
PHYSICAL REVIEW A VOLUME 43, NUMBER 12 15 JUNE 1991

Onset of convection for autocatalytic reaction fronts: Laterally bounded systems
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Linear hydrodynamics yields the onset of convection for ascending autocatalytic reaction fronts
in laterally bounded geometries. The system is studied in the limit of infinite and zero thermal
diffusivity. For convection in a vertical slab of thickness a or a long vertical cylinder of radius a, the
appropriate dimensionless driving parameter 4= 5ga /vD, involves the fractional density
difference 5 between the unreacted and reacted Auids, the acceleration of gravity g, the kinematic
viscosity v, and the catalyst molecular diffusivity D, . Calculated critical values 4, for onset of can-
vection agree with recent experiments on iodate —arsenous acid systems. We also show that, com-
pared with the unbounded system, the sidewalls tend to suppress convection.

I. INTRODUCTION

Recent experiments near autocatalytic reaction
fronts' require corresponding calculations for convec-
tion in laterally bounded geometries. In these experi-
ments, the speed of propagation of the front is limited by
the molecular diffusion of the catalyst into the unreacted
Auid. Such self-sustaining or "autocatalytic" reaction
fronts produce both thermal and concentration gradients
in the vicinity of the reaction front, leading to potentially
unstable density gradients.

Previous calculations of the onset of convection in un-
bounded geometries consider limiting cases of the stabili-
ty problem. In the limits of zero and infinite thermal
diffusivity Dz-, a thin reaction front separates two dis-
tinct fluids each of uniform density, the stability of the
front being governed by the discontinuous jump in densi-
ty at the front. For parameter values relevant to experi-
ments on iodate —arsenous acid solutions and for an as-
cending planar horizontal front with the heavier fluid
above the front, these calculations predict convection for
perturbation wavelengths exceeding a critical wavelength
k„with A,, =0.99 mm for Dz-=0 and A,, =1.29 mm for
for Dz-~~. These results indicate that thermal gra-
dients may play a small role at onset of convection com-
pared with the density discontinuity. The large value
A., =7 mm for a separate calculation' neglecting the den-
sity discontinuity but including thermal gradients for
finite Dz- confirms the conclusion that thermal gradients
play a small role at onset of convection. We expect that a
full calculation including both the density discontinuity
and the thermal gradients will yield a critical wavelength
near 1 mm.

To facilitate comparison with experiments, we consider
the onset of convection for an ascending front separating
two incompressible fluids for laterally bounded
geometries. The densities of the unreacted and reacted
Auids can each be considered to be uniform when the
chemical reaction front is thin and the thermal diffusivity
Dz- is either small or large. For an unreacted Auid at ini-
tial temperature To and density po and a reacted Auid at

final temperature T, under adiabatic conditions, large D~
implies a uniform Auid temperature Ti except far ahead
of the reaction front, with the corresponding uniform
densities denoted by p& and p& in the unreacted and react-
ed Auids. The corresponding fractional density difference
6, =p, /P, —1 is due solely to compositional differences
between the unreacted and reacted Auids. Small Dz
relegates all thermal gradients to the thin reaction front,
implying a sudden change in temperature from To to T&
as the fluid passes through the front. In this case, the
fractional density difference 5o=po/p, —I includes both
thermally induced and compositionally induced density
differences, which are typically of the same order in the
experiments. It is convenient to define a general frac-
tional density difference 6=p/p —1 between the in-
compressible unreacted and reacted Auids of densities p
and p, which can be replaced by either 6o or 6& to com-
pare with experiments. We here consider insulated
sidewalls. Below, we write the equations of motion for
the onset of convection using the thin front approxima-
tion developed in Ref. 9, which treats the front as a sur-
face of discontinuity. To develop techniques and test ap-
proximations, we first study the onset of convection be-
tween two parallel vertical planes of separation a. We
then proceed to study the onset of axisymmetric convec-
tion for long vertical cylinders of radius a. Finally, we
compare these results with experiments on
iodate —arsenous acid mixtures.

II. EQUATIONS OF MOTION

The dimensionless hydrodynamic equations

Bv

at
+(v V)v= —Vp+7 v,

V.v=0

express conservation of momentum and mass in in-
compressible unreacted and reacted Auids, with length
and time measured in convenient units of a and a /v,
where v is the kinematic viscosity. The gravity term in
Eq. (1) has been absorbed into the reduced pressure
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$=5ga /vD,

proportional to the acceleration g of gravity and the frac-
tional density difference 5, indicating increasing tendency
to convection for increasing S. Here, z =h (x,y, t) gives
the height of the reaction front (in the comoving frame)
as a function of the horizontal coordinates and the time,
so that n can be written as

(z —Vh )

(1+~Vh~')'" '

where the + sign is relevant when the unreacted Auid is
above the front (for upward propagation).

The normal component of the local front propagation
speed,

ahIl'Z =Uo+2)~K+n v
at

(7)

contains contributions from the local curvature ~ and
from the Auid velocity v on the unreacted side of the
front. Since ~ is measured as positive when the center of
curvature is in the unreacted Auid, the curvature contri-
bution (proportional to 2), ) tends to Aatten the reaction
front with time, thus tending to stabilize a planar front.
The competing effect of buoyancy tends to amplify any
deviations from a Aat front when the heavier Auid is
above the front. Thus, 4 measures the strength of buoy-

term. There is no equation for the temperature since we
treat only the limiting cases with large or small thermal
diffusivity. In a coordinate frame stationary with respect
to an ascending flat horizontal front, the fluid velocity
v(x, t)= —Uoz in the absence of convection reflects fiuid
flow through the front as unreacted Auid is converted to
reacted fluid, where Uo =coa /v is a dimensionless Aat
front speed and z is a unit vector pointing up. In this
frame, impenetrable no-slip sidewalls, called rigid bound-
ary conditions, therefore demand that v= —Uoz at the
sidewalls, whereas all components of Auid velocity must
be continuous across the reaction front. Momentum bal-
ance at the front requires the tangential stress e; kn ni Tki
to be continuous across the front (Ref. 9), where e,jk is
the totally antisymmetric tensor, the n; are the Cartesian
components of the unit normal vector n to the front
pointing into the unreacted fluid, sums over repeated in-
dices are implied, and

aU)- aUJ
T

axj. ax.

is the (dirnensionless) viscous stress tensor. Momentum
balance normal to the front requires a discontinuous
pressure jurnp

[p]+=—4'2l, h —[n, n T, ]+ (4)

owing to the impulsive acceleration caused by the sudden
density change experienced by Auid elements as they pass
through the front, where [q]+ =q+ —

q is the difference
in a quantity q evaluated on the reacted (+) and unreact-
ed ( —) sides of the front. Equation (4) involves a dimen-
sionless catalyst diffusivity I), =D, Iv and a driving pa-
rameter

ancy relative to the stabilizing effect of curvature, and
plays a role analogous to the Rayleigh number for
buoyancy-driven convection in a Auid heated from
below. "'

To study the onset of convection, we introduce small
time-dependent perturbations about an ascending con-
vectionless horizontal planar front located at z =0
(in the comoving frame) which is described by
v = —Uoz, h =0, and n =z. Accordingly, we write(0)— (0) (0)

(1)
U a v(1)— yp(1)+ q2v(1),V Uo V

V v'"=0,
g h()) —~ ())+~(()

t c

(9a)

(9b)

(9c)

with w =z.v denoting the vertical component of velocity.
Correspondingly, rigid boundary conditions require v'"
to vanish at the sidewalls and

(()]+—0

[~;3k Tk3' ]+- =o

[p"']+= —SX),h ")+2[(),t()("]+,

(9d)

(9e)

(9f)

where z n"'=0 because Vh'" is horizontal. Equations
(9) govern the time evolution of small perturbations about
a Aat front.

Marginal stability of the Aat front occurs when the per-
turbations neither grow nor decay with time, that is,
when buoyancy and curvature effects balance each other.
Accordingly, we can obtain a critical driving parameter

for the onset of convection by setting (), =0 and
S=S, in Eqs. (9).

III. VERTICAL SLAB

Before proceeding to the more complicated cylindrical
geometry, we study the two-dimensional marginal stabili-
ty of a vertical slab of width a defined by —

—,
' x —,

' in
dimensionless units. This will help us to develop the
mathematical framework and justify approximations for
the cylindrical problem. For two-dimensional motion in
the x -z plane the continuity equation (9b) allows us to in-
troduce a vector potential A= A (x,z)y such that
v'"=VX A. Taking the curl of Eq. (9a) we obtain an
equation for 3 at marginal stability,

U() V A +V (V A)=0 .
a 2'a (10a)

Replacing the velocity components with their relations to
the potential A, Eqs. (9d) and (9e) and the horizontal
component of Eq. (9f) yield the corresponding jump con-
ditions on A,

(0)+ (1)

p (0) +p (1)

along with similar expressions for n, ~, and T; . . Substi-
tuting these expressions into Eqs. (1), (2), and (7) and
linearizing in the perturbations yields
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[A] =0,
[a, A]+ =0,
[a,'~]+ =o,
[a,'~]=z,x,a.i '",

(10b)

(loc)

(10d)

(loe)
where

m11 m12

m21 m22

nN2

m1N F1

F
=0

mNN FN

(15)

where the horizontal component of the momentum equa-
tion (9a) has been used to simplify Eq. (loe). Since these
conditions are already of first order in the deviations
about the ascending Hat front at z =0, we take

[q]+ = lim (q, ,—q I, , ) .
@~0

The curvature ~ is given by sc'"=8 h '" to first order in
h and (9c) gives

(1of)

3 (x,z)= g V (z)V' (x) .
m=1

The functions 7 will be determined below and the func-
tions Y are a complete set of orthonormal solutions of

d4
, Y =X'Y

dx
(12)

Rigid boundary conditions require A and its normal
derivative to vanish at the walls. To satisfy these bound-
ary conditions we write A as

k'+U, k'+2(v;"Iv; )k'+.,(g,"I&,. )k+g4

mij = if i =j (16)

2( '7"
I 7; )k +Uo( 7"

I 7; )k if i Aj

Our goal is to obtain the critical distance a, from the
jump conditions, Eqs. (10). Since the eigenvalues k de-
pend on vo=coa, /v, we follow a self-consistent pro-
cedure: we take a reasonable value of vo, evaluate the k's,
and obtain a, . This a, defines a new value Uo=coa, /v to
be used in the next iteration. We repeat the process until
vo remains constant. All the other parameters are given
in Sec. V. We proceed now to obtain the eigenvalues.
The systein (15) has a nontrivial solution when the deter-
minant of the matrix is zero. This leads to a polynomial
equation of order 4N on k. Half of the roots k; of this
polynomial (labeled i =1,2, . . . , 2N) have negative real
parts and half (labeled i =2N+1, 2N+2, . . . , 4N) have
positive real parts. The eigenvector corresponding to the
eigenvalue k; is denoted by (F„,F2;, . . . , F. z, ). Since we
require that the solution vanish as z —++~ the general
solution for A (x,z) has the form

satisfying T =dT /dx =0 at x =+—,'. The eigenfunc-
tions T are divided into two classes: C for even func-
tions and S for odd functions. The functions and their
eigenvalues A, are tabulated by Chandrasekar. ' We
substitute this expansion into (ion) and obtain

A(x, z)= '

2N N
I(;, zg a;FJ, "Ti(x)e ' if z ~0

i=1 j=1
4N N

Jc, z
a;FJ;"TJ(x)e ' if z (0 .

i =2N+1 j=1

(17)

m=1

d4 , d' d
+A, +Uo 5 „+2(V"IV'„) The jump conditions lead to a homogeneous linear sys-

tem with unknown coefficients cz

+vo(T" IV'„) 7 (z)=0,d
dz

2N 4N

g a;FJ; — g a;FJ; =0,
i =1 i =2N+1

(18a)

where 2Ã

g a, k, F, —

2N

g a, k2F, —

4N

a, k, F, =O,
i =2N+1

4N

a, k;F;=0,
i =2N+-1

(18b)

(18c)

V =F e"' for m=12, . . . , N, (14)

where the F are constants. This leads to the following
system of equations:

has been tabulated by Reid and Harris. ' Here, we have
truncated the infinite expansion on A to N terms to yield
a set of X coupled ordinary differential equations. Our
procedure entails finding the eigenvalues and eigenvec-
tors for the equations on 9 [Eq. (13)], substituting a
linear combination of them into Eq. (11), and then deter-
mining the coeflicients using the jump conditions [Eqs.
(10)]. We look for eigenvectors of the form

2N

g a, k, F, — 4N

a, (k, —$, )F, =O
i =2N+1

for j =1,2, . . . , N . (18d)

The first three equations come from (lob), (loc), and
(1od), while the last one is obtained from both (1oe) and
(lof). Setting the determinant to zero yields the value of
4, numerically.

As we mentioned before, the basis functions Y' have
even and odd parity. The matrix element (T" IV'„) is
zero for functions of opposite parity; therefore, we need
only to consider bases made up of either C (x) or S (x).
For odd basis functions "T =S the critical value 4, is
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1810.4851 for a one-term truncation, 1806.5636 for two
terms, and 1805.5420 for three. Since the change in 4, is
small we stop here and do not consider four or more
functions. For even basis functions 7 =C, we obtain
4, =372.6408, 371.6805, and 371.5382 for the one-, two-,
and three-term truncations. The value for 4, is lower for
even functions so they will determine the onset of convec-
tion. If we set Uo equal to zero, 4, becomes 371.5366 for
the three-function basis, which is a change much smaller
than the inclusion of the third term in the basis. There-
fore, we can neglect the first term in Eq. (10a) without
altering the results significantly. This is consistent with
the fact that in the laterally unbounded system the solu-
tions do not depend significantly on co (Ref. 9). The rela-
tion S,=5ga, IvD, yields a critical wall separation
a, =0.929 mm for large thermal difFusivity (5=5&) and
a, =0.716 mm for small thermal diff'usivity (5=So). The
value for a, should be compared with half the critical
wavelength of the unbounded system which lies between
0.49 and 0.64 mm (Ref. 9). The critical length a, is larger
in the bounded system because the walls give additional
stability.

IV. CYI.INDER

In the previous section we found that the constant U0

can be set to zero for our purposes. We restrict our study
to axisymmetnc Aows observed in the experiments. ' The
vector potential A in cylindrical coordinates can be writ-
ten as A=y(r, z)e for axisymmetric flows with com-
ponents of v'" given by

Ur
= ~zX ~

(1)—
(19)

a'h"'+ —a h"'= ——a ry
1 1 1

r r r (20f)

Vanishing velocity components at the walls and van-
ishing velocity components at the origin imply the fol-
lowing boundary conditions:

1—B„ry=0 at r = 1
r

0 at r=0. (21)

To solve Eq. (20a) subject to these boundary conditions,
we consider a set of orthonormal expansion functions %
satisfying

and

X)'„%„(r)=a R (r) (22)

(0)=N (1)= — rR (r) =0 .1 d
r dr

(23)

The functions A are analogous to the functions 7
that were used for the vertical slab. We can satisfy these
conditions by a linear combination of a Bessel function J1
and a modified Bessel function I„

(r)= J, a
Ii(a r)

I, (a )
(24)

which obeys the orthonormality condition

f 'rX.X„dr =S „.
0

(25)

The first three eigenvalues are F1=4.610 900,
F2=7.799274, and +3=10.95807. The expansion for y
analogous to Eq. (11) is

(1)
U,
"'=—a„(ry) .

y(r, z) = g 0 (z)A (r) . (26)

The equation for y analogous to (10a) is

A=y(r, z)8,
(2)„+8,) y=0,

where

1
Bq B„P

(20a)

We substitute this expansion into Eq. (20a) to obtain a set
of ordinary diff'erential equations for 0

d4 4 IE, fi.„+X"fi.„+2(X".Ia„), S.=O,

where

The jump conditions (10b)—(10e) become
(A" IA„)= f rA„2)„% dr . (28)

l.x]—=0

t~.X]+—=0,
I:~.'x]—+ =o

I a,'q]+ =z,n, a„h'" .

(20b)

(20d)

(20e)

~(1) g2h (1)+ g h (1)

to first order in h'" and Eq. (9c) becomes

Using the curvature of a surface of revolution, ' it is
found that

4a a„ Io(a ) Io(a„)
a —~ I, (a ) "I,(a„)

if mWn

Io(a ) Io(a )
&m 2 —

O'm
I i(~i ) I i(~ )

ifm=n .

(29)

This integral can be calculated analytically and the result
is
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This system of equations is the same as (13}with U0=0,
so we proceed to solve it in the same way. Again, the ex-
pansion (26) is truncated to include only the first N terms.
We look for eigenvectors of the form

a
C

g =G e"' for m =1,2, . . . , N . (30)

The coefficients 6 are the components of an eigenvector
that satisfies

~21 ~22 62
=0,

a

(31)
1 i

r

IN, lN2
.

lNN GN
I I 'L

where

k +2(W,"IQ.)k +a, if i =j
2(W; IWJ )k if iWj . (32)

Once again, we obtain 4X values of k that make the
determinant equal to zero. We label them k, as before,
such that the real part of k, is less than zero for
i = 1,2, . . . , 2X and greater than zero for
i =2%+1,2%+2, . . . , 4X. Since the velocity must van-
ish as z~+co, the general solution for y(r, z) has the
form

-a
C

-a
C

0

horizontal (x) axis
a

C

FIG. 1. Velocity field at the onset of convection in a cross
section through the axis of a vertical tube. The velocity field is

axisymmetric and decays exponentially in the vertical direction.
The solid line represents the boundary between chemical
species.

y(r, z}= '

2N N
k,.zg P; GJ.,W, (r)e ' if z ~ 0

i =1 j=1
4N N

k,.zg P, G,A (r)e ' if z (0
i =2N+1 j=1

(33)

2N 4N

g pGJ, — g p G,, =O,
i =2N+1

(34a)

2N

g P;k;G.;—
2N

QPk, G,, —

2N

g P;k;G;—

4N

P;k;G, , =0,
i =2N+1

4N

P;k;G;=0,
i =2N+1

4N

P;(k; —$, )G,, =0
i =2N+1

for j=1,2, . . . , X .

(34b)

(34c)

(34d)

Demanding that the determinant of the matrix vanish
yields 4', =370.9817, 370.2871, and 370.0810 for the
one-, two-, and three-function bases. We find that the
convergence is faster than for the vertical slab. Figure 1

shows the resulting velocity field for the one-term trunca-
tion.

The jump conditions provide a set of linear equations for
the coefficients p,

V. SUMMARY AND DISCUSSION

For uniform reacted and unreacted Auids, linear hydro-
dynamics predicts convection near autocatalytic reaction
fronts for 4) S„with $, =371.5 for two-dimensional
convection in a vertical slab of thickness a and 4, =370. 1

for axisymmetric convection in a vertical tube of radius a.
These universal critical values are independent of all Quid
parameters including the dimensionless catalyst
diffusivity 2), =D, /v and the dimensionless fiat front
propagation speed Uo =coa /v. Accordingly, the relation
0', =5ga, /vD, and experimental values of 5, g, v, and D,
yield the predicted critical radius a, for onset of convec-
tion to be compared with experiments.

Recent experiments on ascending iodate —arsenous acid
reaction fronts' observe no convection in a tube of diame-
ter d =0.94 mm and convection in tubes with d ~1.8
mm, indicating that the observed critical diameter
satisfies 0.94 & d, & 1.8 mm. For 6O= 1.9 X 10
5i=0.87X10, g =980 cm/s, v=9.2X10 cm /s,
and D, =2.0 X 10 cm /s relevant to these experi-
ments, we predict d, =2a, =1.4 mm for zero thermal
diffusivity (with 5 =5o) and d, = 1.9 mm for infinite
thermal diffusivity (with 5=5i). The predicted results
agree with the experimental range, although the latter is
slightly higher than the observed upper bound.

The calculations are valid for large and small thermal
diffusivity DT. An important question in making the
comparison between theory and experiment is whether
the value of Dz for the experiments should be considered
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as large or small. Comparison of appropriate length
scales provides a possible answer to this question. The
cylinder diameter d serves as the vertical length scale of
the convective motion for the problem, whereas the
thermal thickness dz. =D~/co of the front serves as the
length scale over which thermal gradients are
significant. In the limit of zero thermal diffusivity
dz-«d, the thermal gradients are confined to the reac-
tion front itself and should have maximum effect on the
convective motion. In the limit of infinite thermal
diffusivity dz- &)d, the thermal gradients should play no
role in the convection. Thus, the crossover from small to
large thermal diffusivity would occur at dz-=d. The ex-
perimental values d =1 mm, Dr=1.5X10 cm /s, and
co=3X10 cm/s (Ref. 9) imply that drld=5, indicat-
ing that the thermal diffusivity of the experiments might
be considered large. The smooth crossover from small to
large Dz- described above might also imply a critical di-
ameter that is a monotonic function of Dz-. However,

verification of these conclusions would require further
calculations for finite D„.

More precise comparisons between theory and experi-
ments would be useful. To make such comparisons, ex-
periments with diameters in the range 0.94 & d & 1.8 mm
and calculations with finite thermal diffusivity are neces-
sary. We intend also to study the mildly nonlinear re-
gime using an amplitude expansion approach to under-
stand the observed front propagation speed enhance-
ments above onset of convection. The transition to chaos
provides another potentially fruitful field for research.

ACKNOWLEDGMENTS

Discussions with Kenneth Showalter and support from
National Science Foundation Grant No. RII-8922106
and the West Virginia University Energy and Water
Research Center are gratefully acknowledged.

T. McManus, Ph.D. thesis, West Virginia University, 1989.
~A. Saul and K. Showalter, in Oscillations and Traveling Waves

in Chemical Systems, edited by R. J. Field and M. Burger
(Wiley, New York, 1985), p. 419; N. Ganapathisubramanian
and K. Showalter, J. Chem. Phys. 84, 5427 (1986).

A. Hanna, A. Saul, and K. Showalter, J. Am. Chem. Soc. I04,
3838 (1982).

4G. Bazsa and I. R. Epstein, J. Phys. Chem. 89, 3050 (1985); I.
Nagypa. l, G. Bazsa, and I. R. Epstein, J. Am. Chem. Soc. 108,
3635 (1986).

~J. J. Tyson and J. P. Keener, Physica D 32, 327 (1988).
J. A. Pojman and I. R. Epstein, J. Phys. Chem. 94, 4966 (1990).
J. A. Pojman, I. R. Epstein, T. J. McManus, and K. Showalter,
J. Phys. Chem. 95, 1299 (1991).

~J. A. Pojman, I. P. Nagy, and I. R. Epstein, J. Phys. Chem. 95,
1306 (1991).

B. F. Edwards, J. W. Wilder, and K. Showalter, Phys. Rev. A
43, 749 (1991).
J. W. Wilder and B.F. Edwards (unpublished).
H. Benard, Rev. Gen. Sci. Pure Appl. 11, 1261 (1900); 11,
1309 (1900); H. Benard, Ann. Chim. Phys. 23, 62 (1901);Lord
Rayleigh, Philos. Mag. 32, 529 (1916); 32, 129 (1965); M. C.
Cross, Phys. Fluids 23, 1727 (1980); B. F. Edwards and A. L.
Fetter, ibid. 27, 2795 (1984).

' S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stabili-

ty (Oxford University Press, London, 1961),Chap. 2.
S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stabili-
ty (Ref. 12), Appendix V.

~4W. H. Reid and D. L. Harris, Astrophys. J. Suppl. 3, 448
(1958).

~5C. E. Weatherburn, Diji"erential Geometry of Three Dimensions
(Cambridge University Press, England, 1927), Chap. 4.


