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Sound propagation in phase-separating fluids
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We examine sound propagation in two-phase states of one- and two-component fluids by taking
into account heat and mass transport between the two phases. For the sake of simplicity, detailed
calculations are performed on near-critical fluids undergoing nucleation or spinodal decomposition,
which exhibit very large acoustic anomalies at relatively low frequencies. As a universal relation
the zero-frequency sound speed is reduced to 82% of the sound speed without domains in near-
critical pure fluids. However, our predictions can be applied even to fluids far from criticality. One
of our main findings is that, when droplets are sparsely distributed, sounds can induce latent-heat
generation or absorption at the interfaces and produce long-range temperature gradients extending
far from the droplets. The sounds are then anomalously attenuated at low frequencies, and the
effect may be used to detect onset of nucleation. We also calculate a frequency-dependent adiabatic
compressibility in two-phase states, which is valid even far from criticality and is applicable to bub-

bly fluids. It reproduces the effective-medium theory at relatively high frequencies and a Landau-
Lifshitz result in the zero-frequency limit. The mechanism investigated is general and is not limited
to fluids.

I. INTRODUCTION

When systems are composed of finely divided domains,
increased sound attenuation has been observed in a num-
ber of materials. Examples are polycrystals, ' fluids of
emulsions, solids undergoing martensitic transitions,
polymer solutions undergoing spinodal decomposition, '

and so on. As an analogous effect a strong increase of the
second-sound damping was recently observed in a phase-
separating He- He mixture near the tricritical point. "
Many years ago Zener and Isakovich independently pre-
dicted that acoustic attenuation at relatively low frequen-
cies should be enhanced by small-scale heat currents be-
tween adjacent crystallites or two phases. ' In this paper
I will examine this problem particularly in phase-
separating near-critical Auids, which will turn out to be
an ideal system to confirm the original idea of Zener and
Isakovich. Near-critical Auids are known to be suitable
for both unambiguous theoretical studies and definite ex-
periments on various fundamental efFects of phase transi-
tions. ' ' We should then generalize our results to oth-
er more complicated systems.

It seems necessary to explain the essence of Zener and
Isakovich's sound-attenuation mechanism. ' Although
the idea is general and applicable to a wide range of two-
phase states, the effect has not drawn enough attention
and systematic experimental confirmation has been lack-
ing. To make simple order estimations we assume that
physical properties, such as thermodynamic derivatives
and transport coeKcients, are of the same order in the
two phases. In systems such as a liquid suspended with
gas bubbles physical properties are very different in the
two phases and more careful analysis will be required.
We send a sound wave into a two-phase, one-component
material with small-scale domains whose size R is much
shorter than the sound wavelength. While the pressure

variation 6p itself changes slowly in space, it causes
small-scale temperature inhomogeneities if the adiabatic
coe%cient (t)T/Bp ), is difFerent in the two phases, 1, and
2. The inhomogeneities are of the following order:

(1) ' (2)

(5T);„q=
BT
Bp

where A, is the thermal conductivity and the integral is
over a unit volume. The above quantity is expressed in
terms of the sound attenuation a&& per wavelength due
to domains as (coaD&/mpc )~5p~, where p is the mass
density and c is the sound velocity (see Sec. II for more
details). Thus, for co)DR, we obtain

ADg — Pc=1 2

T

(i) ' (2) 2
T BT

Bp Bp

=/lo(D/toR )'i (1.4)

where the coefBcient Ao on the second line is indepen-
dent of R. We shall see that Ao-P for pure fluids and

The 6T changes by the above amount near the interface
on the spatial scale of the therma1 diffusion length,

lD =(D/to)'

where D is the thermal diffusivity and co is the acoustic
frequency. Here we assume that ID is shorter than the
domain size R and this condition amounts to ~)DR
Then the volume fraction of the inhomogeneous region is
of order AID, A being the surface area per unit volume,
and the heat production rate per unit volume is estimated
as
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Ao-P(1 —T/T, ) with a =—0. 1 for binary mixtures near
criticality, where P is the volume fraction of the minority
phase.

On the other hand, if lz & R or co &DR, Zener and
Isakovich found that the attenuation becomes weak as

aax-—Ao(coR /D) . (1.5)

aT
Bp

5p= aT
coex

T
5pG(r) .

Bp

Since G (r) obeys a thermal diffusion equation, it tends to
R /r, a solution of V G =0, as coR /D ~0. For
co «DR the temperature is nearly homogeneous inside
the domain, so that the heat current is discontinuous at
the interface and is balanced by latent-heat release or ab-
sorption. By calculating the heat production around
each domain, we readily obtain for small co

au~= 3~4(7'. —1)
BT Bp

coex aT
S

2

—1 (D/R co),

(1.7)

where use has been made of the thermodynamic identity

Therefore, a~& was concluded to have a broad peak at
co=DR in accord with experiments on polycrystals. '

The above result is based on the picture that thermal re-
laxation in domains can follow the temperal change of
sounds in the low-frequency limit. Zener stated that
sounds are nearly adiabatic for co»DR and nearly
isotherm. al for co «DR . However, a crucial process is
missed in the derivation of (1.5), which makes (1.5) in-
valid in many important systems including two-phase
Auids. That is, mass conversion can take place through
the interface from one phase to the other periodically in
time, and the latent heat thus generated produces a tem-
perature gradient extending over lz. If the volume frac-
tion P of the minority phase is very small and domains
are far from one another, thermal equilibration cannot be
achieved even for /z, »R or for co «DR outside
domains. This leads to anomalous low-frequency damp-
ing in nucleation processes. Such a latent-heat genera-
tion is, however, nonexistent for polycrystals and emul-
sions, which were systems treated by Zener' and Isako-
vich. In the former case domains with an identical crys-
tal structure are separated by grain boundaries and
domain motion releases no latent heat, but inhomogene-
ous temperatures arise from elastic anisotropy of indivi-
dual domains. In the latter case immiscible Auids cannot
pass through membranes on the acoustic time scale. The
role of latent heat has hence remained unnoticed.

Because of its simplicity we here give a formula for at-
tenuation by spherical domains with a small volume frac-
tion P. The temperature deviation and the pressure devi-
ation due to sounds are related by 5T=(AT/dp )„,„5p at
the interface position from the continuity of the chemical
potential p (see Sec. II), where (dT/Bp )„,„ is the deriva-
tive along the coexistence curve. The temperature is in-
homogeneous outside the domain as

p c C, =T(dp/'dT), (1 —I/y, ), y, =C /C, being the
specific-heat ratio, and the quantities on the right-hand
side of (1.7) are those in the phase outside domains. We
shall see that this expression can be used in the region
P ~ ~R ~/D ~ 1 in Sec. II. For co )DR, a~& is given by
(1.4). The behavior az&z ~ I /co in (1.7) is markedly
difFerent from the usual low-frequency behavior o« ~ u in
one-phase states.

There are a great number of papers on the sound veloc-
ity in bubbly Quids, ' ' in which the gas and liquid
phases have very difFerent densities and compressibilities
in contrast to the case near criticality. In bubbly Auids
the sound velocity is known to be much decreased in the
presence of a small fraction of gas bubbles. Its behavior
is fairly well described by the efFective-medium
theory, ' ' which is a mean-field theory for the compres-
sibility of composite materials neglecting heat conduc-
tion. However, the two phases in near-critical Auids have
nearly the same compressibilities, and the efFective-
medium theory predicts no appreciable change due to
domains in the sound velocity. See Sec. III for more dis-
cussions.

In anisotropic solids, scattering of sounds at interfaces
can be the dominant sound attenuation mechanism. '
The resultant attenuation o,„„per unit length is known
to be proportional to ~ and become small at low fre-
quencies if the domain size is much shorter than the
sound wavelength. On the other hand, in near-critical
Auids, the density difFerence between the two phases is
very small and the scattering mechanism can be com-
pletely neglected. Remarkably, the critical divergence"
of the thermal conductivity X enhances the dissipation of
sounds. As a result, the attenuation due to domains dom-
inates over the attenuation due to critical fluctuations at
low frequencies. We will also show in Sec. II D that
the viscous damping due to velocity gradients is much
smaller than the heat-Aow damping at most by the factor
of (g/R ), g being the interface thickness.

The organization of this paper is as follows. In Sec. II
we will discuss the problem in near-critical pure fluids to
avoid unnecessary complications at the starting point.
Their thermodynamics is now mell understood and the
temperature obeys a simple difFusion equation at long
wavelengths. In Sec. III we will derive a general expres-
sion for the efFective adiabatic compressibility in two-
phase states for pure Auids by taking into account heat
conduction. It can be used even away from the critical
point and constitutes a generalization of the efFective-
medium theory for bubbly Auids. In Sec. IV we will treat
binary mixtures, whose thermodynamics and hydro-
dynamics are much more complicated unfortunately.
However, experiments are much easier in binary mixtures
than in pure Auids. ' Hence, we need to show that al-
most the same efFect exists in binary mixtures. Readers
who are not interested in the theoretical details of binary
mixtures may read only the first and last paragraphs of
Sec. IV. As a by-product, we will derive some thermo-
dynamic relations which show asymptotic critical behav-
ior and leading corrections of thermodynamic deriva-
tives, such as (dT/Bp), or (BT/dp ),z, for pure Iluids in
Appendix A and for binary mixtures in Appendix D.
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II. PURE FLUIDS asymptotic critical power laws are as follows

A. Adiabatic heating in two-phase states

pc=
c) T coex

(2.1)

where p, and T, are the critical pressure and temperature
and (Bp/BT)„,„ is the derivative on the coexistence
curve and may be equated to its critical point value.

We then send a sound wave into the Quid. In most
realistic conditions the acoustic wavelength 2m'/co is
much longer than the domain size R and the pressure in-
homogeneity is very weak compared to that of the
domain structure. The acoustic frequency co is assumed
to be much faster than the growth rate y~ of domains
but much slower than the relaxation rate
I &=(kiiT/6vr7I)g of the critical fluctuations, where q
is the shear viscosity. ' ' ' Namely,

y& ((co« I
~

. (2.2)

Under these conditions we may regard the domain struc-
ture as stationary on the acoustic time scale 2~/co and
may use the usual linear hydrodynamic equations to de-
scribe the relaxation processes under consideration. We
are also allowed to regard the interface as infinitesimally
thin.

Far from the interface the temperature T is adiabati-
cally disturbed as

6T= 6p,aT
Bp

(2.3)

where 6p is the pressure variation associated with the
sound. We can show that the coefficient (dT/'dp), is

slightly different between the gas and liquid phases and
the temperature is more perturbed in the gas phase than
in the liquid phase. To show this let us consider two
infinitesimally separated thermodynamic states on the
liquid (or gas) phase side of the coexistence curve. From
dT=(BT/Bp), dp+(BT/Bs)„ds, we obtain

We first consider a one-component Auid near the gas-
liquid critical point in a two-phase state in the course of
nucleation or spinodal decomposition. ' We assume that
the characteristic size R of domains is much longer than
the thermal correlation length g (of the order of the inter-
facial thickness) and then the fiuid is nearly on the coex-
istence curve. Namely, the pressure difference p —p, and
the temperature difference T—T, are linearly related by

aT as =-2am~,
coex

2

KT—=~ C =p—TI 'eaT
T Bp

(2.5)

(2.6)

C~ =— e (2.7)

where v =1/p is the volume per unit mass and Kz is the
isothermal compressibility. The B, I", and 3 ' are
coefficients dependent on Auids. However, it is known
that the combination B /A 'I" is a universal number and
is estimated to be 44.6 for the three-dimensional Ising
model. ' It is then convenient to rewrite (2.4) as

~P
1 + —1/2 g+y, a,

p coex
(2.8)

where a, is a universal positive number determined by

a, =(Pb,s/2e) /C C, =aP B /A'I"-=0. 485, (2.9)

so a, —=0.70. The y, is the specific-heat ratio growing as

y, =C /C, -e (2.10)

See Appendix A for more details. Thus, due to domains,
the temperature becomes inhomogeneous near the inter-
face by the following amount:

(gT ) ~
—1/2

gp
—1/2gTaT

coex

(2.11)

B. Extra dissipation due to heat currents

At the interface we assume the continuity of the
acoustically induced variations 6T, 6p, and 6p, where p is
the chemical potential (the Kotchine conditions). From
the Gibbs-Duhem relation 6p = —s6T+ v 6p, we find at
the interface

Recently (2.11) was used to explain slow thermal relax-
ation in two-phase states of pure Auids realized in C,
measurements. That is, if a ce11 has a fixed volume,
a small change of the boundary temperature instantane-
ously gives rise to a small homogeneous change in the
pressure which induces a 1atent-heat Aow through the in-
terface due to the temperature difference given by (2.11).
We expect that this exchange of latent heat much slows
down thermal equilibration throughout the ce11.

BT 0p
Bp BT

T Bs

C BT
—(bs)oT+(b, u )5p =0, (2.12)

—= 1+[Pb,s /(2e C ) ]0 . (2.4)

Hereafter 0=1 in the gas phase and L9= —1 in the liquid
phase. The dominant contribution to (Bs/BT)„,„arises
from the derivative of sac~0, where so is constant,
e= 1 —T/T, &0, and hs =2soe~ Hereafter . p=0. 33,
a=-0. 1, and y=-1.24 are the usual critical exponents.
They satisfy y+2p+a=2. On the coexistence curve the

6T= 6p =Av BT 6p,
As Bp

(2.13)

where (BT/Bp)„,„represents the derivative along the

where As =s —sI and Av =v —v, are the differences of
the entropy s per unit mass and the volume v per unit
mass between the gas and liquid phases. Using the
Clapeyron-Clausius relation we thus obtain
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coexistence curve. This means that the Quid stays on the
coexistence curve at the interface. Note that the pressure
inside droplets is higher than that outside them by 2cr /R,
o. being the surface tension. We assume that the acoustic
variation 5p, which is superposed on the above unper-
turbed pressure, is continuous at the interface. We will
discuss the validity of this assumption further in Sec.
IIID. On the other hand, in the emulsion case the
continuity of the heat current was assumed at the inter-
face instead of (2.12).

The temperature deviation 6T obeys
r

a 5T=
Bt

zg
ap . at ' (2.14)

where the first term on the right-hand side represents the
adiabatic heating and the coefficient (BT/Bp ), is slightly
different in the two phases. The diffusion constant D be-
comes small near criticality and is excellently approxi-
mated by the Kawasaki-Stokes formula, ' '

D =kii T, /6~rig . (2.15)

aT
Bp BD coex '

(5p )F

(y, ' a, 85p)F,aT
coex

(2.16)

where use has been made of (2.8) on the second line.
From (2.11) the typical value of F is of order 1. We have
F =0 at the interface from (2.13) and would have F = 1 in
one-phase states from (2.3). In (2.14) we neglect the weak
spatial dependence of 6p and replace 0/Bt by i co to obtain

icoF =icu+DVzF,

which should be solved by letting

F=0 at the interface .

(2.17)

(2.18)

The viscosity g has a very weak singularity and may be
regarded as a constant for qualitative analysis. In the fol-
lowing we solve (2.14) under the two boundary conditions
(2.3) and (2.13) with the adiabatic coefficient given by
(2.8). We are interested in temperature variations on spa-
tial scales much longer than the interface thickness g but
much shorter than the sound wavelength 2~c/co. It is
convenient to introduce a dimensionless temperature
variation Fby the following definition:

T
5p

coex

ty field, respectively, associated with the sound. There-
fore we find

2(a /pc ) l5p l' = f—d r XI V5TI',z 1
(2.19)

where the spatial integral is over a unit volume and k is
the thermal conductivity related to D by

A. =pC D ~g . (2.20)

C 'c'=T P P =T
s coex

Furthermore, we notice the following relation:

ico f drlFl =ice fdr F* D f drl—VFl

(2.22)

(2.23)

which follows from multiplication of (2.17) by F* and in-
tegration over space. The real part of (2.23) is

D f drlVFl =cofdr(ImF), (2.24)

where ImF is the imaginary part of F. Now we obtain a
very simple expression for the attenuation o,a& per wave-
length,

aDi —(2~c /co)aD =era, (ImF), (2.25)

where ( ) denotes taking the spatial average over many
domains.

So far we have neglected a small difference in D in
(2.14) and that in A, in (2.19) between the two phases.
They give rise to higher-order corrections to aD as e —+0.
We only take into account the small difference in
(c}T/c}p), between the two phases.

C. Nearly Hat interfaces

It is very easy to solve (2.17) when the interface is near-
ly fiat as compared to the difFusion length lD =(D/co)'~ .
This means that the domain size R is much larger than
ID, so

co &)DR (2.26)

Then the specific heat C arises from A, [if the right-hand
side of (2.19) is rewritten in terms of D] and cancels 1/C
arising from 1/y, =l(5T);„h/5Tl [see (2.11)]. In fact,
substitution of (2.16) into (2.19) yields

2caD =a, D f drlVFl (2.21)

where further use has been made of V(OF)=HVF due to
(2.18) and the following thermodynamic relation:

It goes without saying that F is meaningful only on spa-
tial scales much longer than g.

The sound attenuation aD per unit length due to
domains is related to the effective (frequency-dependent)
bulk viscosity gD (Refs. 8, 23, and 34) due to domains by
2aD =/Den /pc . The heat production per unit volume
should have the form

gDk u = /DE l5p/pl =-/Dc'—l5p l
/c p

where k =co/c and u are the wave number and the veloci-

F= 1 —e~p( —lclx I),—

where lxl is the distance from the interface and

v= (i co/D)' = ( 1+i)(co/2D)'

(2.27)

(2.28)

cu being taken to be positive. The spatial average of F is

(F)=—1 —A f d~ e
—

I
—

1 —2A/~, (2.29)

Then the problem is nearly one-dimensional and the solu-
tion to (2.17) is
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co=coR /D =co*(R/g) (2.31)

where 3 is the interface area per unit volume and is of
order P/R, P being the volume fraction of the minority
phase. Therefore (2.25) leads to

ariz = era—, (2D/co)' /I for DR (&co «Dg . (2.30)

It is convenient to define a dimensionless frequency 9 by

Here nD is the droplet density and P= —3irR nD. There-
fore aD& becomes

6m.a, g[1+e '(sinz —cosz)]
O'Da z(1+e '—2e 'cosz)

(2.38)

where z—= (2co)'/. The right-hand side cosz of (2.38) is
complicated, so that we propose the following approxi-
mate expression:

where co* is the usually defined scaled frequency,

co*=cog /D =co/I
~ . (2.32)

2 1 2aDi=3ira, g —+
co (2co )

(2.39)

Then,

(2.33)

Recall that the attenuation per wavelength e& in the
one-phase region arises from the critical Auctuations and
is of order co* for co* 5 1. Hence uD& exceeds a& at
low frequencies co & co~ and (2.30) yields

~x =D (4/R I')'" (2.34)

If P- —,', cox is surely larger than DR and smaller than

Dg . For small P this expression for co+ holds for
P(R /g) ) 1 from the initial assumption (2.26). Note that
co& shifts to lower frequencies as the coarsening proceeds.

In Appendix C we shall see that the mass Aow is negli-
gible for nearly planar interfaces near criticality. In ac-
cord with this (2.30) is consistent with results for the
emulsion case ' in the region ~))DR

The right-hand sides of (2.38) and (2.39) behave in the
same manner both for 9 (( 1 and 9&) 1 and the
diff'erence is within 20%. For co )& 1 we have

aDi -P/+co in accord with (2.24). Surprisingly, howev-
er, we have aDi -—P/co for co & 1, which indeed grows up
to order 1 for co = /.

In Appendix 8 we shall see that interference among
droplets suppresses the above growth at very low fre-
quencies co&/. We propose the following approximate
expressions which describe the overall behavior of (F):
(F) —= I/[ I+3$[1+coth(ico)' ]/(ico)'/ j

1 2—= 1/ I+3/ +
i co ( i co )

(2.40a)

(2.40b)

The first line is an interpolation of (2.37) and (87), while
the second line is a further approximation of the first line
and reduces to (2.39) for co ))P. If co « P, we obtain

D. Spherical droplets
(F)—= ico,= 1

3
(2.41)

Let us consider a dilute assembly of spherical droplets
in the nucleation process. Their slow evolution will be
neglected and their size distribution will be treated as
monodisperse for simplicity. We first solve (2.17) for a
single droplet assuming F~1 far from it and F=O at
r =R, r being the radius from the droplet center. The
solution reads

1 —(R /r)sinh(icr )/sinh(icR ) for r & RF=
1 —(R/r)exp(~R icr) for r &—R .

(2.35a)

(2.35b)

For co «1 we have E= 1 —R/r outsid—e the sphere and
F=—0 inside it. As a result V'T is nonvanishing outside
the sphere even in the limit co —+0,

l&Tl=~, y, '/215TIR/", (2.36)

—= 1 —3$[1+coth(ico)'/ ]/(ico)' (2.37)

where use has been made of (2.16) and 5T
—= ( BT /Bp )„,„5p. Then (2.19) or (2.21) suggests
aD= DR Plc or alii -—Pleo, P bei—ng the volume frac-
tion of droplets.

More precisely, we calculate aDi using (2.25) in the fol-
lowing. First we neglect interference among droplets to
obtain

(F ) —= 1+nD fdr(E —1)

2A,OD&= a, co .
3P

(2.42)

The relation (2.38) or (2.39) holds in the region P & co « 1.
The crossover at co=/ occurs when the diff'usion length
lD is of the order of the so-called screening length 1, in-
troduced in previous theories of nucleation,

1 —(4vrRri )
—i /2

( 3P ) 1/2R (2.43)

5R = ,'13D (i coR ) '5p /(p, —p—) —. (2.44)

We require ~5R
~
((R to find another lower bound of co as

co )) i 5p i /(p, —p) .

The mass conversion rate per droplet is
r

4~pR 5R —= 2rrf3pDR5p/(p, —p—) .
8t

(2.45)

(2.46)

Thus Zener's isothermal limit is attained only for co & /
or lD ) /, in the dilute case. In Fig. 1 we plot o.D& on the
basis of (2.40a) for /=0. 1 and 0.2.

What is the origin of the anomalous attention
aDi —-P/co in the region P (co & I? It is due to the dissi-
pation of latent heat periodically generated or absorbed
by oscillating droplets. Appendix C will show that the
sound induces a small oscillating variation 6R of the
droplet radius. For co & 1 it is given by
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The above ratio is very small and the viscous damping is
obviously negligible.

0.4-

0.2

0.2

P=O. I

E. Attenuation in spinodal decomposition

We suppose spinodally decomposing fiuids at /= —,'.
The relatively high-frequency behavior (2.30) remains
valid. The low-frequency regime co & 1 has a sizable
width only when yz «DR . If 9 & 1, the heat current
extends over distances longer than R. If P is not small,
the distances between domains are of order R and the
temperature equilibration can be nearly achieved even on
the acoustic time scale. Here (2.17) suggests F-co and
we may set F= (i co—/D)F, , where F, is real and satisfies

V' F)= —1, (2.50)

FIG. 1. The attenuation o.D& per wavelength due to domains
vs co =coR /D in near-critical pure Auids at &P =0.1 and 0.2 on a
linear scale. Use has been made of (2.40a). aD i -a, coR /D =a, co . (2.51)

in the bulk region and F& =0 at the interface. For P= —,',
R is the unique length of the domains and (F, ) =R, so
that we find for co & 1,

5uI = (1—
p /pI ) 5R,a

(2.47)

The latent-heat production rate at the interface is equal
to (2.46) multiplied by b,s. We should note here that the
acoustic pressure variation can be slightly discontinuous
at the interface by (2cr/R )5R. Its eff'ect is, however,
negligible even at low frequencies as long as co) PR, /R,
R, being the critical radius of nucleation. See the last
paragraph of Appendix C for its justification.

However, we should note that, even without sounds,
the latent-heat generation (or absorption) of a growing
droplet in a metastable medium induces a temperature
deviation decaying as I lr at long distances. The heat
dissipation of growing droplets is much greater than that
induced by sounds by the factor of [(p —p,„)/5p] (see
Appendix C). Therefore ambiguity remains in separating
the small dissipation of sounds from that of growing
droplets at very low frequencies. By this reason (2.39)
and (2.42) are still not well established for co &(1, which
requires us to construct a more systematic theory.

Here we also estimate the order of magnitude of the
viscous damping using the results in Appendix C. For
9 & 1 the acoustically induced velocity field immediately
outside a gas droplet is

III. SOUND VELOCITY AND ADIABATIC
COMPRESSIBILITY IN TWO-PHASE STATES

A. Kramers-Kronig relation

It is known that the complex sound velocity cD(m) is a
causal response function and is analytic for Re(iso)) 0.
Here we suppose

(5p ) exp[iso( —x/c +r)] . (3.1)

Therefore, due to the Kramers-Kronig relation, once
we know the co-dependent attenuation, we can find the
co-dependent dispersion without going into details of the
dynamics. Notice that our derivation of aD& is a pertur-
bation theory, where we have assumed that the sound ve-
locity is nearly equal to the thermodynamic value
c=[(5p/5p), ]' and ~aDi ~

(&1. Our theory is valid
only to first order in the domain contribution, so that

cD/c —1 —= —,'a, ((F ) —1), (3.2)

where F is defined by (2.16) and use has been made of
cD~c for co))1. The sound velocity is the real part of
cD and is an increasing function of co from (2.29) and
(2.40) as

where we have used (Cl) assuming us =0 inside the gas
droplet. The velocity gradient outside the droplet is of
order 5u&/R, so that the heat product rate Q„;, is estimat-
ed as

a, (D/2')' A for co))P
1 —Re(cD/c) -=',

—,'a, for co &(

(3.3a)

(3.3b)

'2

Q„;,-Pg(1 —ps/p() 5R R
Bt

(2.48)
which holds for any P. We notice that the right-hand
side of (3.3b) is remarkably of order 1 but is inconsistent
with the assumption ~cD/c —

1~ &(1.

Q„;,/Q„„,-(1—pg/p, )'(g/R)' . (2.49)

This should be compared with the heat production rate
(2.19) due to heat conduction, which will be written as

Qz„, here. Using (2.15) and (2.44) we find
B. EfFective adiabatic compressibility

To remove the above defect in (3.3b) we here devise a
formula for a frequency-dependent (complex) compressi-
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1/pea (cu)'=KD (co), (3.4)

bility KD(ai) in two-phase states, taking into account heat
conduction. The following discussions can be used gen-
erally at low frequencies even away from criticality. In
bubbly Auids, if co is much smaller than the so-called bub-
ble resonance frequency, ' ' ' the droplet motion is
governed by heat conduction and the attenuation due to
scattering is expected to be much smaller than that due
to heat conduction. The complex sound velocity cD(co)
defined by (3.1) is expressed as

ing expression for w:

w = [As V Ts A—
&
V T& ] n,1

T ss si
(3.13)

where V Tg and V T& are the temperature gradients at the
interface in the gas and liquid sides, respectively, k and
A, I are the thermal conductivities in the two phases, and n
is the normal unit vector from liquid to gas.

The surface integral in the second term of (3.12) may
be transformed into a volume integral using the Gauss
theorem. Integration of (3.12) over time yields

where p is the average mass density given by

P =4sps+4ipi . (3.5)
5V= f dr —5u- aT f dry%' 5T .2

U lMT Bp
(3.14)

The Ps (or P&
= 1 —

Ps ) is the volume fraction of the gas
(or liquid) phase, while ps and p& are the mass densities in
the two phases. We rewrite (3.1) as

The second term on the second line of (3.11) and the
second term in (3.14) will take a simple form if added and
expressed in terms of F, (2.16). Here we use

(5p ) ~ exp( icox/c—,tt aDx—+idiot ) . (3.6)

1/c, s.=Re[pKD(co) ]'

nD = —cu Im[pKD(co)]'~

(3.7)

(3.8)

The effective sound velocity c,z and the attenuation nD
per unit length are expressed as

—l copCp
aT
ap

~V 6T=icopC 6T— BT
ap, '6p

aT
a coex

5p(F —1) .

(3.15)

The attenuation per wavelength is of the form,

+DE = —2~ im[KD(cu)'~']/Re[KD(co)'~'] . (3.9)

The F obeys (2.17) and (2.18); however, D takes di5'erent
values, D and DI, in the two phases. Some manipula-
tions lead to

5plp = —6 V/V

—=Kt, ( ai )5p .

(3.10a)

(3.10b)

The second line is the definition of KD(co). Now the task
is to calculate 6V in two-phase states. Within a domain
the specific volume U changes as

aU
~ + aU

[Bp & BT

We consider a small volume element containing many
domains in the Quid. Its linear dimension is much short-
er than the sound wavelength. Its volume in the absence
of the sound is denoted by V and its small change due to
the sound by 6V. Then the change of the average density
6p is related to 6 V and 5p by

5V/V=5p fdr —[1+Z(l—F)] .
1 BU

U BP
(3.16)

The coe%cient Z is simply of the form
2

Z=(y, —1)
BT ap
BD BTcoex S

(3.17)

y, being the specific-heat ratio. We have used the identi-
ty stated below (1.7), (2.22), and (Bu/BT)~/(Bs/BT)~
=(Bu/Bs)~ =(BT/Bp), . Recall that the same factor ap-
peared in (1.7). Near criticality we simply have Z-=a,
from (2.8). It will also be useful to express Z in terms of
the derivative of the specific entropy along the coex-
istence curve,

2

aU BU

ap, '+ aT
aT

5p
ap

(3.1 1) Z 2c2TC 1 aT
BT „,„Bp (3.18)

a 1a(5V)= fdr —(5u)+—fdS(bu)w,
U at

(3.12)

At the interface, however, there can be mass conversion.
Let w be the mass Aux through the interface from liquid
to gas; then, due to the difFerence AU=U —

Ut of the
specific volume, a volume increase takes place at the in-
terface at the rate (Au)w per unit area. Therefore, the
rate of the total volume change consists of two parts,

Use has been made of the formula written on the first line
of (2.4). For gases Z=Zz is typically of order 1, but it
can vanish at a particular temperature. This is because
the specific heat T (Bs /BT )„,„of saturated vapor is
known to change its sign from positive to negative with
lowering of T. For liquids we expect that Z =ZI grows
as (BT/Bp), ,„~u with increasing u /u&, where the oth-
er factors in (3.18) are assumed to change more slowly.

Thus from (3.10) we arrive at the desired result,

where the integral in the first term is within the volume
element and that in the second term is over the interfaces
contained in it. In Appendix C we will derive the follow-

KD(co) =(Ps/pscs )[I+Zz (1 F)]-
+(P&/p&c, )[I+Z&(1 F)&], —(3.19)
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where c and c& are the sound velocities of the gas and the
liquid, Z and Z& are the values of Z defined by (3.17) in
the two phases, and ( )g and ( ) I are the spatial averages
in the gas region and the liquid region, respectively.

1 —c~ii/c

0.2-
(a)

C. Near-critical Auids

Near criticality
Z —=Z&—=a, , so that

we have p =-pI, c —=cI, an

KD(co) —= (1+a, (1 F) )—,
pc

where ( ) =Ps( )s+Pt( )&. Therefore,

c /ci, ( co ) —= 1+a, ( 1 F) .—

(3.20)

(3.21)

$0
—2

The sound velocity c,z tends to the following value in the
low-frequency limit (or in the isothermal limit):

c,s.=cD(0)=c/(1+a, )' —=0.82c, (3.22)

irrespectively of the volume fraction p. The expression
(3.21) is consistent with (2.25) and (3.2) only when
a,2(1 F) is s—mall compared to 1. Particularly, when
one phase is dilute with a small volume fraction P, (2.40b)
[or (2.40a)] gives an overall approximate expression in the
region ru=roR /D ( (R /g),

c /ci, ( cu ) —= I +3a, P( I +2Vi ru ) /[i co+ 3$( 1 +21/i ru ) ] .

(3.23)
10 10

In Fig. 2 we plot 1 —c,tr/c and aDi defined (3.8) and (3.9)
on the basis of (3.23). The limiting sound velocity (3.22)
is attained only at very low frequencies, co (/DR . The
maximum of aDi is of order 1 at co —=3/DR

The result KD(0)—=(1+a, )/pc means that the zero-
frequency adiabatic compressibility in two-phase coex-
istence is larger than that of pure phases on the coex-
istence curve by the factor 1+a, . Interestingly Bailey
and Cannell have recently found that the specific heat
(C, )„,„ in two-phase coexistence is larger than that of
pure phases C, on the coexistence curve by the same fac-
tor 1+a, , as e~O, owing to mass conversion between
the two phases.

FIG. 2. (a) 1 —c,lI/c vs co=coR /D on a semilog scale at
/=0. 005, 0.05, and 0.15. Here c,tr and c are the sound veloci-
ties in two-phase states and in one-phase states, respectively. (b)
The attenuation +DE per wavelength vs co on a semilog scale at
/=0. 005, 0.05, and 0.15. The peak height becomes smaller
than that from (2.40).

istence curve as cu ~0 or, in our notation,
6T=(BT/Bp )„,„5p throughout the fiuid as cu 0. Their
expression can be shown to be equivalent to (3.24). If the
gas phase is dilute, (3.24) holds only when

D. Fluids far from criticality (ru(D R, cu«P DiR (3.25)

(1+Zs)+ 2 (1+Zi)
p&cg plcI

(3.24)

The Z and Z& have arisen from heat conduction. It is
interesting here to mention a work by Landau and
Lifshitz. They calculated the sound velocity in two-
phase states by assuming that the fluid stays on the coex-

In Sec. II we have seen that F cr-co and (F)—+0 as
co —+0. More generally we have (F)s~0 and (F)I~0
as co~0, so that the zero-frequency sound velocity be-
comes

o)))D R, co))DIR (3.26)

the thermal diffusion lengths in the two phases are much
shorter than R and (2.29) indicates

The first condition ensures thermal equilibration within
gas bubbles, while the second ensures thermal equilibra-
tion in the liquid region as can be found from (2.40). If

(&1, the second condition requires extremely low fre-
quencies. We notice that cD(0) tends to cI/Ql+Z& as

P ~0. This is not a contradiction because cD(ro)~cI as
~0 if cu is fixed at a nonzero value. If the liquid phase

is dilute, the conditions for (3.24) are obtained by ex-
change of the subscripts, g and 1, in (3.25).

On the other hand, at relatively high frequencies
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Ps(1 F—)s—= A(D /ico)'~

pi ( 1 F—) i = 3 (Di /i co )
' ~

2 (ico)
2

PI CI

where 3 is the surface area per unit volume. Then
'Z D'" Z D'"

KD(co) —= +
~

+
Pc EM Pg cg

(3.27)
thermodynamic coordinate axes bear a special relation-
ship to the coexistence surface or the critical line.

The thermodynamic state of binary mixtures will be
represented by the three independent field variables, T, p,
and the chemical potential difference 6 =p1 —p2 per par-
ticle. ' The corresponding potential is p2 (the chemical
potential of the second component per particle) and the
Gibbs-Duhem relation is

(3.28)
dp2 = —sd T—Xd 6+vdp . (4.1)

where cEM is the sound velocity in Wood's theory, '

1

2
CEM

&g
p

pg cg
2 7

pact
(3.29)

3ctig (Zi/pic( )( I + "I/ko)
KD(co) = +

PcFM ico+3P (1+(/ico)
(3.30)

where co= coR /D&
—and P ((1. We have retained

(ico)' in case of D& ((D and have multiplied the factor
of —,

' because the gas-phase side has a homogeneous tem-

perature. The attenuation cxa& grows as 1/co in the re-
gion Ps (co(1, surprisingly, and becomes weak as co in
the region co(P . It goes without saying that when
liquid droplets are suspended in a gas, the corresponding
expression for KD(co) can be obtained by exchange of I
and g in (3.30).

p being given by (3.5). Note that the above result is con-
sistent with the effective-medium theory. ' ' lt neglects
heat conduction and predicts the sound velocity CEM
determined by (3.29). ' Obviously the effective-medium
theory is valid in the frequency region (3.26). In the ex-
periment of Coste, Laroche, and Fauve, ' the radius of
gas bubbles was 0.5 mm and (3.26) was satisfied. In ac-
cord with this, their data on the sound velocity were ex-
plained by the effective-medium theory rather than by the
Landau-Lifshitz's theory. Notice also that the second
term in (3.28) gives the attenuation ccDi proportional to

—1/2

We then examine the anomalous low-frequency at-
tenuation due to latent-heat generation. For liquids with
gas bubbles, we may readily generalize (3.23) for
a«D R as

We slightly changed the definitions of s and v in the pre-
vious sections; they are now the entropy and the volume
per particle, respectively. Then n =1/U is the number
density and X is the (molar) concentration. Following
Ref. 43 we define dimensionless deviations,

m, (r, t ) = kii '5s (r, t ), m i( r, t ) =5 X(r, t ), (4.2)

h, (r, t)= 5T(r, t), hz(r, t)= 65(r, t) .= 1 1
(4.3)

Neglecting the velocity field we write the linear hydro-
dynamic equations as

2
m, = —7 J, =g IC, V'h

j=l
(4.4)

where K," (=K, ) are the Onsager kinetic coefficients and
the current densities J; are written as

2

J;=—g K~Vhj . (4.5)
j=1

A mode-coupling calculation yields

where K; are the background parts and

(4.6)

Bp
(4.7)

The D is the diffusion constant of the critical Auctuations
given by (2.15), (Bn/ )pc) &~rE r, and hence we have
roughly S ~g. The a, and a2 are dimensionless parame-
ters defined by

IV. BINARY MIXTURES

A. Coupled diffusion equations

k
—1 ~p
a vc

h, coex

Bp
2 c

T, coex

(4.8)

(4.9)

In binary mixtures the entropy and the concentration
obey coupled diffusion equations and the calculations are
very complicated. ' Nevertheless our final result is
very simple: the previous formulas for near-critical pure
fIuids can be used asymptotically even for near-critical
binary mixtures if the coefficient a, for pure Auids is re-
placed by a weakly temperature-dependent coefficient Ab
defined by (4.43) below. This is because a diffusive mode
undergoing critical slowing-down dominantly dissipates
sounds owing to a strong increase of the Onsager kinetic
coefIicients. ' ' For simplicity we exclude exceptional
cases such as critical azeotropy, which arise when the

h3=(U, /ks T, )5p . (4.10)

Then ct;= —(c)h3/Bh;)„,„and hence the vector (cti, cc2, 1)
is orthogonal to the coexistence surface in the h1-h2-h3
space.

where U, is the critical point value and (c) /dT)t, „,„
and (c) . /c)b, )z.„,„are the derivatives on the coex-
istence surface. We assume that a, and n2 are neither
zero nor infinity. The critical azeotropy occurs when
F2=0 at a critical point on the critical line. Let us define
a dimensionless pressure deviation h 3 by
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To linear orders in the deviations we have where

Bpl.

,&, ah,
" (4.11)

After some manipulations we may rewrite (4.4) in the
form

f =e h.J J (4.21)

f =(e W) h3+D V' f). , (4.22)

The difFusion equations for f i and fz are decoupled from
(4.12) as

h;=W~ h3+ g L; 7 hj,

where 8' are the adiabatic coefficients given by

Bh,
=k~n,

ah, '
ap

~h2 aa=n,
BP

(4.12)

(4.13)

(4.14)

where W=( W„Wz ).

B. Boundary conditions

Far from the interface 5T and 5A are perturbed by 5p
adiabatically (or with fixed s and X) and h; = W, h3 [which
is the counterpart of (2.3)]. At the interface we require
the continuity of h „hz, h3, and 5pz. Then (3.1) yields a
generalization of (2.12),

with

2

L, =g A, Kk, ,
k=1

(4.15)

ah,

BPZJ.J p

(4.16)

where the derivatives are performed with p and the other
density (m, or mz) held fixed. In the usual notation 3,,
are given by

BT

X

n, =1/v, being the critical density. The differences of
8'& and W2 between the two phases are at most of order
e +~ (see Appendix D). The matrix IL, Iis a pr"oduct of
two matrices,

—(b,s)5T —(b,X)5b, +(b,v )5p =0, (4.23)

where As, b v, and AX are the differences between the two
phases all of order e~. Because (4.23) holds for any
(5T, 5b„5p ) on the coexistence surface in the T b;p-
space, so from (4.8) and (4.9) we find

Av
As = k~ai

vc

hvAX= —a2v
C

(4.24)

(4.2S)

We may rewrite (4.23) in terms of the dimensionless field
variables as

a,h, +a2h2+h3 =0 . (4.26)

In Ref. 41 we find e, —=(a„az) as @~0 and (4.26) be-
comes the boundary condition for the slow mode,
f, +h 3

—=0 at the interface. We introduce %' by

1 BA 1 BT
T, Bs T, BX

(4.17)

1
A 22

—
k

It is known that L has two eigenvectors, e, and e2,

4'=f, +h3 =a,h, +azhz+h3 .

The field 4' vanishes at the interface and obeys

in% =i~8h, +DV'%,

where D is defined by (2.1S) and

8 =a(8')+a28'2+1

(4.27)

(4.28)

L.e =D e (4.18)

(4.19)

It readily follows that e;.e ~5; . Reference 43 shows
that e, -=(a„az) and e, e, -=(Bp /Bn ) rz/kzi T —E && 1,
whereas e2 and e2 are nearly independent of e and
ez ez=O(1). We decompose h=(h„hz) into the two
modes,

h=f](e] ei) 'e]+fz(ez ez) (4.20)

The first mode has a small diffusion constant D&, which
may be equated to D given by (2.15). The second mode is
insensitive to e and has a nearly constant diffusion con-
stant D2. Therefore D& ((D2 near criticality. The con-
jugate eigenvectors e are defined by

e =Ae. .J J

Bp BT

x
Bp BA

T coex p sX

(4.29)

The W goes to zero at criticality and in Appendix D we
shall see

m- ~'&+'"e (4.30)

(y+a)/zh (4.31)

Furthermore, we define

F=% /8'h, . (4.32)

Therefore the inhomogeneities of f, (or ql) due to
domains are of the following order:
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(f );„„-e+~h (4.33)

The boundary condition can be found as follows. The
discontinuities of the currents J, and J2, (4.5), along the
normal vector n should be proportional to (b,m, )w and
(hm2)w, where bm, =hs/kIi, bm2=bX, and w is the
mass current through the interface (see Appendix C).
From (4.24) and (4.25) we thus obtain at the interface,

Then I' obeys (2.17) and (2.18) and is the counterpart for
F for pure voids.

We should then analyze the equation for f2. Because
the difference of e2 W in the two phases is of order e +~

(see Appendix D), the inhomogeneities of fz are of the
following order:

Q D (f )2 g( —1 2a+2Pg 1/2 (4.39)

For lii )R the relaxation of f2 can follow the sound due
2

to (4.36) and Q2 behaves as for emulsions,

Q &2a+2PgR —
1( R 2/D )2 (4.40)

The coefficient in (4.40) is determined such that (4.39) and
(4.40) are connected smoothly at co=D2R . Comparing
(4.38), (4.39), and (4.40) we conclude that Q, asymptoti-
cally dominates over Q2, although the difference between
(4.38) and (4.39) is not large.

Retaining only the slow mode (4.38) becomes

2(aD/pc)lopl'=nkgT fdrSIV fil', (441)

1
n [J,]= n [J2], (4.34)

where S is defined by (4.7). Therefore the attenuation aD
or aDi assumes the same form as (2.21) or (2.25) except
that a, is replaced by another coeKcient Ab given by

where [ ] denotes taking the discontinuity at the inter-
face. Using K e.=D/e, we may rewrite (4.34) as

2

g D (n. Vf )C, =O, (4.35)

where C —= (ai.e, )/(e .ej) with ai =( —a2, a, ) being or-
thogonal to a=(ai, az). We note that Ci and C2 are of
order 1 from results of Ref. 43, the spatial scale of f, is
shorter than that of fz by the factor (D i /D2 )', and
(fi);„h and (fz);„h are given by (4.31) and (4.33). These
relations indicate that (4.35) reduces to the condition for
f~ as E~O,

Bp Bn

n ~ Bp
(4.42)

Ab =a, b, /y, ,

where

(4.43)

1+ .aA dx

(4.44)

In Appendix D we shall see that the asymptotic behavior
of Ab is of the form

n [Vf2]-=0 . (4.36)
db dX
dT ds

dU dp
dT ds

This boundary condition is the same as that for tempera-
ture variations in emulsions and implies no latent-heat
eA'ect from the fast mode in binary mixtures.

C. Heat production

We next calculate the heat production rate, which is
related to aD as in (2.19),

2(aD/pc)l5p l =nkvd Tf dr g K; (Vh; ) (Vh )

l, j
=nkIi Tf d r + D (e .e )

'
l
Vf l

(4.37)

where the integral is within a unit volume. We will show
that the slow mode j= 1 gives the dominant contribution
on the second line. This means that, on the first line, the
critical part of K, , the second term in (4.6), gives rise to
the dominant contribution in (4.37). The contributions
from j=1,2 will be written as Qi and Qz. When the
diffusion length ID =(D, /cg)' for the slow mode is

shorter than R, Q, is estimated as in (1.4),

Q D E
—i'(f )2 g I

—i &v/2+a g ~1/2 (4 38)

where A is the surface area per unit volume. If
lD =(Dz/co)'/ for the fast mode is shorter than R, we

obtain

y, =C~x/C, x =KTL/K, x (4.45)

Here (d /d ), denotes taking the derivative along
the critical line. The specific-heat ratio y, behaves ase, KT~ and K,~ being the compressibilities, so that
Ab ~ e . Note the above result cannot be used at critical
azeotropy, where a&=0 or (dh/dT)

V. SUMMARY AND CONCLUDING REMARKS

We summarize our main results. Section II treats
near-critical pure fluids. We have first calculated a small
difference of the adiabatic coefficient (AT/dp), between
the two phases, which leads to inhomogeneous ternpera-
ture variations (2.11) due to domains. The boundary con-
dition at the interface is given by (2.13) from the con-
tinuity of the chemical potential. It is diAerent from the
boundary condition for emulsions, in which the mass Row
through the interfaces is prohibited. With the above two
results the heat conduction equation (2.14) with the adia-
batic efT'ect has been solved for planar and spherical inter-
faces. In terms of a dimensionless temperature variation
F(r) defined by (2.16), the attenuation aD& has been ex-
pressed in a simple form as (2.25). In the adiabatic fre-
quency region co)DR the behavior of aD&( ~ I/v'co)
has been commonly found in other systems such as poly-
crystals or emulsions. However, as a new result, latent-
heat generation can be crucial for co(DR when drop-
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lets are sparsely distributed. Section III gives an elegant
expression for the effective adiabatic compressibility
KD(co) of two-phase pure Quids, where we have taken
into account heat conduction and latent-heat generation
through the interfaces. Section IV treats binary mix-
tures, whose thermodynamics and hydrodynamics are, in
principle, well understood but are cumbersome in actual
calculations. We have shown that the slow diffusive
mode gives rise to acoustic anomalies in two-phase states,
which are nearly the same as for pure fluids at least close
to criticality.

We make further remarks in the following.
(1) For near-critical pure fiuids the analysis is very sim-

ple and the results are universally independent of fluids.
Particularly simple is (3.22), which states that the zero-
frequency sound velocity is decreased by 18% in the pres-
ence of domains. It is similar to the relation for the
specific heat in two-phase coexistence found by Bailey
and Cannell.

(2) We should stress that essentially the same effects ex-
ist in genera1 two-phase fluids, although they are ex-
pressed in more complicated forms than near criticality.
Our expression for the adiabatic compressibility KD(co),
(3.19), incorporates two apparently contradicting theories
for sounds in bubbly fluids, the effective-medium theory,
and the Landau-Lifshitz theory, as its high- and low-
frequency limits. Furthermore, it gives expressions for
attenuation, which was neglected in the above two
theories.

(3) It is of great interest to detect the anomalous at-
tenuation, aL),&

~ 1/co, due to latent-heat generation. The
theoretical formula is given by (2.39) near criticality and
by (3.30) far from criticality. This attenuation mecha-
nism seem to have not been noticed in the literature and
should also be present in other two-phase systems.

(4) Experiments should be much easier in binary mix-
tures than in pure fluids, although our analysis in Sec. IV
is limited only to the case near criticality and the acoustic
relations involve the nonuniversal coefficient 3& of the
order of e .

(5) I hope that this paper will be the first one to revive
the idea of Zener and Isakovich and to investigate acous-
tic anomalies in various phase-separating materials in-
cluding solids. Such phenomena seem to have not drawn
enough attention so far. I would expect that the effect
may be used to measure the surface-area density in two-
phase states and to detect a small fraction of nucleating
droplets.

(6) As a similar effect we could mention enhancement
of the effective shear viscosity due to domains in phase-
separating near-critical fluids.

unit mass s satisfies

pTds =du —Hdp= —dcoz —Hdco (A2)

2
CO p

aha~

a co
CO

a7

(A3)

Note that coh, has different signs in the two phases and 0
(=+1 in the two phases) has been multiplied.

Picking up only divergent parts (A2) may be rewritten
as

p Tds— ah
av h

+H a7

av
d cor+ (A4)

where devi, =coii, dh+coi, Pr, des, =~i, gh+co, gr, and
the derivatives of (Bh/BB)„etc. are finite as @~0 and
are not written explicitly. We may also choose p and T as
independent field variables. Then,

a
aT

~

=-' a+ a
aB av

(A5)

=(p&)ap, ' a-'
so that

pTds = T dCOh + dCOr +ah a~
(A6)

By fixing p we obtain

pC -=T ah

ap

2

~hh (A7)

In the same manner from p=cu, we obtain

where H=p, +sT=(u +p)/p is the enthalpy per unit
mass, co~ =Bc@/BB, and co =Bco/Bv. We then regard co as
a function of two scaling fields, h and ~, where h corre-
sponds to the magnetic field and ~ to the reduced temper-
ature in Ising spin systems. The B and v are assumed to
be regular functions of h and ~. On the coexistence curve
the critical power laws are

a co
CO

— E'

ah

APPENDIX A

We here prove that a, defined by (2.8) or (2.9) is a
universal number. We choose co =p /T as a thermo-
dynamic potential and B=1/T and v=p/T as indepen-
dent field variables. ' ' ' Then,

de= —udB+pd v, (A 1)

where u is the internal energy density. The entropy per

dp=pT ah

ap

a7.
dcoh +

ap

dA = (ci)i /coi, i, )d'r

Therefore, if p is fixed, we have

a~
dcoh = ' dco

dQ)r + (A8)

(A9)

(A 10)
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Further, using dr=(Orle)T)hdTfrom (A10) we find

PC„—T (Co COh /COhh )
=2 a~ 2 (A 1 1)

It is worth noting that the form (Al 1) assures the two-
scale-factor universality in pure fluids. ' '

If one density variable is fixed, any field variable g
satisfies on the coexistence curve

aT ah
a

Q
a T ~hh /(~hh ~re ~he)

2 2

The specific-heat ratio y, behaves as
2

(A12)

C)g C)P C)g

O'r c)v c)7
. P x

Therefore,

C)i'

ah cohg
(A13)

aT
ap

aT 7

ah T co

a7 aT a~ aT
aT „ah (A14)

where use has been made of the relation,

a7.

C)h

a~ a~ aT
ah, aT „ah

Comparing (A12) and (A14) we thus have

~h /(~hh ~ ~h

(A15)

(A16)

(nD v) ' g g Q exp( —ic~r; —r.
~

)
i jAi rj i

=1—=—fdr & Q, exp( —ic~r —r ~)
1

=4~nDQ/~' . (B6)

The right-hand side of (A16) is asymptotically universal if
the singular part of co is a universal singular function of h
and ~. This is a postulate supported by existing experi-
ments. (F)=1/(I+3cti/iso) . (B7)

The summation over i has been replaced by the space in-
tegral.

Now (B2) and (B5) lead to

APPENDIX B

In the limit of small P droplets may be regarded as
point sources with changes Q;. Taking this into account
we rewrite (2.17) as

( V' +ic )(F ——1)=g Q, 6(r —r,. ), (B1)

where ic is defined by (2.28) and r,. is the center of the ith
droplet. We average (Bl) over a unit volume to obtain

h ((F)—1)=nDQ, (B2)

F= 1+ g Q; exp( —ic r —r;~),
1 1

4',. /r —r, /

(B3)

which holds outside the droplets. We should recall the
boundary condition F =0, (2.18), on the droplet surfaces,
so that for each i we require

4'+ —
Q, +g Qj exp( —ic~r; —

ri ~
)=0 .

1 1

,.~, /r,
—r, f

(B4)

We have set e —= 1 by assuming Q«1. The average
over i yields

Q = 4vrR /( I +4irn DR /ic ) . —

The average of the last term of (B4) has been performed
as follows:

where nD is the droplet density and Q is the average of
I Q,. ). We then integrate (Bl) as

APPENDIX C

We follow the calculations of Turski and Langer to
derive (2.44) and (3.13). We consider a point on a gas-
liquid interface. Let v, vI, v;„, be the fluid velocity along
the normal n on the gas-phase side, on the liquid-phase
side, and the interface velocity along n, respectively.
Then the mass flux w through the interface along n is ex-
pressed as

w =p, (U, —
U,„,) =p, (U, —v,„,), (C 1)

p and pl being the densities on the gas- and liquid-phase
sides. On the other hand, the heat balance at the inter-
face requires

Tsg w kg Tg TSI w k[ TI (C2)

where s and s& are the entropies per unit mass on the
two-phase sides, A,g and A, I are the thermal conductivities,
T' and TI' are the values of n. V T on the two-phase sides.
We then obtain (3.13).

generally w is nonvanishing in the course of domain
growth. In addition, if a small-amplitude sound wave is
sent into the fluid, we have an oscillating mass flux given
by

5w= aT (F'+Fi')5p . (C3)T s —s coex V'1
x

We have used (2.16) and have set A, i =A, =A.. The F' and
Fi are n VF on the two-phase sides. From (2.4) and (2.8)
we notice
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bs =s —s, —= (2/P)a, C (1—T/T, )/y, '~

Further, using (2.1) we find

(C4)
(2crui lhs)5R /R — (5T);„„.1 0

EQ)
(C12)

5w= pD—(F&+Fi')5p/(p, —p) . (C5)

where b, is the supersaturation and do ( o-g) is the capil-
lary length. In near-critical pure Auids do is given by

do=o. C /pT(bs) ~e (C7)

a being the surface tension. When b,
~
((1, we may ex-

press 6 in terms of T or p as

b, =——,'P( T„,„—T) I( T, —T„,„)

= 2&(pcoex p )I(pc pcoex ) (C&)

In the case of planar interfaces (2.27) indicates
F'+F&'=0 at the interface and hence there is almost no
mass fiux, 5w=0. (However, 5wAO even for planar in-
terfaces far from criticality. ) In the case of isolated
spheres we have F'—= 1/R immediately outside the sphere
and F'=—0 inside the sphere for co((1 from (2.35). The
velocity field inside the sphere is also nearly zero, so that
(Cl) leads to 5w -=—p&B(5R )IBt for a liquid droplet and
we obtain (2.44) near criticality. It is worth noting that
(2.44) can also be derived from the Lifshitz-Slyozov equa-
tion for the droplet growth,

QgoR=-
Bt R R

Here we may assume that R ))R, =do/b, (the critical
radius) and b, —=P (the volume fraction) in late stages of
nucleation. We thus find that the magnitude of the ratio
of the second term in (Cll) to (5T);„h is smaller than 1

for co& do/R. The same conclusion may be drawn even
in the case far from criticality.

APPENDIX D

We examine the behavior of the adiabatic coefficients
W, and Wz in (4.13) and (4.14) on the coexistence sur-
face. Leung and GrifBths showed that the critical be-
havior near the critical line in binary mixtures can be
conveniently represented by three field variables, h, ~,
and g. Here h and w are the relevant two scaling fields as
in Appendix A and g is the coordinate along the critical
line. Therefore, if g is fixed at a particular value, the crit-
ical behavior in the h-~ space is the same as that in pure
fiuids. Leung and Griffiths chose co=p/T as a thermo-
dynamic potential, which consists of a regular part and
a singular part, the latter being a universal function of h
and ~ if scaled appropriately.

In binary mixtures the critical behavior of thermo-
dynamic derivatives can be very different from that in
pure Auids when the path of taking derivatives is nearly
parallel to the critical line. This is particularly the case
when two density variables, s and X in our case, are fixed.
Let us express infinitesimal increments of s and X in
terms of those coh =Bc@/Bh and co,=Bco/Br as

D, D
5R -=—5k=——

—,'P —5p/(p, —p„,„), (C9)

where T„,„and p„„are the temperature and pressure
on the coexistence curve. In the presence of sounds p is
composed of the average (without sounds) and the acous-
tically induced deviation 5p. Then (C6) yields

Js
ds =a&d'coz+P, d'co, + dg,

dXdX =a2d'coh +P~d'co, + d g,

where

(D 1)

(D2)

5p —5p, =2o.5R /R (C10)

Assuming the continuity of 5T and 5p= —s5T+U5p at
the interface, the temperature variation at the interface
then becomes

aT 5R5p+
coex s R

(C 1 1)

which coincides with (2.44) because p, —p„,„=—p, —p.
We should note that the discontinuity of the pressure is

2o /(R +5R ) =2cr /R 2o 5R /R + — at the interface
in the presence of a sound. Therefore, to be precise, the
acoustic pressure variation 5p =5p outside a liquid
droplet is larger than that 5p& inside it by

coh = ph dh +coypu

d co~= copgh +co„+1

(D3)

(D4)

Here co~~ =8 co/Bh, co„,=B co/Bh Br, co„=Bco/Br, and
(d . /d ), denotes taking derivatives along the crit-
ical line. Notice that (Dl) is a generalization of (A6) and
(Dl) and (D2) are general if the coefficients, a„az,P„Pz,
are allowed to depend on h, ~, g. The essential point in
the following calculation is that they tend to well-defined
finite values as @~0. We adopt the definitions of Leung
and Griffiths of h, r, and g, except that quantities per
mole in their paper are replaced by the corresponding
quantities per particle. Then the critical values of the
coefficients are as follows:

The second term of (Cl1) is a correction to (2.13), so we
should compare it with (5T);„„=[(OTIC)„,„—(OTIC ), ]5p given by (2.11). Using (C4) and
(C7) it may be transformed into
(4/P)a, ( T, —T)y, do(5R )/R . If we further use
(2.44), it becomes

cubi
= 0!i= kgn

nc

1
CX2 CX2 nc

n

Bp
T h, coex

Bp
aa r, coex

(D6)
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P, —= (n, T, )

1 —(az/a, )(/3, /Pz) =
C

Bp
BT h, coex

(D9)

8T
C

Here a, and az are defined by (4.8) and (4.9), while P, and

Pz coincide with /3, and Pz in Ref. 43 if multiplied by
n, T, . The first two relations (D5) and (D6) readily follow
from the theory of Griffiths and Wheeler. We can also
directly show (D5)-(D8) using (2.25) and (2.35) in Leung
and Griffiths's paper. Another way to derive (D7) and
(D8) is to calculate the specific heat C„»or the compressi-
bility K,» using (Dl) and (D2) and use formulas for their
critical-point-values given by Griffiths and Wheeler" [see
(D18) below]. The following relation holds among the
above coefficients:

two arbitrary field variables i/|, and i/z we may use

a@,

a1/, ,
aq,
ag

ai/z

ag
(D15)

az = lim az+ Az(n n, )+—. (D16)

where n —n, ~ e 0 and A2 is a constant. Thus the
difFerence of (ai/, /ai/z), » is at most of order e +~, lead-
ing to (4.33).

We proceed to calculate Wand A&, (4.29) and (4.42), in
more detailed forms. Let the coexistence surface be
represented by p =p„,„(T,E). Then, if we define
h =p —p„,„we obtain

However, to calculate the difFerence of (ag, /ai/z), » be-
tween the two phases, we must further examine a weak
temperature dependence of the coefficient a2. A careful
analysis on the basis of Leung-Griffiths's theory shows
that

Bh

ag
(~he 2 ~we 1 ) /(~hh ~rv

~he�)

we then set ds =Gx =0 to obtain

(D10)

8'= h (D17)

Obviously 0 is a function of h only near criticality and
0/h =nT for L—eung and Griffiths's choice of h. There-
fore,

ag

where

2(~h%1 ~hh~z)/(hh~~7. ~he) & (D 1 1) W=—nT ae

sX

8$

~ C

dX
(xi az

dX

Gs

dg

«Pz —~zPi »

«Pz —~Ã) .

(D12)

(D13)

(D18)

where use has been made of (D10). This relation leads to
(4.30). We then calculate A&. Griffiths and Wheeler
showed that K,»=n '(an/ap), » tends to the following
value on the critical line:

Here a& and 2 ar nearly constants and Mhh coh

co„behave as (A3). Therefore, on the coexistence sur-
face, we find that (ah /ag), » ~ e' ~8 and (ar/ag), » ~ e,
and hence the derivative with Axed s and X is nearly
parallel to the g axis.

For an arbitrary field variable g we obtain

K,x-——n,
c& JT
c/p cfp

dA dX
GP 8P

8U

GP

(D19)

di/

dg J»

dg

(~z A+~ i P.)~~.
2

Bh=i/g+6
sX

On the other hand, the isothermal compressibility
KT» = n '(an /ap ) Tb»ehaves as

(D20)KT» (n kB ~) (/ z/~2) (~ ~II /~hh )

(D14) which follows from (4.27) of Ref. 43. Then we find
2

+~z V./(~, ~~, /~~~ » ~hh ac bc+sX f T+TX.X (D21)

where i/r is regarded as a function of h, r, and g and i/t&,

and i/
&

are its derivatives. Thus, ( ag/ag ),»
+(d /Id'), as e~—O and the last two terms in (D14) give

corrections going to zero as e~O. For (ai/j&/agz), » with

where use has been made of (D9) and b, is defined by
(4.44). Noting that co&i, =nkzi T(an /ap)T~ in the theory
of Leung and Griffiths and using (A16), we arrive at
(4.43).
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