd has to be derived. We shall discuss the form of this
regularization operator and the expression for the Fermi
pseudopotential in even dimensions in the following sec-
tion.
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VII. ZERO-RANGE POTENTIAL
IN TWO DIMENSIONS

In view of possible physical applications involving a
zero-range interaction in two dimensions (quantum wells,
superlattices, two-dimensional Kronig-Penney models,
etc.) we shall discuss in this section the properties of the
zero-range interaction in two dimensions in more detail.
For d =2 from Eq. (2.5) we obtain

Go(r;00=2 |% |-L ky2re ™" az ), (7.1)
1 \/r
and
| a i
[Go(050)]eee = | | [#(1)+In | — (7.2)

From these relations we obtain according to the formula
(2.7) the following exact expression for the outgoing solu-
tion of the Lippmann-Schwinger equation:

2aa 2

g ——=K(—irk)

eik~r_+_

Y (r)= .(7.3)

iT

P(1)+In

From the asymptotic behavior of the modified Bessel
function K, we obtain from (7.3) the following expression
from the scattering in two dimensions:

lim ¢ " (r) ””+f‘2> v (7.4)
7—> ©
where the scattering amplitude is
im/4_—1/2;,—1/291/2
§(2) _ ae s k 2 (7.5)
aa
1=—= 1y

The pole of the scattering amplitude in the physical k
half plane corresponds to the bound state. From Eq. (7.5)
it follows that such a pole existence for any real value of
a,. The energy of this bound state is

#22m
—e

Zﬂ'h
=— +4(1) 7.
E, I P(1) (7.6)

At this point we return to the problem of the Fermi
pseudopotential (1.2) in two dimensions. According to
the discussion from Sec. V, we shall introduce the regu-
larization operator R , which provides the following rela-
tion:

[Go(0;0)],0p = hmﬁ r)Go(r;0) , (7.7)
where the left-hand side of this equation is the formula
(7.2) obtained after dimensional regularization. The
Green’s function G(r;0) is given by the expression (7.1).
The explicit formula for the regularization operator can
be derived using the following formula for the modified

Bessel function:!®

21

Ko(»)=—In WiI+1). (1.8)

(11?2

I+ 3 —
=y

The characteristic property of even dimensions is
reflected by a logarithmic divergence in the formula (7.8).
This logarithmic divergence has to be removed by the
regularization operator in such a way that the resulting
expression is finite and equal to Eq. (7.2). The derivation
is presented in Appendix B and here we just quote the
final result. In two dimensions, the regularization opera-
tor has the following form:

R,= lnﬁzr) (ln[;’zr )7L, (7.9a)
where
[32=%\/—7—rexp[ —9(1)/2] . (7.9b)

As a result of this procedure we obtain the following ex-
pression for the Fermi pseudopotential in two dimen-
sions:

Vi(r)=—a,8%(r)

1—In |V7Lexpl —[9(1)/2]] 9

(7.10)

The generalization of these results to arbitrary even di-
mensions is tedious but straightforward. We note that
for even dimensions larger than two the modified Bessel
function in (2.6) contains also polynomial singularities.
From the properties of these functions it follows that the
Green’s function G,(r;0) on the top of the logarithmic
singularity contains also polynomial singularities. In or-
der to obtain the regular expression (6.3) the regulariza-
tion operator RZ,, must contain terms removing both the
logarithmic and the polynomial divergences. We have
seen that polynomial divergences can be handled with the
help of the operator (5.4) while the logarithmic diver-
gence can be removed with the help of the operator (7.9).
It is clear that for d > 2, the regularization operator Rz,,
will contain terms (5.4) and terms (7.9) properly scaled
with coefficients ¥ and f3 in order to reproduce the results
(6.3). As an example, in four dimensions the logarithmic
part of the divergence can be removed using the operator
(7.9a) but with B,=(V'7/L)exp[ —(1)+L¢(2)]. We do
not reproduce here the explicit expression, for arbitrary
even d, because it is too complicated and probably not
very useful after the dimensional regularization of
G, (0;0) given by Eq. (6.3) is performed.

VIII. CONCLUSIONS

The purpose of this paper has been a systematic discus-
sion of the zero-range potential in any number of dimen-
sions. We have shown that except for the one-
dimensional case the zero-range potential leads to singu-
larities which have to be tempered by a proper regulari-
zation operator. The zero-range potential with this regu-
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larization operator called the Fermi pseudopotential has
been derived and discussed in any number of dimensions.
We have shown that in odd dimensions the regularization
can be avoided by maintaining a certain order of integra-
tion and evaluation at the origin. In even dimensions the
situation is much more complicated, and only after di-
mensional regularization can the Fermi pseudopotential
be defined. We have derived exact expressions for the
Green’s function, propagator, and the scattering ampli-
tude in any number of dimensions. In view of growing
applications in multiphoton detachment of atoms, the
difference between the d =1 and the d =3 Fermi pseudo-
potential becomes important.

In even dimensions after dimensional regularization
the Green’s function can be obtained. We have derived
the explicit expression for the Fermi pseudopotential in
d =2. This potential could be used to study the dynami-
cal effects in quantum wells.

The theory that we have investigated in this paper is
not limited to the Schrodinger equation. The Maxwell
equation in the paraxial approximation have the formal
structure of the Schrodinger equation with the interac-
tion potential replaced by the dielectric index of the
medium. Zero-range interactions could be used in such a
case to study propagation effects in different
configurations and different geometries.

It is relatively easy to generalize our solutions if, for
example, the particle interacting with zero-range poten-
tial is in addition coupled to an external classical elec-
tromagnetic field. In this case the free propagator K in
Eq. (2.1) has to be replaced by the propagator involving
the external field. If the field has no spatial dependence,
this propagator becomes the well-known Volkov propaga-
tor.” The zero-range interaction cannot be solved exactly
in this case, and Eq. (2.1) can be reduced to a simple in-
tegral equation for one time-dependent function.?® The
dimensionality of the problem has important conse-
quences as far as the structure of this equation is con-
cerned.!” 12 Because of the regularization operators for
d >1 the gauge problems and the minimal-coupling
terms involved in zero-range interactions are more com-
plicated.!!-26:27
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APPENDIX A

Using the definition (5.1) we can write the Green’s
function (2.5) in the following form:
n—1 bZZAI/Z
Go(r;0)=exp(—2rVaz/i) 3 —7
=0

(A1)

where the explicit form of the b; coefficients follows from

Egs. (5.1) and (2.6), On the other hand, we know that
G,(0;0) is given by Eq. (2.7). In order to take the limit of
r—0 in the expression (A1), we have to remove all the
polynomial singulaities in (A1l). The highest singularity
of this type is given by the last term in the sum (A1) and
is » 72" 1 Multiplying by this term and differentiating
2n —1 times we obtain from (Al) an expression which
has no polynomial singularities. Let us see how this
works on the / term in the sum (A1)

lm})yz,l 1 aiz;ill [br'n 170z 71 2exp(—2rVaz /i |
=Y 12" b (—2Va/i )" (A2)
As a result of this operation we obtain
rl_fj})yznﬂarz,,_lr Gy(r;0)
=m+1"§z"”bl(—2\/&7)"“. (A3)

=0

Comparing (A3) with the expression (2.6) evaluated for
d =2n +1 we obtain the formula (5.5) for y,, ;. Note
that this is a purely numerical factor entirely independent
from the dynamical properties of the zero-range poten-
tial.

APPENDIX B

Using the definition (7.8), we can write the Green’s
function in the two dimensions in the following form:

Go(r;0)=%7_cl~f { —Inr—Ln[az exp(—im/2)]}
X > o+ d(rpl+1) |, (B1)
1=0 =0
where

[r2az exp(—imw/2)]

(r)=
dulr (N2

(B2)

From the definitions (B1) and (B2) it is clear that the only
singularity in the limit of » —0 comes from the Inr term.
We introduce the regularization operator in the following
form:

R,Gy(1:0)=1lim |Gy(r:0)—r Inr 2000
a0l e U T
2a
+2% e (B3)
i

where the parameter 3, will be determined later. If we
denote the limit of the first two terms in Eq. (B3) by F,
using (B1) and (B2) we obtain
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=22 Jim | —Lin[az exp( —i7/2)]+ (1)

+{rIn*r +Ln[az exp(—im/2)]r Inr}

o ddo;(r) © de¢,(r)
X3 bulr +rinr bulr
=0 =0

Pl +1)

(B4)

From the definition of ¢,(r) [Eq. (B2)] and from the
fact that lim, ,or'Inr =0 we obtain that the limit in (B4)

is finite and is equal to

_2a,

F —IIn[az exp(—im/2)]+ (1)} . (BS)

i
After regularization the expression should be equal to the
formula (7.2) obtained by the dimensional regularization
method.

This equality allows us to fix the parameter 3, in (B2).
In this case we derive that f3, is given by Eq. (7.9b) and
that the regularization procedure from Eq. (B2) can be
written in the form presented by Eq. (7.9a).
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