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The one-dimensional flow of particles thermally desorbed from a plane surface into vacuum is
studied on the basis of a Monte Carlo simulation of the Boltzmann equation. It is assumed that par-
ticles desorb during a finite period of time with a fixed temperature. It is shown then that the flow is
determined by a single parameter, which is essentially the number of monolayers 8 desorbed, and is
inverse to the Knudsen number of the problem. The cases of negligible (6«1) and in part also of
very intense {6»1) desorption fluxes can be treated analytically using collision-free flow and ideal

gas dynamics, respectively. Here the simulation yields very good agreement with theory, indicating
that the code can be used on a wide range of Knudsen numbers. For the gas-dynamical case, a
Knudsen layer is formed by the equilibration of the flow in the vicinity of the surface; it is studied in
some detail. Simulation of flows with 6 1 shows that the particle distribution is far from thermal
equilibrium everywhere in the flow, and deviates strongly from the analytically accessible cases.
For stronger desorption fluxes, the flow is partially equilibrated, such that the velocity component
in the direction of the flow reaches thermal equilibrium, although with a smaller temperature than
the velocity component perpendicular to the flow. The time integrated velocity spectra of particles
measured far away from the surface are discussed for moderate desorption fluxes. They are surpris-

ingly we11 described by a thermal distribution, even though no Knudsen layer forms in this case.

I. INTRODUCTION

Pulsed desorption of particles from solid and liquid
surfaces has been investigated intensely recently. Usual-
ly, information on the particle distribution at the surface,
and hence on the desorption mechanism, is sought by
measuring the properties of the desorbed particles at
some distance from the surface, and by extrapolating the
measured values towards the surface. ' However, the
density of desorbed particles in front of the surface may
be so high that collisions among them will change the
particle distribution considerably; in this case the extra-
polation procedure becomes nontrivial. We wish to
present here a kinetic study of the effect of collisions on
the particle distribution function.

Whereas the case of negligible gas density in front of
the surface can conveniently be described as a collision-
free Aow, the other extreme case of very high gas density
is considerably more complicated. In this case, immedi-
ately in front of the surface a so-called Knudsen layer
forms, in which the nonequilibrium distribution at the
surface —here all desorbed particles stream away from
the surface —is transferred to a thermal equilibrium dis-
tribution with a mean Aow velocity and a temperature
which is considerably lower than the surface tempera-
ture. The properties of this Knudsen layer have been the
subject of intense theoretical studies in the past. '

Downstream of the Knudsen layer, the Aow can ade-
quately be described by the equations of ideal-gas dynam-
ics, until further away the gas density becomes too small
and the Aow turns collision free.

The regime in between the very-low-density collision-
free Aow and the high-density gas-dynamic Aow is the

one which is of interest for most applications in desorp-
tion experiments. This regime is adequately described by
the Boltzmann equation of rarefied gas dynamics. Here,
however, no general analytical solution scheme is avail-
able. It is therefore adequate to use a numerical solution
algorithm; we employ here a Monte Carlo simulation pro-
cedure. ' This method has been used previously by other
authors to study the steady evaporation Aow into a back-
ground gas, ' and the unsteady desorption into vacu-
um. ' ' We wish to extend here these latter studies—
which concentrated on the determination of the velocity
and angular distribution of particles far away from the
surface —and to investigate for a broad range of gas den-
sities the spatial and temporal evolution of the desorption
Aux. By this more systematic investigation, and by com-
paring our simulation results with known analytical stud-
ies, a better understanding of the Aow properties will be
reached.

We present in this paper a kinetic study of the one-
dimensional Aow of particles desorbed during a finite
time interval off a plane surface, which is held at a fixed
temperature, into vacuum. After defining the model used
(Sec. II), the collision-free case of vanishing gas density is
treated analytically as a reference case (Sec. III A). The
other extreme of high density can be treated by ideal-gas
dynamics, implying that the Aow reaches thermodynamic
equilibrium at some distance from the surface (Sec. III B),
and the Knudsen layer formed in this case is studied (Sec.
III C). Finally, the temporal and spatial evolution of
flows for moderate desorption Auxes are investigated,
which are of most interest to actual desorption experi-
ments (Sec. IV), and some conclusions on the velocity dis-
tributions far from the source are drawn.
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II. MADEL

is constant. For a thermal desorption mechanism, the
number density nz depends on the surface temperature
To via the ideal-gas law nv=pi, /kTo, where pi, (T0) is
the vapor pressure of the surface and k is Boltzmann's
constant. The particle number density np of the desorbed
particles immediately outside the surface is no=nv/2,
since only particles streaming away from the surface con-
tribute to the desorption Aux. The mean thermal velocity
in a gas of temperature To is vT=+8kTO/arm, where m
is the particle mass. Since the desorbed current is cosine
distributed, the Aow velocity of the desorbing particles in
the direction normal to the surface is up =VT/2.

The total number of particles desorbed per unit area
consequently is

%=4~,
and assuming each particle to occupy a surface area
X„, , the number of monolayers desorbed is

e=c x„. &. (3)

We shall treat the Aow of desorbed particles as one di-
mensional. This is obviously justified for distances which
are smaller than the lateral extension of the desorption
area on the surface.

A. Boltzmann equation

We introduce a Cartesian coordinate system with its x
axis in the direction of the outward surface normal and
identify the surface as x =0. The properties of the
desorbed gas particles are described by the phase-space
density f(x, v, t), which is defined such that
f(x,v, t )dx d v is the mean number of particles found at
time t in an infinitesimal interval dx around the distance
x from the surface and having their velocity in an
infinitesimal velocity volume d u around v.

We assume that the phase-space density obeys the
Boltzmann equation '

Particles desorb from a plane surface, which is at tem-
perature Tp, between time t =0 and ~. Before and after
this period of time no desorption takes place, while dur-
ing this period the desorption flux

C =—71 y u T
= fl p V p

f(x =O, v, t)= I
2m kTp

mv
P kT

v )0, 0&t&r. (5)

At t &0 and t ) r, we assume f(x=0,v„)O, t)—=0. The
coefficient in Eq. (5) has been chosen such that the
desorbed flux f d v v, fO(v ) equals @; 8(v„) denotes
Heaviside's step function. We assume desorption to
proceed in vacuum. Thus our second boundary condition
reads

f(x~~, v, t)—=0 .

We shall adopt in the following hard-sphere interaction
with a cross section

o(g, Q)d 0= Xd 0,2 =1
4~

such that X is the velocity-independent total scattering
cross section.

B. Scaling properties

We now wish to show that the solution of our problem
depends on only one parameter, which may be expressed
in terms of the number of monolayers desorbed or of the
Knudsen number. To this end we scale time to ~, veloci-
ties to up, the distance x from the surface to

xp —up7 ) (8)

and the distribution function to N/v~ =npup . Denoting
scaled quantities by a tilde, the Boltzmann equation then
reads for hard-sphere interaction (7) in an obvious and
customary notation

with the surface boundary condition

velocities of two particles which after colliding with a
center-of-mass angle 0 attain velocities v& and v.

We now have to specify the boundary condition at the
surface. Here we assume that particles leave the surface
in thermal equilibrium with it; that is, every velocity
component obeys a Maxwellian distribution with temper-
ature Tp, with the obvious but notable exception that
particles must leave the surface in the outward direction,
i.e., u„)0:

2

f(x,v, t )+v„ f(x,v, t )
a

= f d v, f d Qo(g, Q)g(f(x, vI, t)f(x, v', t)

—f(x,vi, t)f(x, v, t)] . (4)

f(x =Ov, t)= e i, v„)0

for 0 ( t ( 1, and zero otherwise.
The parameter Z is given by

Z=NX~ .

(lO)

Here g =
~
v —v, ~

is the relative speed between two parti-
cles of velocity v and v, ; o(g, Q)d 0 is the scattering
cross section for two particles of relative speed g to
scatter into a solid angle in the center-of-mass system
within an interval d 0, around 0; and v& and v' are the

This parameter determines all physical quantities charac-
terizing the system. It is immediately related to the num-
ber e of monolayers desorbed, Eq. (3), if we note that the
area X„, an atom occupies at the surface is roughly —' of
the gas-kinetic cross section X, and hence
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Z is as well connected to the Knudsen number Kn of the
system, albeit in an indirect way, since this depends on
the —a priori unknown —form of the particle distribu-
tion function at the surface. The Knudsen number is
defined as the ratio of the mean free path A. near the sur-
face to the typical length scale xo of the problem

gorithm gives poor results when too few particles are in a
cell. This happens in the expansion front far away from
the surface. In the figures below, we therefore present re-
sults only when the number of particles in a cell is larger
than S.

III. SOLUTION I'OR VERY SMALL
AND VERY LARGE DKSORPTION FLUXES

(13)

The mean free path depends on the particle distribution
at the surface. Assuming for the sake of simplicity the
gas to be in thermal equilibrium, for a hard-sphere gas it
1s

&2m, '

and hence
1Kn=
2Z

(14)

(15)

Alternatively, Kn may be calculated for a half-
Maxwellian distribution at the surface, Eq. (5), i.e., disre-
garding backscattered particles; this gives a result very
similar to Eq. (15).

C. Simulation

An analytical solution scheme of the Boltzmann equa-
tion (4) with the boundary condition (5) is not available.
We therefore solved the problem via a Monte Carlo com-
puter simulation. We adopted Bird's algorithm,
which roughly proceeds as follows: Space is divided into
cells, which are chosen here as plane slabs parallel to the
surface. For small Z, 100 cells, and for larger Z up to
2500 cells were used. Within each cell particles may col-
lide; collision partners are chosen in a Monte Carlo pro-
cedure based on the statistics of the collision frequencies
of the particle pairs available. After a time step At every
particle is moved a distance vent according to its individu-
al velocity v, and may leave its cell. Then the collision
procedure restarts, etc. If a particle hits the surface or
leaves the outermost cell, it is absorbed.

According to this algorithm, the particle distribution
evolves in time. We start at time t =0 when all cells are
empty, and let particles desorb from the surface accord-
ing to the half-Maxwellian distribution (5) until time
t =~. We sample the distribution in all cells at predeter-
mined times. This procedure is repeated several, typical-
ly 20, times, until sufFicient statistics has accumulated.
Table I summarizes important technical parameters of
the simulation. For further details of the algorithm the
reader is referred to Refs. 17 and 24. We note that the al-

TABLE I. Important parameters of simulations.

Number Cell width Time step Total number Number
Z of cells Ax/xo ht/~ of particles of runs

Ti(x, t)= f d u(u +u, )f(x, v, t),
2n k

which describe the spatial and temporal dependence of
the number density n, the Aow velocity u, and the vari-
ances of the distribution in the direction parallel and per-
pendicular to the fIow, r~~ and T~. Following customary
notation these have been expressed as temperatures. It is
obvious that a temperature proper only exists, if not only
each velocity component is equilibrated, but if T~~ and T~
coincide. It is sometimes useful to introduce at least for-
mally a (mean) temperature T as

T =
—,'(Tii+2Ti) (17)

A. Collision-free Bow

For very moderate desorption fIuxes, it is Z ~0 and we
may ignore the inAuence of collisions altogether. Thus
the right-hand side of Eq. (9) vanishes, and the distribu-
tion function f and its moments may easily be obtained
analytically (cf. Appendix A). We display the moments
in graphical form in Fig. 1, and note the following.

In the case of very intense desorption, Z)&1, the col-
lision frequency is very large, such that the particle distri-
bution is locally in equilibrium and gas dynamics applies.
In the reverse case of very weak desorption cruxes, Z « 1,
collisions can be ignored, and the distribution approaches
that of a collision-free Aow. The latter case can be treat-
ed completely analytically, the first case to a large part.
It is instructive to discuss shortly these solutions, since
they represent the extreme cases of desorption flows, be-
tween which the analytically inaccessible regime of Z = 1

is situated, which we shall study in the next section.
These cases also allow to test our algorithm. In Sec. III C
we shall furthermore study some properties of the Knud-
sen layer which is present for intense desorption Auxes.

The information present in the distribution function
f(x, v, t) is far too detailed to be of immediate use. In
this section we shall restrict our attention to the follow-
ing four moments of the distribution:

n(x, t)= f d u f(x, v, t),

u( xt)= —f d u u f(x, v, t),1

n
(16)

Tll(x, t)= — f d'u(u —u ) f(x,v, t),

1 100 0.18 0.1

10 500 3.5X10 ' 2.0X10 '
100 2500 7.1X 10-' 3.3 X 10-'

20 000
50 000
50 000

150
103
25

(i) At t (r, the density has its maximum n =no at the
surface, where the Bow velocity is u =uo. The density di-
minishes farther away from the surface, since there only
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are found. Correspondingly, the flow velocity increases
away from the surface, while the pertinent temperature,
i.e., the variance of the velocity distribution in flow direc-
tion, decreases.

(ii) At t&r a
the sur

gas cloud forms, which moves awa f
~ ~

away rom
surface with time, and disperses. The density im-

mediatel at x =0 isy = zero, since no particles are desorbed
anymore, while —due to the lack f 11' '

cles can
o co isions —no parti-

c es can be scattered back towards the surface. Likewise
oci y vanishes here, since all particles which

remain close to the surface must have zero vel 't P
ticles

ve oci y. ar-
s at large distances x must obey U —= /t,

traveled a distance x in roughly time t. According to this
argument, at large x, the temperature in the direction of
the ow T~~ must be small and the flow velocity u =x It.

(iii) Due to the lack of collisions, the distribution is in
noiiequilibrium, T~~ A Tj everywhere.

iv Since the desorption conditio d h'ons o not c ange
a ong t e surface, v and v, obey a Maxwellian distribu-
tion everywhere with T = To.

U/Vo'3
As exemplified in Fi . 1'g. , our simulation is in good agree-
ment with the analytical results.

B. Gas dynamics
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The case of very large desorption fluxes Z &) 1 is con-
siderably more intricate. Here th fl
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e e ow can evidently be
divided into three regimes.
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the nonequilibrium distribution immediatel at th
face x =0 chchanges due to collisions and reaches '1'b '

um at a distance XK from the surface.
(ii) A re ion in w

'g' ' i.ich there are sufficient collisions to
couple all degrees of freedom, such that it can be de-
scribed by ideal-gas dynamics.

tribution in equilibrium, and the How changes graduall
to a collision-free flow.

ges gra ua y

In this paper we shall not investigate regime (iii), since
here our restric

''ction to a one-dimensional geometry ma
be too severe. We shalla "iscuss the gas-dynamic regime

e ry may

ii in this subsection and the Knudsen I (') '
Sayer i in ec.

In order to determine the gas-dynamic solution for re-
gion (ii), the pertinent boundary conditions must be

the end of the Knudsen layer th fl

d 12, 15
e ow attains sound

speed. ' It is shown in Appendix 8 th t th fa en or times
e gas-dynamic solution can be written down as a

so-called centered wave:

.0 '-----—0.

x/x,
18

3/2

n(x, t)=nz
TK

FIG. 1. (a. ( ) Number density n, (b) Aow velocit u and (c)
perature in Aowp ow direction T~~ as a function of the distance x
from the surface at time t =~ (0 ) t =2 ( ),), and t =4~ (4 ).
Collision-free Aow Z =0. Symbols denote simulation results,
lines the analytical solution (A5).

3 X XK
u(x, t )=u +-K 4

&K

2

0&x —x~ &4u~t, (18)
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TABLE II. Gas density n, How velocity u, temperature T, current j=nu, and Mach number M at the
end of the Knudsen layer x =x&. Comparison between simulation results for Z=100 and analytical
theory (after Ref. 12).

Method

Simulation
Theory

n& /no

0.64+0.03
0.62

1.29+0.04
1.31

0.65+0.02
0.65

0.83+0.04
0.82

0.99+0.03
1

where we assumed a monoatomic gas, uz =+ ,'(kTz—jm )

is the constant How speed at the end of the Knudsen layer
xz, and Tz and n~ are the constant temperature and
density there. In order to compare this solution with our
simulation results, the values of these constants must be
determined from a consideration of the location and the
Aow properties at the end of the Knudsen layer, as will be
discussed in Sec. III C (cf. also Table II). We are working
on obtaining a complete analytical solution of the gas-
dynamic expansion for t )~, cf. also Ref. 26.

In Fig. 2, we plot the gas-dynamic solution and com-

pare it with the simulation results of Z=IOO, corre-
sponding to a Knudsen number of Kn—=0.007. At t=~
good agreement between the gas-dynamic results and the
simulation data is achieved. Immediately at the surface,
in the Knudsen layer, gas dynamics does not hold (see
below). For x ) 3.5xo, we furthermore observe an in-
crease in the temperature which is due to a lack of equili-
bration in the front of the expansion wave. As an
analysis of the data shows, in particular the temperature
perpendicular to the Aow direction Tz increases consider-
ably in this region (cf. also Fig. 5 below).

(a)
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0.5

0 O0
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x/x,

0.0

x/x,
18

FIG. 2. (a) Number density n, (b) Aow velocity u, and (c) temperature T as a function of the distance x from the surface at time
t =~ (o ), t =2~ ( ), and t =4~ (6). Symbols, simulation results for Z =100. Line, gas-dynamic solution for t =~.
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At later times, it is seen how the expansion wave gets
separated from the surface and streams into vacuum,
while a low-density region exists between the surface and
the end of the simple expansion wave. In particular, at
t =2r, a rather sharp change in slope of u(x, t =2r) is ob-
served at the place where these two regions meet, i.e., at
the maximum of the density n(x, t =2r). At this place,
the temperature has its maximum also: In the expansion
wave, thermal energy is transformed to kinetic Aow ener-
gy, and hence temperature decreases in the direction
away from the surface. Going from the density max-
imum towards the surface, temperature must also de-
crease, since it is only low-energy particles which are left
in this region, and since the surface absorbs particles, and
hence energy. While Fig. 2 shows results which appear
qualitatively quite similar to the collision-free solution of
Fig. 1, we wish to direct the attention to two changes.
First the gas cloud travels faster and disperses more
quickly than in the collision-free case; this is evidently
due to the pressure gradient acting as an additional driv-
ing force on the wave. Secondly, at t &~, density and
Aow velocity immediately at the surface do not vanish in
the gas-dynamic case. This is due to particles scattered
back from the gas cloud towards the surface. In particu-
lar, the gas cloud does not separate from the surface.
Negative velocities occur because we adopted the bound-
ary condition that every particle impinging on the wall
x =0 sticks there; this simulates recondensation at the
wall. These features are now discussed more quantita-
tively by a consideration of the Knudsen layer.

1.0
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C. Knudsen layer

The Aow field immediately at the surface cannot be de-
scribed by gas dynamics. This is due to the strong ther-
modynamic nonequilibrium which is imposed by the
boundary condition at the surface itself, which assumes
all desorbed particles to have velocities U„&0. Here a ki-
netic study is mandatory. Such a study is possible by our
simulation scheme. We present in Fig. 3 the results of a
simulation with Z =100 at t =~ for the temperature and
the Mach number (M = u /c, where c is the local velocity
of sound) close to the surface, and in Fig. 4 the velocity
distribution in Aow direction

F(x, v„,t)= jdv dv, f(x, v, t) fd v f(x, v, t) .

The following observations can be made.

(i) As is observed in Fig. 2, the surface density is almost
equal to the collision-free case [n(x=0)=1.01no],
whereas the Aow velocity is considerably reduced
[u(x =0)=0.82vo]. Due to backscattering hence the net
desorption Aux is reduced to a value of j(x =0)=0.834&.
This value is in good agreement with the analytical esti-
mate for the steady state, ' cf. Table II. We note that,
strictly speaking, the simulation data given here are valid
as an average on a surface region extending from x =0 to
x =0.018xo.

(ii) The temperatures in Aow direction T~~ and perpen-
dicular to it T~ roughly coincide at x =0.13xo. The ve-

0.0

x/x,

locity distribution in the Aow direction has been sampled
at x =0.03xo. It may well be fitted by a shifted Maxwel-
lian

F(x,v„t ) =
m(v —u)3/2 2

2mkT 2kT
(20)

indicating that at this point the distribution has equili-
brated thermally in Aow direction via collisions.

(iii) The Knudsen layer has a width of xz =0.13xo.
Given Kn —=0.007, this amounts to an extension over 19K,.
It is dificult to estimate the width of the Knudsen layer
analytically, but it is expected to extend over "a few
mean free paths, ""' ' in agreement with our simulation
result.

(iv) The Aow is subsonic in the Knudsen layer and su-
personic in the gas-dynamic outer layer. It transits M = 1

at x =0.1Sxo, which roughly is the end of the Knudsen

FICx. 3. Temperature in Aow direction T~~ (o ) and perpendic-
ular to it T~ ( ) (a) and Mach number M (b) as a function of the
distance x from the surface at time t =~. Simulation results for
Z = 100.
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FIG. 4. Velocity distribution in How direction F(x,v, t) at
t =~ and x =0.03xp. Histogram, simulation result for Z=100.
Line, fit to a shifted Maxwellian, Eq. (20). Fit parameters:
u =0.94vp T=0.57Tp.

FIG. 5. Temperature in How direction T~~ (0) and perpendic-
ular to it T& (Cl) as a function of the distance x from the surface
at time t =2~. Simulation results for Z =100.

layer xz =—0. 13xo. This is in agreement with theoretical
considerations which argue that the entropy production
which accompanies the equilibration of the Aow in the
Knudsen layer allows the Aow to exceed the velocity of
sound. In the equilibrated gas-dynamic regime the Aow is
supersonic. ' '

(v) We compare in the table the results of our simula-
tions for various quantities at the end of the Knudsen lay-
er with analytical estimates. Good agreement is ob-
tained. This shows that after t =z a Knudsen layer has
formed which is well described by the analytical theory of
stationary Aows.

Analytic treatments of the Knudsen layer" ' ' ' suffer
from a number of drawbacks: They have difficulties in
predicting the extension of the Knudsen layer, and they
have to make assumptions on the form of the distribution
function of backscattered particles at the surface. It is
therefore necessary to supplement these analytic efforts
with detailed ab initio kinetic studies. Simulations like
the one presented here are able to perform such investiga-
tions.

We finally wish to note that after the end of the desorp-
tion process t) ~, the Knudsen layer tends to become
destroyed again due to the small particle densities in the
vicinity of the surface. Figure 5 exemplifies this fact by
displaying the temperatures in Aow direction and perpen-
dicular to it at t=2~. While in the region 3xo &x (5xo,
which constitutes the regime of the expansion wave
separated from the surface, thermal equilibrium is still
conserved, the Aow is in nonequilibrium at 0&x &xo.
Close to the expansion front, x ~ 6xo, the Aow could not
equilibrate due to too small particle densities.

IV. SGLUTION IN THE KINETIC REGIME Z =- 1

For values of the parameter Z around 1—and hence
for desorption Auxes in the experimentally interesting re-

gime e=—1—collisions do affect the particle distribution,
such that the results obtained for collision-free flows do
not hold; on the other side, the number of collisions is
still small, such that local thermodynamic equilibrium is
not established and the gas-dynamic equations do not yet
describe the Aow. This makes a kinetic description of the
Aow mandatory. In the following we shall analyze such a
Aow with the help of computer simulation results.

A. Moderate desorption

We display in Fig. 6 the moments of the simulation
solution for the case of moderate desorption Z=1, for
which around 6=0.25 monolayers are desorbed, Eq. (3).
It is seen that at the end of the desorption period t =~,
density and Aow velocity are sufficiently well described as
a collision-free Aow, whereas the temperatures show that
collisions lead to an energy Aow from the velocity com-
ponent perpendicular to the Aow into the flow direction.
This effect becomes more and more substantial with in-
creasing time, such that at t =4r around 70%%uo of the
transverse energy is put into kinetic energy of motion in
the Aow direction; most of this energy becomes thermal
energy, while the flow velocity is only marginally
influenced around the density maximum. Close to the
surface, however, a considerable backflow of desorbed
particles towards the surface is established, as evidenced
by the nonvanishing density at the surface and the nega-
tive Aow velocity there.

Evidently, the Aow is nowhere in thermal equilibrium,
since the two component temperatures nowhere coincide.
In Fig. 7 we plot the velocity distribution in the Aow
direction in two example cases: close to the surface at
t =~, and at the density maximum at t =2~. It is ob-
served that this partial distribution is nowhere in equilib-
rium in itself, although in the latter example, it appears
to be not too badly described by a shifted Maxwellian dis-
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FICx. 7. (a) Velocity distribution in Aow direction F(x,v„,t)
close to the surface x=0.09xp at t=~ and (b) at a later time
t=2~ at the density maximum x=1.7xp. Histogram, simula-
tion result for Z= 1. Solid line, analytical result for collision-
free How, Eq. (A5). Dashed line, fit to a shifted Maxwellian, Eq.
(20). Fit parameters: (a) u =-0.99vp, T=0.42Tp; (b) u = 1.22vp,
T=0.13Tp.

FIG. 8. (a) Temperature in Aow direction T~~ and (b) perpen-
dicular to it T& as a function of the distance x from the surface
at a time t=& (O), t=2~ ( ), and t=4~ (zX). Simulation re-
sults for Z =10.

f dt u f(xD, u, O, t ) .
0

Far away from the surface, where collisions cease, the
form of the spectrum will be independent of xD. We

denote by 8 the polar angle of the velocity direction O to-
wards the surface normal, and by cp its azimuth. In-
tegrating over the uninteresting azimuthal angle, and
normalizing, we finally obtain

J(u, 6)= f dt f dpv f(xD, v, Q, t) f dv f dt f dyv f(xD, v, Q, t) .
0 0 0 0 0

Our one-dimensional description only works for small
or moderate desorption intensities, because otherwise the
effects of collisions will be sensible at distances from the
surface which are larger than the width of the desorption

I

spot on the surface. In Fig. 10 we display velocity spec-
tra simulated for Z = 1, corresponding to the desorption
of 0=0.25 monolayers. In this case, the detector dis-
tance in the simulation was chosen as xa =35xo, and the
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FIG. 9. (a) Velocity distribution in How direction F(x,v„,t)
close to the surface x =0.05xp at t =~ and (b) at a later time
t =2r at the density maximum x =3.5xp. Histogram, simula-
tion result for Z = 10. Line, fit to a shifted Maxwellian, Eq. {20).
Fit parameters: (a) u =0.87Up T=0.56Tp' (b) u =2.53Up,
T=0.28T().

FIG. 10. Velocity spectra J(U, P) far from the surface for
particles Hying into an angle of (a) 8=0 and (b) 8=60' from
the surface normal. Histogram, simulation result for Z=1.
Dashed line, analytical result for collision-free Aow, Eq. (A8).
Sohd line, fit to a shifted Maxwellian, Eq. (24). Fit parameters:
(a) u = 1.58Up, T=0.97Tp', (b) u = —0.09Up T=0.85 Tp.

J(u, 8) ~ u exp
m(u —u)

(24)

and that the fitted temperature is—for perpendicular
emission 8=0'—in quite good agreement with the sur-
face temperature. It is quite remarkable that this fit is
possible, since we saw in Sec. IIIB that this Aow is no-
where in thermodynamic equilibrium. However, already
in a previous investigation, it was observed that the time
integrated distribution function far away from the surface
can be described as an ellipsoidal distribution, even for

maximum detection time as 500~. It is observed that the
energy spectra can well be fitted to the Aux of a steady
thermal source

relatively few collisions per particle. This implies that
the Aux J should obey a shifted Maxwellian distribution,
Eq. (24).

We observe that energetic particles Ay predominantly
in the direction perpendicular to the surface rather than
at oblique angles. This fact has been mentioned previous-
ly in Refs. 1, 19, and 20. It is due to a simple kinematic
effect: When two particles collide, after the collision the
faster particle will be closer to the center-of-mass veloci-
ty. Since this is on the average in the direction of the sur-
face normal, after a few collisions faster particles are
found predominantly in this direction. In terms of the
macroscopic moments (16), this phenomenon corre-
sponds to an energy Aow from the velocity component
perpendicular to the Aow into the How direction, which
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increases u and in particular T~~ at the cost of Tz (cf. Sec.
IV A and Fig. 6).

V. CONCLUSION

We studied the one-dimensional Aow of particles
desorbed thermally during a finite period of time into
vacuum. It was shown that this problem depends on only
one parameter, which is essentially the number of mono-
layers desorbed and is the inverse of the Knudsen number
of the problem. The Aow was investigated by a Monte
Carlo simulation of the Boltzmann equation.

Comparison with analytical results for collision-free
Aows at negligible desorption Auxes, and for gas-dynamic
Aows at intense desorption Auxes gives good agreement
with our simulation results. In the latter case we study
the Knudsen layer formed close to the surface and show
that it agrees with the analytical description of stationary
Knudsen layers. A particular result, which can hardly be
obtained by other methods, is the width of the Knudsen
layer for a Aow of Kn=0.007, which amounts to 19 free
mean paths.

Flows originating from the desorption of less than
around 1 monolayer nowhere attain thermal equilibrium
and hence are not describable by gas dynamics. On the
other side, collisions lead to a definite back Aow of
desorbed particles towards the surface, and to an increase
of the velocity in the direction of the Aow. Hence the
Aow characteristics deviate as well from those of a
collision-free Aow. Velocity spectra taken far away from
the surface may surprisingly well be fitted by a shifted
Maxwellian, with a temperature close to the surface tem-
perature.

With the desorption of more than around one mono-

layer, the velocity distribution of the Aow reaches ther-
modynamic equilibrium in each velocity component it-
self, i.e., the velocity component parallel to the Aow is

well described by a shifted Max wellian distribution.
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APPENDIX A

We present the solution of the collision-free Boltzmann
equation

+U =0
dt BX

with the boundary condition

f(x=0 v t)= e " 8(v), 0(t (1 .2 j
77'

(Al)

(A2)

Here we use scaled variables (cf. Sec. III 8), but omit the
tilde for brevity. The solution obviously reads

f(x, v t)= e " O(v„), 0(t — (1,2 X

7T' Ux
(A3)

since every particle moves in a straight line with un-
changed velocity.

Introducing the two velocities

X X

V rrt &vr(t —1)
(A4)

the moments of the solution can readily be written down:

However, the temperatures parallel and perpendicular to
the Aow do not coincide, such that a gas-dynamic
analysis does not apply before around 10 monolayers are
desorbed. In that case, a three-dimensional description
of the jet ought to be undertaken, which is outside the
scope of the present investigation.

n(x, t)= '

u(x, t)= '

erfcg, t (1
erfcg —erfcg, t ) 1

2
e ~ /erfcg, t (1

2 2
(e ~ —e " )/(erfcg —erfcg), t ) 1

(A5)

T„(x,t) 2 2 2

2 e & —e

vr erfcg —erfcrt

2 2
2pe & 2e p(?

&~ erfcg vr erfc g
2 2

1+ ge & —ge
v'~ erfcg —erfcg

Qf course it is T~(x, t ) = 1. We note that it is

2n(x =O, t)=1, u(x =O, t) 1 Tii(x t)
7T

(A6)

for t & 1, and zero otherwise. Finally, the velocity distribution in the Aow direction is given by
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2-F(x,u, t)= —'
'ET

—v /~2

8(v )0 t-
erfc

—v„ /~
e x

O(U, )0 1—
erfcg —erfcg ~X

X
O~

(A7)

where 0 denotes Heaviside's step function. The velocity
spectrum Eq. (24) is given by

(A8)

Due to the absence of collisions, this result holds in-
dependently of the position of the detector xD, and since
this is a normalized distribution, it is independent of the
Aight angle 8.

APPENDIX B

We wish to present here the solution of the one-
dimensional equations of ideal gas dynamics for a monoa-
tomic gas,

with constant nz, uz. The first two of these boundary
conditions have already been used in writing down the
equation of state (82).

Such expansion problems have been treated at length
in Ref. 28. Since the problem at hand possesses no intrin-
sic length scale, the most convenient way to solve it is to
look for a similarity solution in terms of the variable
g=x it. Then Eqs. (Bl) read

(u —g)n'+nu'=0,

c 2
n'+(u —g)u'=0,

n

where the prime denotes differentiation with respect to g.
The system possesses a solution only if

Bn 8+ (nu)=0,
Bt Bx

Bu Bu 2 Bn
n +nu = —c

Bt Bx X

(81)

(86)

where waves traveling to the left (u —g= —c) have been
discarded. From Eq. (85) we hence obtain

supplemented by the adiabatic equation of state
3

nz
(82)

or

cn'+ nu'=0,

dn
u = — c = —3 I dc = —3c+const,

n

(87)

(88)

These equations are written in the conventional form
with the exception that temperature has been expressed
in terms of the adiabatic velocity of sound

1/2 1/2

where we used the adiabatic equation of state (82).
Equations (85) and (87) denote the solution to our

problem. Introducing the boundary condition (84), we
finally obtain

5 1 BpC=
3 pl 8n

(83)

The acceleration from the pressure gradient —Bp /Bx has
been rewritten correspondingly for adiabatic processes.
Equations (81) have to be solved for times 0 & t (r with
the boundary conditions

1 x
(cxt)=u~ ———,

4 t

u(x, t)=u +——3 x
4 t

This solution is valid for c 0, that is for

(89)

u(x =O, t)=c(x =0, t)=uz,
n(x =O, t) =nz,
n( ~xoo, t)= u( x~~, t)=c(x —+~, t)—:0,

(84)

0(x «4u~t . (810)

u max 4uK (811)

At the expansion front, the maximum velocity u „is at-
tained
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