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Chaos at and beyond onset is studied for nonequilibrium current-carrying dissipative states in

quasi-one-dimensional dirty superconductors. For the case of ac-driving currents, phase-slip center
solutions of the generalized time-dependent Ginzburg-Landau equations show a universal transition

at the onset of chaos. For currents below the onset, the pervasive feature is the nonhyperbolicity:
homoclinic tangency between stable and unstable manifolds of unstable periodic orbits. Pointwise
dimensions e(x) evaluated on the attractors show abnormally low values, indicating regions made

of an overlapping of stable and unstable manifolds of saddle orbits. These regions cause a break of
self-similarity and a phaselike transition in the multifractal probability measure of the attractor. Fi-

nally, one of these tangencies causes a symmetry-increasing bifurcation.

I. INTRODUCTION

The generalized time-dependent Ginzburg-Landau
equations' (GTDGLE), which model dissipative states
(nonequilibrium states in superconductivity), appear in-
teresting in testing the universalities that exist at the bor-
derline of chaos and for the study of chaotic phenomena
beyond that. Until now most work, both experimental
and numerical simulations, has concentrated on testing
such universalities for the best known routes to chaos:
the period-doubling and the quasiperiodic routes. At
the onset of chaos, dynamical systems exhibit qualitative
and quantitative features that are universal. Much less
is known about generic behavior or any kind of supercrit-
ically universality, i.e., beyond onset. Recent theoretical
work shows some universal features beyond onset, which
has been confirmed experimentally for the quasiperiodic
route. ' However, rigorous theoretical work has only
been possible recently for low-dimensional systems
represented by discrete maps.

Much more difficult is the theoretical study of realistic
models, which helps to explain experimental re-
sults. ' "" In such cases a theory based on low-
dimensional maps helps one to understand the results of
numerical experiments of a complex system modeled by a
nonlinear partial differential equation (NPDE). In a com-
plex system of, in principle, infinite degrees of freedom,
one can expect the gradual change from quasi-one-
dimensional to higher-dimensional behavior or even a
transition to some kind of turbulencelike state. '

In a previous work' (from now on referred to as I), the
existence of ac-driven phase-slip centers (see below) was
proved and some regions of the parameter space were ex-
plored. Furthermore, in that work the existence of
period-doubling cascades of birfurcations to chaos was
found, i.e., the transition to bounded and in general frac-
tal objects with an attracting invariant set (strange attrac-
tors) and a fundamental neighborhood in an appropriate
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FIG. 1. The quantity o. (see Chap. V) is plotted as a function
of j& for su=0. 6 and 0.2, @=10. The values for the homogene-
ous state are calculated numerically and analytically [Eqs.
(9)—(11), paper I]. The arrow indicates the value of the current
j, for co =0.2, where the normal state becomes linearly unstable.
This was shown in I. We work on the low-current side for PS
states which begin before the last symemtry-breaking bifurca-
tion occurs, i.e., j& =0.49, and ends with j;„where the PS state
becomes unstable.

space of functions or phase space.
In this work we concentrate on the period-doubling

scenario. We work on the last dissipative branch of the
response diagram (Fig. 1). Our aim is to give a picture of
dynamics as complete as possible at the onset of chaos
and, most importantly, beyond onset. For that purpose
we calculate the generalized dimensions D and the mul-
tifractal spectrum of scaling indexes f (a) at the transi-
tion to chaos on the low-current side of the response.

43 669 1991 The American Physical Society



670 RAFAEL RANGEL AND LUIS E. GUERRERO 43

Here the last symmetry-breaking bifurcation takes place.
This bifurcation leads to a period-doubling cascade (see
Figs. 5 —7 in I) resulting in a strange attractor. We con-
struct local Poincare maps (LPM) using as variables the
chemical potential p (which gives the total voltage gen-
erated by the nonequilibrium state along the filament and
the phase 8 of the order parameter g at the place where
it goes to zero [named a phase-slip center' (PSC)], i.e., we
construct the two-dimensional map defined by
(6(x =0, t =nT ), p(x =0, t = n T„)). Our results show
that this transition to chaos is of the same kind as the one
studied for the class of unimodal maps of the interval and
therefore, in that sense, it is universal. We also study the
multifractality beyond onset. Many features of the be-
havior near and beyond the onset can be explained by us-

ing the logistic map because the regime is strongly dissi-
pative. However, the facts that locally (at x =0) the de-
grees of freedom are 3, itj(O, t)l, p(O, t) and i)(O, t), and
that there is a local symmetry (see below), lead us to con-
sider a two-dimensional Henon-like model with the same
local symmetry. Some aspects of this model have been
studied by Yamaguchi and co-workers. ' Many features
of the scenario found beyond the onset of chaos can be
explained qualitatively with that model. Especially im-
portant features are the gradual foliation (attractor
widening) of the chaotic attractors defined through the
LPM [Eq. (17)], as the control parameter [the amplitude
of the ac-driving current j, in Eq. (3)] is lowered and the
existence of a symmetry-increasing bifurcation (SIB).
That remarkable phenomenon —the appearance of a
chaotic attractor which has on average the full local sym-
metry, i.e., the natural measure has symmetries —has
been pointed out by Chossat and Crolubitsky. '

The most pervasive features of the scenario after onset
are the homoclinic tangencies between the stable and un-
stable manifolds of saddle orbits. Analysis of the point-
wise dimensions or microscopic information [Eq. (24)] on
the chaotic attractors shows that there are such tangen-
cies. Therefore, the Poincare map behaves as a two-
dimensional nonhyperbolic map for a range of currents.
Intermittence is a feature that is always present near the
bifurcating values of j, where a homoclinic tangency
occurs. Especially, the intermittency at the SIB is rather
robust. Such tangencies cause the breaking of the self-
similarity' ' and a phaselike transition in the fractal
measure as well as the gradual widening of the attractors
(foliation). Finally, the LPM ceases to be two dimension-
al, and other degrees of freedom soften.

The scenarios we have found beyond the onset of chaos
are, we believe, not special to the system we are studying
but have generic relevance and could be found in other
complex systems described by NPDE. There is evidence
that this is the case for the system studied in Ref. 19.

The paper is organized as follows. In Sec. II we give
the GTDGL equations, explain some facts concerning
the symmetries, and define the LPM. In Sec. III some
basic properties of the ac-driven phase-slip-center solu-
tions are given. In Sec. IV we explain in some detail how
we calculate the partition function [Eq. (19)], which we
use to obtain the multifractal spectrum f (a). We also
give the theoretical framework we use to analyze the re-

suits. In Sec. V we present the results at onset. Section
VI is devoted to the phase transitions and the symmetry-
increasing bifurcation. In Sec. VII we give a discussion
of the results and make a connection to other work based
on questions derived from this paper.

II. THE GENERALIZED TIME-DEPENDENT
GINZBURG-LANDAU EQUATIONS

j =[1m(@*&„itj)—~ lit I

—~ p —~ ~]
j(t)=j0+j,cosset .

(2)

(3)

Here g=b, /b0(T) is the complex order parameter, j(t)
the current density, p the scalar potential, 3 the x com-
ponent of the vector potential, and u =~ /14$(3) =5.79.
b,a( T) is the BCS order parameter,
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is inversely proportional to the pair breaking by inelastic
scattering (~z is the inelastic collision time). Lengths are
measured in units of g( T), whereas time and current are
measured in units,

t0 =mh'/[Sk~ ( T, —T)u], j0= o 0A/[2et0 (( t) ]

(00 is the normal conductivity). The electric field

(5)

is measured in units of 6/2etag. The validity of the
local-equilibrium approximation requires

ll T/T, l

«ui'2y0 ',—co~~ «1 (7)

(co is the frequency in physical units). We will be dealing
with frequencies such that coto=m=1. This is within the

The application of nonequilibrium transport theory to
dirty superconductors has been a successful enter-
prise. ' ' ' ' Our theoretical objects are thin and long
current-carrying filaments [with transverse dimensions
that are small compared to the coherence length g( T) and
the penetration depth A, (T)] near T, in a temperature
range where the local-equilibrium approximation is valid
for dirty superconductors. Then, the magnetic field of
the current can be neglected. Our filaments are then de-
scribed by the GTDGL equations (for a review see Ref.
3),
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range of validity when to ))~z, which is essentially
equivalent to the first equation in (7).

Since the equations are invariant under the gauge
transformation

/~/exp[ —iy(x, t)], @~@+a,y, A —+A —a y,
(8)

one can choose gauges where 3—:0 or where p=—0. For
the sake of completeness the vector-potential gauge,
which can sometimes be preferable (I), is given. With

symmetry gives rise to a multiplicity of solutions connect-
ed by the symmetry transformations. The attractors re-
lated through (15) are called conjugated attractors.
Which attractor the system settles into depends on the in-
itial conditions.

The symmetry transformation (15) is equivalent to the
following transformation for the phase of the g at x =0:

6(x =O, t) + —B(—x =O, t +(2n +1)T„/2),
8(x =O, t)—&

—8(x =O, t +(2n+1)T /2)

g=F exp(ie), /=@+a, e, Q =a e—A (9)
= —p(O, t +(2n +1)T /2) . (16)

(F & 0), Eqs. (1) and (2) go over into

u ( I +y2F2)1/2a F a2F +( I Q2 F2)F

a, Q = F'Q+a.—y+~ (t),
uF $=(1+y F )' a (F Q)

(10)

(12)

8(x =0, (n+1)T ) =P 8(x =O, nT ) (17)

An infinite-dimensional Poincare map can be defined at
x =0; it is given by

8(x =0, (n+ I)/T ) 6(x =O, nT„)

J (t)=J icoscot (13)

and choose the gauge with A =—0 and a gauge with p =0
at x =d/2, where d is the length of the filament. The to-
tal voltage along the filament is V =2p(0). We use
periodic boundary conditions.

In I we have discussed some general aspects of the be-
havior to be expected for pure ac-driving (j0=0) with
emphasis on the case y && 1, which is the important range
for ordinary low-temperature superconductors. Also, the
genera1 features of the bifurcation scenario in the
response diagram, y = 10 and co=0.2 (Fig. 1) were stud-
ied. We work here in the low-current side, j& &0.4790.

The existence of symmetries help us to classify the
solutions. To do this it is important to note that the basic
equations (1), (2), and (3) with j0=0 (unbiased case) are
invariant under the transformations

t~t+nT„, g +g, p~p, n —=+1,+2,

t~t+ T /2, g~P~, p —p

(14)

(15)

where T =2m. /co is the time period. Solutions which
possess the symmetry (15) are called "symmetric, " other-
wise "nonsymmetric" (I). Symmetric solutions always
appear to possess the full set of symmetries, i.e., (14) with
all integers n, at least so long as the solutions are periodic
(see below). However, there are bifurcations from chaotic
attractors where the full symmetry (15) is restored, but
only on the average [symmetry-increasing bifurcation).
In that case only symmetry (15) is present.

Clearly for symmetric solutions the Fourier series of p
has contributions only for odd multiples of co (~P~ only
for even multiples). Transitions from higher to lower
symmetry involve continuous bifurcations. Each broken

However, the gauge-invariant potentials (GIP),
/= @+a,e and Q =a„e—A, are well defined only when
FAO, and one has to be careful in using this formulation
of the TDGL equations in the presence of phase slips. In
fact, the generalized potentials diverge at the moment of
the phase slips. From now on we will consider ac applied
currents (ja =0)

Despite the fact that P is defined locally, i.e., at x =0, it
serves to characterize the whole solution. From (16) and
(17) one deduces that P restricted to the first two com-
ponents can be obtained as the second iteration of a map
P*. Symmetric solutions are fixed points of P*. As a
result, symmetric solutions have only odd multiples of co

in the fast-Fourier transform (FFT) of p(0, t), and its time
average is zero, which means that such solutions do not
show an average voltage V. We use (17) projected to the
first two variables and consider the map induced locally
in that way. As long as the dimension of the attractors
remains locally below 2 this map is well defined.

III. BASIC PROPERTIES OF ac-DRIVEN
PHASE-SLIP-STATE SOLUTIONS

& V ) =&(d/2) &( dn)— —

=&a, e( —an) —, a( ed/2)). (18)

In a stationary situation (limit cycle) a net relative rota-
tion of the phase inherent in Eq. (18) must be compensat-
ed by phase slips.

On the low-current side, where one has one phase slip

The spatial structure of the ac-driven PSC is similar to
the isolated dc PSC. ' ' The order parameter g(x) is
vortexlike, executing oscillations that go through zero at
x =0 and in general in an aperiodic way, in contrast to
the limit cycle dc PSC. For symmetric periodic solutions
the number of phase slips is always an integer number
every half of the period. For nonsymmetric solutions,
phase slips are no longer equidistant in time, but they
pair up. Although p(t) does not have the symmetry (16),
the mean voltage & V) =

& p(d/2) —p( —d/2)) is still
zero. In order to have & V)WO there would have to be
more phase slips in one sense of the rotation of the phase
than in the other. To see this we note that as a conse-
quence of the periodic boundary conditions at x =+d/2
the gauge-invariant potential p =p+ a, e is zero at
x =+d/2 [see Eq. (12)]. Therefore we have the Joseph-
son relation
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per half-cycle, the solutions are fairly simple. The sym-
metric solutions exist in the range 0.501 55 (j, (0.49 (In
Fig. 5 of I, ji =0.5015). At slightly higher currents one
has chaotic solutions and the transition occurs via inter-
mittency. At j& =0.49 a symmetry-breaking transition
occurs followed by a cascade of period-doubling bifurca-
tions ending at j& —=0.474 892.

IV. MULTIFRACTAL FORMALISM AND THE
UNIVERSAL TRANSITION AT THE ONSET OF CHAOS

I is formally analogous to the partition function Z (P) in
the thermodynamics. Its singularities define phase transi-
tions. In (19) the probabilityp; is given by the natural
measure on the attractor. It is given in the thermo-
dynamic limit by defining a grid which covers the attrac-
tor, each box on the grid is labeled by i (S; denotes the
boxes which are not empty), and letting the box size I; go
to zero and N go to infinity. One has

p;(1)= lim N, /N,
Pf —+ oo

ln
1

Dq = lim
q

—1 i-0 lnt'

(20)

(21)

where N,. is the number of times the time series visits the
box as the numerical simulation of the equations goes on,
i.e., p,.(l) is the probability that the trajectory on the at-
tractor X&, . . . , Xz visits the box labeled by i. The
values X; are defined by the P. That physical measure is
based on the fact that the time evolution [Eqs. (1), (2),
and (13)]produces well-defined voltage averages [see after
Eq. (13)]. In fact, the quantity o.=((p (O, t) ) )'~ /d [Eq.
(26) in I], shown in Fig. 1, defines the time average of the
square of the voltage along the filament. It does not de-
pend on the initial conditions and converges rapidly to a
number which soon stabilizes in the first digits. As the
time evolution goes on, o. becomes more precisely
defined. Therefore, there is an ergodic probability mea-
sure on the attractor. However, clearly 1, and % will be
always finite in our calculation so that the probability of
the box s, and the partition function are given by

g;= J dv(x),
ith box

I (q, l)= Jdv(x)[v(B, (x))]~

(22)

(23)

B&(x) denotes a ball of radius I around x. v(x) denotes
the invariant measure. There is a relation between the
crowding index a, (Ref. 27) and the natural measure&,
which scales as

(24)

In order to obtain the generalization dimensions D
and the multifractal spectrum of scaling indexes f (a),
one calculates the partition function on the attractor
defined as

N

I (q, r, [S, ],l) = g p'/ .

In the limit l;~0 one obtains the pointwise dimension
around the resulting point a(x) according to the partition
on the grid which must contain a point of the attractor in
that limit. The number of times or boxes n (l) that the
quantity [defined by (24)] in the limit l;~0 appears scales
also as a power of 1 (The grid size) as

n(l)=l (25)

The different exponent of (26) as compared to (19) is due
to averaging. (The brackets denote averaging. ) The quan-
tity r(q)=(q —l)D is the scaling exponent of the parti-
tion function, as can be expected on general grounds.
However, other types of singularities can also exist which
can give rise to other types of dimensions. A better
variant of the same method uses the measure '

(27)

so that

N

I (q, I) =—gp;(l)~
N,

(28)

In numerical calculations the two methods are, with
small changes, the same. Conceptually the recurrence
time approximation is an approximation to the measure
defined by (27). Let us remark that there is the possibility
of attractor sets which are locally the product of indepen-
dent structures along directions in two-dimensional phase
space. This is important because for hyperbolic systems
one of these directions is given by the unstable manifolds.
The attractors impose a continuum structure with partial
dimension one along the unstable direction. For nonhy-
perbolic systems, where both stable and unstable direc-
tions can locally mix through tangencies, there may be a
Cantor structure along both stable and unstable direc-
tions.

where the index 0: without the suKx i denotes the com-
mon value. This gives rise to the interpretation that these
boxes cover a subset of the attractor of fractal dimension

f (a). Therefore, we assume that the attractors are the
union of fractal sets. The procedure to calculate the f (a)
versus a curve would be to make log-log plots as one uses
different scales I according to Eqs. (24) and (25); howev-
er, this procedure requires too many points and as we are
simulating a partial diA'erential equation the computa-
tional time would be enormous. For this reason we use
the fact that the measure is ergodic so that the recurrence
time approximation and averaging over all points of the
attractor can be carried out, i.e., we count the number
of steps m; at the trajectory, starting from a point labeled
i and returning to it within a radius I, and set this number
m; equal to the probability measure&;, which gives the
probability of finding the trajectory within the ball of ra-
dius l around the point X; of the attractor. One has

a, (x) = —lnm, /1nl. Finally, after averaging over all
points of the attractor the partition function turns our to
be given by

(26)



43 MULTIFRACTALITY, MULTIFRACTAI. PHASE TRANSITIONS, . . . 673

0.06-
V. RESULTS FOR Ji ATONSET

AND SLIGHTLY BEYOND

0.05-
D

CL

-0.925 -0.92l
Vol t age

-0.9I7

FIG. 2. The histogram showing the natural measure obtained
from the values taken from the electric potential p(0, nT ). The
measure resembles the measure of the Feigenbaum attractor.

We have found the value of the current at the onset of
chaos by j &

=j,„,=0.474 892. We construct at that value
a histogram and find a set which appears to be discon-
nected and remarkably resembles the Cantor set of the
Feigenbaum attractor. The Poincare map is one dimen-
sional. At j &

=0.474 890 islands have formed, as is
shown in Fig. 2. The Poincare map is again one dimen-
sional. In Fig. 3 lnl versus lnl is plotted for selected
values of q. A steplike structure can be observed. These
steps have been observed by other authors when using the
recurrence time measure (see below). We think the ori-
gin of the steps is common to the fact that the crowding
indexes always show a change of scaling (see Fig. 4), and
are related to the finite number N of points on the attrac-
tor. In fact, the steps become more marked for larger
values of q especially for negative ones, which clearly in-
dicates a poorer statistic for the most rarified or concen-
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FIG. 3. (a)-(d) The partition function [Eq. (26)] is shown for selected values of q (j, =0.474 890). The steplike structure which is
more pronounced for negative q [(d)], is due to finite-size effects and in principle disappears in the thermodynamic limit N~ ~. N is
the number of points on the attractor.
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FIGi 4. The scaling curves around some selected points on
the attractor of Fig. 12. Curve 1 has a top slope of 1.070 and a
bottom slope of 1.47. Curve 2 has a top slope of 0.83 and a bot-
tom slope of 1.80. Curve 3 has a top slope of 0.46 and a bottom
slope of 0.32. Curve 4 has a top slope of 0.97 and the bottom
slope shows no change of scaling. Curve 5 has a top slope of
0.81 and a bottom slope of 0.57.

trated moments of the measure as q grows. The best At to
the plots gives us w(q) from which we obtain the general-
ized dimensions D and the f(a(q)) versus a(q) through
a Legendre transformation

f (a)=qa —~(q), a= ~(q), q = f (q) . (29)

However, if the function r(q) is not differentiable one has
to use the more general form

r(a) =inf[qa —f (q)], f (a) =inftqa —r(q)] . (3())

0.4 P.
—IO 0

! I I

10

FIG. 6. The function D(~& is shown for the attractor at onset.

dynamics to the entropy, u is the analog to the energy,
and w(q) is analogous to the free energy. Their singulari-
ties define phase transition points. However, our labeling
of the boxes on the attractor in general does not corre-
spond to the microstates. For that reason, and because
we use averaged quantities, r(q) and f (a) can at most
give indications of a phase transition if present.

Figures 5, 6, and 7 show the functions r(q), D, and the
spectrum of scales f (a) obtained for the value

j &
=0.474 890. We find for the scales we have empirically

used to obtain D and f (a) (Ref. 33) the universal values
obtained for the Feigenbaum attractor. ' This means
that even for supercritical values, where the measure of
the attractor has pieces (islands or bands) where it is con-
tinuous, the universal features of the Feigenbaum attrac-
tor can be seen on a scale that is larger than the island

The Legendre transform f (a) is the analog in thermo-

0.6

I I I I I I I I I I

0 IO

0.3 0.6 0.9

FICs. 5. The function ~(q) is shown for the attractor at onset.

FIG. 7. The function f(a) is shown for the attractor at on-
set. The functions cr(q), D, „and f (a) corresponds to the
universal Feigenbaum attractor.
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FICx. 8. The second derivative of ~(q) for j& =0.474 890. FIG. 10. The Poincare map for j& =0.474892. It is topologi-
cally equivalent to the Feigenbaum attractor.

width, i.e., the attractors behave on a coarse-grained
scale like a physical object which can show multifractal
scaling only on a finite range of length scales. Neither
subcritical parameter deviations nor finite-size effects at
slightly supercritical values have qualitative relevance.
In fact, it has been shown ' that in the case of the logis-
tic map for finite arbitrary small supercritical deviations
there are bifurcations where band merging occurs (this
happens at parameter values where the critical point is
mapped into the unstable fixed point by a some iterate of
the logistic map). In between, higher-order unstable or-
bits cause intermittency and band merging can be
thought of as a collision of attractors with unstable
periodic orbits (UPO). Some authors have shown

that, similar to the case of the logistic map
x„+,= 1 —ax„,a =2, there also exists a phase transition
at band merging. In that case the invariant measure has
two singularities and it is possible to show analytically
that D has a discontinuity at q =2; this is equivalent to a
phase transition (see below). For typical chaos the in-
variant measure has a countable number of singularities.
It is because of the different scaling of the probability
measure at the valleys and the corners of islands that
there is a discontinuity in D . The discontinuity is at
q =2 because of the square-root singularity of the invari-
ant probability measure.

Because of the averaging and coarse graining we can-
not see the effect of these singularities on the f (a) curve,
although it is evident in the histogram (Fig. 2). Notwith-
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S lal t .It I))
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IIx
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-0.926 —0.92 I

—0.9 I 6
cos [28(nT)]

FICx. 9. The second derivative of ~(q) for j& =0.47455.
FICi. 11. The Poincare map for j, =0.47484. Note the ap-

pearance of foliations as the islands fuse.
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FIG. 12. The Heron-like Poin|.are map for j &
=0.474 55.

standing, the second derivative of r(q) shows two peaks
(Fig. 8). As our methods can give only an indication of a
discontinuity, the bigger peak can be interpreted as an in-
cipient of a singularity. The smaller peak seems to be
related to the saddle orbit of period 2" for some unknown
n »1, which exists before the tangency occurs and col-
lides with the attractor. The local expansion rates appear
to be such that they produce hot spots" of high enough
density so that their contributions to (19) peak over the
other contributions. However, this peak does not diverge
as X~~, contrary to what is stated in Refs. 37, 41, and
42. It belongs to the hyperbolic phase. This means that
the expansion rates of saddle points cannot produce
phase transitions. Only marginal stable orbits can do
this. 4'

It is interesting to note that the magnitude of the peaks
is rather small (compare with Fig. 9 of this paper and
Fig. 2 in Ref. 44). The reason for this could be the com-
paratively large distance from the bifurcation or band
splitting. On the other hand, the singularity has the ex-
pected scale for the attractor at j, =0.474 55 [Fig. 9, (see
below}].

Numerical simulations with the logistic map and
Henon map show similar features. Also found in ordi-
nary differential equations (ODE) are features such as the
resistive shunted junction (RSJ) model and the Duffing
equations.

The Poincare map for values slightly below

j,„,(j, —=0.474 88) is already a multivalued function.
The increasing folding probably begins for values arbi-
trarily small below j,„,. In Figs. 10—12 the Poincare
maps for ji =0.47892, 0.47484, and 0.48455 are shown.
We conjecture that the homoclinic tangencies between
the stable ( W, ) and unstable ( W'„)manifold of UPO lying
in the fundamental neighborhood of the attractor are re-
sponsible for this gradual foliation. What happens is
qualitatively the same as the mapping of the critical point
by an n-times interate of the logistic map to the unstable
fixed point, i.e., there is a homoclinic tangency. As the

unstable manifold of an unstable periodic point pokes
through the stable manifold there exists an intermitten-

36

VI. PHASE TRANSITIONS AND
SYMMETRY-INCREASING BIFURCATIONS

BEYOND ONSET (J ] 4 j )

In principle, the way to prove the existence of a phase
transition for the attractors defined by the Poincare
map' would be to find an encoding or symbolic dynamics
for the calculation of the partition function (microstates).
Such an encoding would give an optimal covering at the
attractor to be contrasted with the ones defined above.
The singularities in the associated thermodynamic func-
tions define the phase transitions. We will study such
an encoding through the organization of the unstable
periodic orbits in another work.

We have used the method described in Sec. V, which
smooths possible singularities. However, the calculated
f (a) curves show a quasilinear region, which in fact can
be interpreted as an indication of a phase transition.
However, this sort of diagnostic is not strong enough.

The fundamental point and main argument are the
postulated tangency of 8„and 8' of a certain UPO.
Such tangencies cause the formation of regions where the
natural measure of the attractors have abnormally high
densities (analogous to the singularities of the measure of
the logistic map discussed above). Therefore, the point-
wise dimension a(x) (Ref. 27) has a low value at the
tangency point (nonhyperbolic point). This value is iso-
lated from other values and in general the dimension
f (a) of such points is finite. The tangency points define a
nonhyperbolic part of the partition function [Eq. (19)].
We use this fact to diagnose the tangencies. Such an idea
was already used to study a(x) at the turnbacks of the
Henon map and to establish a theory of first-order
phase transition. We examine as an example the attrac-
tor for j, =0.4745S shown in Fig. 12. The f (a} curves
show a linear part for positive q. The d ~(q)/dq curve
shows an incipient singularity at some q (Fig. 9). We
choose random points on a attractor and study the
crowding indexes [Eq. (24)]. Some representative curves
are shown in Fig. 4. The important fact is the existence
of a scaling for points near the turnback of the attractor,
where the values of the a(x) are considerably smaller
than the average (a(x)) on the attractor and the most
important are less than 1 [(a(x)) gives D

„

the infor-
mation dimension, and equals 1.4S]. The last remark
constitutes our main argument for the phase transition.
This is because points on the attractor of the unstable
manifold of saddle periodic orbits also produce values
which differ from D &, but they are never less than 1

(Ref. 48) and only pertain to the hyperbolic part of the
partition function. These points, although called hot or
cold spots, belong to the hyperbolic phase. For hyperbol-
ic systems, the measure along the unstable direction is 1

and Dq"= 1 for q, i.e., a "(x)= 1. The stable direction con-
tracts to produce fractal measures, which is also the
mechanism that produces a(x) less than 1. The topic
deserves explanation: in calculating the pointwise dimen-
sions we choose circles of radius I. The scaling for some
points of the probability measure [Eq. (24)] with a(x) (1
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cannot be isotropic. The only way to achieve in two di-
mensions a scaling less than 1 is to make both partial di-
mensions less than 1. This means that the folding and
contraction are strong in both directions, such that they
produce two Cantor sets for both partial dimensions.
Here the overlapping of stable and unstable manifolds is
involved, which makes possible the contraction along the
unstable direction and also Cantor structure along the
unstable direction. Note the change of scaling for some
curves in Fig. 4. This feature is also found in hyperbolic
systems. It just reAects the dominance in the scaling of
different regions, e.g. , by points of tangency or points on
the unstable manifold of some saddle orbital of the
LPM

We also find a symmetry-restoring or -increasing bifur-
cation at a value js,B near 0.473 65; i.e., at some value of
j &

the two conjugated chaotic attractors merge into one,
which has, on average, an inversion symmetry. The sig-
nature is the presence of only odd multiples of m in the
FFT of p(O, t). Compare Figs. 13 and 14. The strobscop-
ic plots of p(0, t), Fig. 15, for j, =0.470, contrast with the
one for j,=0.474 55, Fig. 16, with and without
the symmetry, as can be seen. Phase plots of
(p(O, t), sin[26(O, t)]) also show the presence on average
of an inversion symmetry. However, the symmetry can-
not be seen in the Poincare map I' (Fig. 17). Clearly, to
see this symmetry we have to use the POP* map, where
0 denotes the composition.

Qualitatively we can model the findings with a two-
dimensional map,

3 E.
+n +1 a+n +n ~~n & ~n +1 +n (31)

This map has an inversion symmetry, like (16). The cubic
nonlinearity resembles the nonlinear term on the right-
hand side of Eq. (1). Qualitatively this map describes the
Poincare map (17) for a range of currents. The map
shows a symmetry-breaking bifurcation (SBF) and a
period-doubling cascade to chaos. For a parameter value

as&&, while keeping the value of b fixed, the two conjugat-
ed attractors connected by the inversion symmetry merge
into one with a natural measure with inversion symme-
try. ' ' ' This happens when the 8'„and 8', of the
fixed point (0,0) touch in a tangency. For sufficiently
small values of b, this tangency occurs before the tangen-
cy of the 8'„and 8' of the period-two fixed points by
which the basin of attraction of the attractor at infinity
penetrates that of the chaotic attractor and, therefore, it
is not observable. For this model map the effect of the
tangencies in changing the foliation of the attractors can
be studied at least numerically, and probably the struc-
ture of the 8'„and 8, corresponding to higher-order
periodic orbits can also be studied. We detect at as&B

[where the tangency of W„(0)and 8', (0) occurs] a(x)
values less than 1, as should be expected. The possible
role of heteroclinic tangencies, if any, in this model
remains unclear.

The Poincare map given in (17) appears to define an in-
vertible two-dimensional map, at least for a range of
current values j, down to 0.4730. It appears to be

—
I

—
I 1 I I I I l I I I & I I I I

0 l.2 2.4

FIG. 13. The power spectrum of the attractor of Fig. 12.
Note that all the harmonics are present.

Henon-like and nonhyperbolicity seems to be a per-
vasive feature as tangencies between stable and unstable
manifolds occur all the way down from j,„,to js,B.
However, it appears that high-dimensional behavior is
starting to develop as the two-dimensional Poincare map
shows for ji =0.4715 and ji =0.470 (Figs. 17 and 18).
In fact, this attractor has characteristic veils which indi-
cate that it does not come from an invertible two-
dimensional map. Attractor twisting can also be ob-
served. Besides this, the coherence of the solution is
softening and (17) projected to the first two components
does not define a two-dimensional map anymore. This in-

-6-
Cf)

0
I I I I I I i i I I

I.2 24

FICx. 14. The power spectrum of the attractor of Figs. 15 and
18. Only odd components of the fundamental frequency
(co=0.2) are present, revealing the restoring of the symmetry of
Eq. (15).



678 RAFAEL RANGEL AND LUIS E. GUERRERO 43
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O
IIx O

IIx

—0.75
—0.75 0.85

p. (x=o, t+ St)
FIG. 15. The phase plot for j, =0.470. Note the symmetry

of Eq. (15).

0.58
-1.05

cos[28(n T)l
—0.80

FIG. 17. The Poincare map for j& =0.4715. Although not
clearly seen, the attractor has closed.

dicates a transition to what could be de6ned as soft tur-
bulence' or to a behavior that can be related to at least
three-dimensional maps. Here our main conjecture for
supercritical behavior (homoclinic tangencies) is not a
necessary conduction for phase transitions.

I.IO

18

C:

O
1.2- .~'

—1.0
I. . . . )

0.0
cos )28 (n T)

O
II

0.66 -'

CO

0.62-

0.58-
I

—0.88
I

—0.86
I . . I

—0.84

I. I 0
—I. I 0 I. IO

p (x= o, t + 8 t)
FIG. 16. The phase plot for a nonsymmetric attractor

(jl =0.474 555).

cos 28 (n T)
FIG. 18. (a) and (b) The Poincare map for jl =0.470. (b)

shows the more dense part of the attractor with more detail. It
does not have a Cantor structure and appears to completely fill
the two-dimensional surface indicating higher dimensionality.
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VII. CONCLUSIONS AND PERSPECTIVES

In this paper we have presented a detailed analysis of
the transition to chaos (onset) and chaos beyond the tran-
sition in the low dissipative branch of ac-driven phase-
slip-center solutions of the generalized time-dependent
Ginzburg-Landau equations [Eqs. (1), (2), (3), and (13),
and Fig. 1]. We studied the Poincare map [Eq. (17)]. We
found that this map behaves for a range of driving
currents [Eq. (13), 0.4730 &ji & 0.490] as a nonhyperbolic
Henon-like map.

We first calculated the multifractal spectrum of scaling
exponents [Eqs. (24) and (25)] at the onset of chaos
(ji =-0.474892). We find the universal spectrum of the
Feigenbaum attractor. Second, for typical chaos (beyond
onset), the behavior is qualitatively similar to the model
map defined in Eq. (31). However, the folding structure
of the LPM is much more dense than the model map.

The evaluation of the pointwise dimensions a(x) [Eq.
(24)] results in a values less than 1. Also the thermo-
dynamic function d r(q)/dq shows an incipient singu-
larity and the f (a) spectrum shows a quasilinear part.
This is an accordance with a phaselike transition of first
order. The analysis of the model map also shows simi-
lar features. Therefore, we conclude that homoclinic
tangencies are presented and are the primary reason for
the phase transitions and attractor widening (foliation).

At j, =—0.473 65 (jsiB) a symmetry-increasing bifurca-
tion occurs. This bifurcation reestablishes the symmetry
(15), lost at the beginning of the period-doubling cascade,
but in the average sense. This bifurcation is related to a
homoclinic tangency.

For values less than jsIB, the Poincare map ceases to
define a two-dimensional map (Figs. 17 and 18). This fact
creates a very promising perspective. As has been recently
pointed out, higher-dimensional invariant manifolds
and tangencies between any two one-dimensional stable

manifolds can happen (in two dimensions this is not pos-
sible). This rules out nonhyperbolicity as the only source
of phase transitions. As a result, nonisotropic eA'ects

and even more structured measures could exist. This
transition from local two-dimensional to three-
dimensional behavior could bring new interesting aspects
as important as the transition from a two- to three-
dimensional system governing flows. '

Another point of interest concerns the biased case [Eq.
(3), jo&0]. Preliminary results also confirm a universal
transition from quasiperiodicity to chaos. We are also
working on the universalities of the quasiperiodic case
and thermodynamics at onset. Results on the characteri-
zation of chaos through the unstable periodic orbits and
on the universalities related to intermittency at the
symmetry-increasing bifurcation (natural measure and
scaling lows, local expansion rates, etc.) are in progress.
We are also working on the bifurcation behavior below
the SIB. Details will be given elsewhere.

Finally we would like to remark that the described
scenario can be used to explain the results at low dissipa-
tion for the generalized sine-Gordon equations. ' This
brings us to conjecture generic behavior in NPDE for
chaos beyond onset after a cascade of period-doubling bi-
furcations. We believe our work could stimulate further
experiments in this field.
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