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Interface dynamics and the motion of complex singularities
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The motion of the interface between two Auids in a quasi-two-dimensional geometry is studied via
simulations. We consider the case in which a zero-viscosity Quid displaces one with finite viscosity
and compare the interfaces that arise with zero surface tension with those that occur when the sur-

face tension is not zero. The interface dynamics can be analyzed in terms of a complex analytic
function that maps the unit circle into the interface between the Auids. The physical region of the
domain is the exterior of the circle, which then maps into the region occupied by the more viscous
Auid. In this physical region, the mapping is analytic and its derivative is never zero. This paper
focuses upon the determination of the nature of the interface and the positions of the singularities of
the derivative of the mapping function g. Two kinds of initial conditions are considered: case A, in

which the singularities closest to the unit circle are poles; and case 8, in which the t =0 interface is
described by a function g with only zeros inside the unit circle. In either case, different behaviors
are found for relatively smaller and larger surface tensions. In case A, when the surface tension is
relatively small, the problem is qualitatively similar with and without surface tension: the singulari-
ties move outward and asymptotically approach the unit circle. For relatively large surface tension,
the singularities, still polelike, move towards the center of the unit circle instead. In case B, for zero
surface tension, the zeros move outward and hit the unit circle after a finite time, whereupon the
solution breaks down. For finite but relatively small surface tension, each initial zero disappears
and is replaced by a pair of polelike excitations that seem to approach the unit circle asymptotically,
while for a relatively large surface tension, each initial zero is replaced by a polelike singularity that
then moves towards the unit circle.

I. INTRODUCTION

Bubble growth in a Hele-Shaw cell has drawn much at-
tention recently. Here, two closely spaced glass plates
contain two fluids. For this idealized case, one fluid is
viscous and incompressible, while the other has zero
viscosity. The latter fluid is a bubble in an infinite sea
composed of the more viscous fluid. The area of zero-
viscosity fluid grows at a steady rate. The interface
separating the two fluids is described by a surface tension.
This and similar systems, for example, a channel flow
geometry, have been studied experimentally, and various
growth features have been observed. ' For some initial
conditions, the zero-surface-tension case can be solved
analytically. These solutions show that for a large
range of initial conditions, the interface will develop
cusps after a finite time interval. After this critical time,
the analysis is not meaningful.

Starting with the work of Salesman and Taylor, there
has been considerable discussion of the e8'ect of the sur-
face tension upon the interface motion in a Hele-Shaw
cell. Work on this problem has shown that the surface
tension is a singular perturbation, so that the solutions
with and without surface tension may be qualitatively
difFerent. Since the bubble-growth problem is the sim-
plest one in this general class, the question of whether the
presence of a small surface tension will qualitatively
change the solution is of great interest.

In this paper, we shall first give a mathematical formu-
lation of the bubble-growth problem using a method pro-

posed by Shraiman and Bensimon and Tanveer. After a
brief review of the results for the zero-surface-tension
case, we shall report our simulation results for the growth
of a bubble with nonzero surface tension. %'e shall show
both the shape of the bubbles and the motion of the
singularities with surface tension in comparison with
those without surface tension. The computational
methodology will be described in the Appendix.

II. MATHEMATICAL FORMULATION

The system has two kinds of fluids. They are confined
between two parallel glass plates that are kept very close
to each other (see Fig. l). The interface between the two
fluids is bubble shaped. The fiuid inside the bubble (fluid
l) has a negligible viscosity and is kept at a constant pres-
sure. The fiuid outside the bubble (fluid 2) has a larger
viscosity and is incompressible.

For the fluid outside the bubble, we can use Darcy's
law:

b2
Vp,

where v, p, and p are the velocity, pressure, and viscosity
of fluid 2, and b is the spacing between the two plates.
From the condition of incompressibility, we have V v =0.
Therefore, the field satisfies the Laplace equation

The pressure is constant inside the bubble and has a jump
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FIG. 1. The Hele-Shaw cell. Fluid 1 and Auid 2 are confined
between two plates of distance b. A bubble containing fIuid I
with negligible viscosity grows into Auid 2 with larger viscosity.

P ~ interface

At infinity,

(3)

at the interface, which is equal to the surface tension ~
times the local curvature K. Since the constant added to
the pressure has no dynamical efFects, we can write as our
boundary conditions

and the corresponding equation for g is

1 —doRe(cor) /Bco A I co I )

Bt a~
""

This equation describes the situation in which the area of
the bubble grows linearly with time. Specifically, the
time derivative of the area is 2'. In Eqs. (6) and (7), 3 is
an operator that acts on functions that are analytic in an
annular region containing the unit circle. For a function
F(co) that can be expressed, in the neighborhood of the
circle, as

F (to) = g a„co",

we define

1 dS
p ~ lnr,

27' dt
(4)

3 tF(ro) I =ao+2 g a„co" .
n (& —1)

where r is the distance from the injection point.
The boundary condition (3) is not always a fully

correct description of the situation in real, three-
dimensional fiuid cells. ' In this paper we nonetheless use
Eq. (3), in part because it provides an interesting
mathematical problem.

A hodographic method is used to solve the equations
(see, for example, Refs. 2, 5, and 8). A conformal map-
ping f (to, t) is used to map the unit circle in the co plane
onto the interface in the z plane and the exterior of the
unit circle into the exterior of the bubble (see Fig. 2). So
in the ro plane, the outside of the unit circle,

~
co

~

~ 1, cor-
responds to the physical domain, and the inside of the
unit circle ~co~ ( 1, corresponds to the unphysical domain.
We define another function g (ro, t), which is the deriva-
tive of the function f with respect to co,

g (to, t) = Bf(ro, t)
Bco

To make the solution meaningful, all the zeros and poles
of g have to remain inside the unit circle. Using this for-
mulation and rescaling the variables in the problem, we
can reduce the above equations into one equation describ-
ing the time evolution of the mapping function f(co, t),

The curvature a can be expressed in terms off (co, t) as

r3/r)cof +rory Ir3ro f
0/Brof )8/Beef [

(10)

Equation (7) contains a parameter do that is proportional
to the surface tension in the system. do has the dimen-
sion of a length and it can be expressed, in terms of the
parameters of the system, as

m ~bdo-
3p,dS /dt

where dS /dt is the time derivative of the area of the bub-
ble. In our numerical work below, we set dS /dt equal to
2~. The initial value of the zeroth Fourier coef5cient of
the function g, A(0), which has the dimension of a
length, is set equal to I in order to give a length scale to
the system and thus to make do dimensionless. "

Following the work in Refs. 8, 2, and 5, we use the
singularities in the unphysical domain to describe the an-
alytic structure of the function g and some physical quan-
tities of the bubble. We know that this method works
when the surface tension is zero, and hope that the study
of the singularities can give an efFective treatment of the
problem when the surface tension is not zero.

m plane z plane

III. BRIEF REVIEW OF THE
ZERO-SURFACE- TENSION CASE

Before moving on to the simulation results for the on
zero-surface-tension case, we give a brief review of some
previous work on the bubble growth at zero surface ten-
sion. We choose our initial condition for g(to, t) to
have the zero or (and) pole structure:

FJ&. 2. The mapping. A conformal map f (ro, t) maps a unit
circle in the co plane onto the real physical interface and the out-
side of the circle into the outside of the bubble. The outside of
the unit circle is the physical domain and the inside is the un-

physical domain where the singularities lie.

m

y (1—z (t)/ro )

g(to, t)= A (t)
(1—p, ( t) /to')

j=1
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g(co, t)= A (t) 1 ——z(t)
q

(13)

where A (t) is real. For m ~n, ' this analytic structure
will be preserved, and the original partial difFerential
equation is reduced to some ordinary di6'erential equa-
tions governing the evolution of the zeros z, ( t), the poles

p (t), and the number A (t), which is the dc component
of the Fourier spectrum of the function g.

For zero surface tension, the work of Sarkar and Jen-
sen has given a good description of what happens when
all the singularities of g are, in fact, zeros. Then it is al-
most always true that one or more of the zeros will hit
the unit circle. At that critical time, the interface will
usually develop cusps, and the solution will break down.

A particular simple situation arises when we have q
zeros symmetrically placed within the unit circle. In this
q-zero case, the solution has the structure

3 ' 0 I I ~ ~
I

~ ~ I ~ I I I I ~ I
~ ~ ~ ~

I
I I ~ I

I
I I l ~

2. 0

1 ~ 0

0 ' 0

-1 ~ 0

-2 ~ 0

-3.0
3

I ~ I I ~ I I I I I ~ I I I I ~ I I I I I I I I ~ I I

. 0 -2. 0 -1 ~ 0 0.0 1 ~ 0 2 ~ 0 3.0

FIG. 3. Evolution of a bubble with dp =0 for the q zero case.
The corresponding times for the interfaces from inside out are
0.00, 0.18, 0.36, and 0.54.

Without loss of generality, we can take z (t) to be real.
The equations of motion for A (t) and z (t) are

dA 1

A (t)[l —z'(r)]
dz (t) (q —2)z (t)

Ck A'(t)[1 —z'(t)]
For q =3, they have the solutions

(15)

where z(t) and p(t) describe, respectively, the positions
of the zeros and the poles. We shall consider only the
case when A, z, and p are real and obey
0&z(0) &p(0) &1. Then the solution will be one in
which the poles and the zeros move asymptotically to-
ward the unit circle but never get there. Furthermore,
for t )0, we have z (t) &p (t) & 1, so the solution exists for
all times. For very large times, the asymptotic solution is

A (r)= A (0)
1 — 1 —2z (0)+z (0)2 4

z(0)
1/2 1/2

z (0)
A (0)

z(t)= A (t),z(0)

(16)

(17)

A (r) =(2t)'~',
1/2

p (t) = 1 —c2exp —
q c)

C)z(t)=l-
td/2 '

(20)

(21)

(22)

A (0)[1—z (0)]
2z (0)

2

where A (0) and z (0) define the initial conditions. Notice
that when t reaches the critical time t„

where c, and c2 are two constants of integration.
In Fig. 4, interfaces with three-fold symmetry at times

0, 5, 10, 15, and 20 are shown. The initial condition is
A (0)=1.0, p(0)=0. 5, z(0)=0.0. Fjords, channels of
the viscous Quid (Quid 2) where the growth of the bubble

where z(t, ) is one and the solution becomes singular.
The equations and the solutions then fail to make sense
for t & t, . This t, is the critical time we mentioned at the
start.

In Fig. 3, interfaces are shown at t =0, 0.18, 0.36, and
0.54 for the q-zero case with q =3, A (0)=1.0, and
z(0)=0.5. The tips of the interface get sharper at later
times, and they will develop into cusps at the critical
time, which, according to Eq. (18), is about 0.5625.

In contrast, we can consider cases in which the solu-
tion remains valid for all times. The simplest of these is
the case that we call the q-pole case. Here there are q
poles and q zeros, but the poles remain closer to the unit
circle than the zeros. The solution has the following
structure:

4. 0

0 ' 0

-4. 0

-8 ' 0
-8 ' 0

I I I f ~ ~
I

I I 0
I

I I I

I I I s ~ I ~ t i I ~

-4 ~ 0 0.0 4. 0 8 ' 0

1 z(t) co/

1 —p (r)/co~

FIG. 4. Evolution of a bubble for dp =0 with threefold sym-
metry and the q-pole initial conditions. The times shown are 0,
5, 10, 15, and 20.
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IV. SIMULATION RESULTS FOR THK
NONZKRO-SURFACE-TENSION CASE

In our simulations, we consider in detail two cases that
have initial conditions of the q-zero and the q-pole cases
described above.

A. Pole initial condition

1. Smaller surface tension

For the analog of the q-pole case for zero surface ten-
sion, we used dp = 10,and took as the initial condition

1
g (oi, t) I, =o=

1 —0.5/co
(23)

is greatly suppressed, develop at later times. In this case,
the fjords are almost perpendicular to the fronts that al-
most form a circle. This rejects the fact expressed in
Eqs. (21) and (22) that the poles and the zeros tend to 1,
but the poles approach much faster then the zeros do.

Especially, if the leading singularity is pole singularity,
y = —1, the above ratio goes like ~p~ and the coefficients

g. —Ipl".

Figure 6(a) shows the Fourier coefficients g„generated by
the simulation at time =0.6. The almost-linear behavior
of this log-linear plot shows that the singularity is pole-
like, but the highest frequencies do show some deviation
from a straight line. By measuring the slope of the curve
on this log-linear plot, we can find the quantity p(t), the
qth power of the distance between the leading singulari-
ties and the center of the unit circle. This quantity is
plotted against time t in Fig. 7. In Fig. 6(b), g„+,/g„ is
plotted against 1/n for time =0.6. This ratio is almost a
constant, but it does show a small but important varia-
tion. This variation indicates that the singularity struc-
ture is not simply described by a single quantity p (t) that
describes the positions of the poles. By extrapolating the
ratio g„+,g„ to n —+ ~, or 1/n ~0, we can also get p (t)
from the following:

In our previous notation, A (0)=1.0, z (0)=0.0,
p(0)=0. 5, q =3.

Figure 5 is the interface up to time =0.6 for dp =10
For times no later than 0.6, the interfaces are almost
identical to those with dp=0. We are not able to carry
the calculation for the nonzero-surface-tension case long
enough to see if the interesting shape exhibited by the
zero-surface-tension case shown in Fig. 4 will show up
when the surface tension is not zero.

Since g„, the nth Fourier coefficient of the function g,
is also the coefficient of the term co "q in the Taylor ex-
pansion (see the Appendix), the dependence of g„on n

gives information on the analytic structure of the func-
tion g. Whenever the singularity nearest the unit circle is
a branch cut of order y that lies at coq=p, the leading be-
havior of the ratio of the coeKcients is

c 4
C)

C)

0 IOO

I

0.2"

200 500

lg. + i/g. I

— Ipl
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0.873-
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1 ~ 0
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0 ' 0

0

2 0 I ~ ~

-2. 0 -1.0 0.0 1.0 2. 0

FIG. 5. Evolution of a bubble for do=10 ' with threefold
symmetry and the same initial condition as in Fig. 4. The times
for the interfaces shown are 0.0, 0.2, 0.4, and 0.6. The shape of
the interface up to t =0.6 is almost identical to that without
surface tension.

0 8 6 7 I ~ ~ i ~ ~ ~ i ~ ~ I ~ ~ ~ I ~ ~ ~

0.00 0.02 0.04 0.06 0.08 0.10
bio

FIG. 6. Behavior of expansion coeKcients for the largest
bubble shown in Fig. 5. (a) The Fourier coefficients g„ in loga-
rithmic scale. The almost-exponential behavior suggests a pole-
like singularity structure for the function g. The inset gives the
first ten Fourier coefficients in logarithmic scale. (b) g„+,/g, vs
1/n. The nonlinear behavior indicates that a single quantity
describing pole or branch-cut structure cannot describe all of
the singularity structure of the function g. But the extrapola-
tion of the curve to 1/n ~0 tells us roughly where the leading
singularity is.
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gn+1
p(t) g~ oo g~

The values of p(t) obtained from these two methods
differ by 1 part in 10 .

In Fig. 7, where p (t)'s for both cases were plotted, we
can see some small changes caused by the surface tension.
Notice that the singularity moves more slowly towards
the unit circle when surface tension is present than when
the surface tension is zero, and that in both cases the
singularities approach the unit circle as time goes to
infinity.

We also studied a bubble with fourfold symmetry, since
other workers have considered this case in some detail. '

Behavior in the shape of the interface and the movement
of the singularities was found to be similar for dp = 10
to that for the previous case with threefold symmetry.
The initial condition was

I
'

I

- ---do=0
I

'
I

'
I

do= l0

restrained between two intersecting walls that intersect at
the injection point with an angle of 2~/q. Hakim et al.
found experimentally that in a situation with two walls,
the interface will grow steadily after some time and form
a fingerlike structure that has a characteristic angle. The
ratio of this angle to the angle between the walls is
defined to be A, . If the growth of the interface really fol-
lows that of the zero-surface-tension case seen in Fig. 4, A,

goes to 1 as time goes to infinity, which disagrees both
with a theoretical result of A, obtained by Brener et aJ'. '

and an experimental result by Arneodo et al. for a case
with fourfold symmetry '.From Fig. 8(a), one cannot tell
whether the interface will form a finger with some asymp-
totic value of A, or what the value of A, might be.

1

0. 1

CO

(24)

The interfaces at t =0, 0.5, 1, and 2 are shown with
those of do=0 in Fig. 8(a), and the corresponding move-
ments of the leading singularities are shown in Fig. 8(b).
Again, we see a behavior in the Fourier coefIicients that
indicates that the analytic structure of g up to that time
can be described by a polelike singularity, similar to the
zero-surface-tension case. But there is some visible
difference for larger times in the shape of the interface at
the places where fjords develop in the zero-surface-
tension case. This difference might be important for
determining the singularity structure of the function g.
Following Thome et al. ,

' a ratio k, similar to that in the
Saffman-Taylor finger problem, which is the ratio of the
finger to the width of the channel, can be defined. We
can look at the interface as one that is composed of q
parts, each part identical (assuming we only consider the
case where the singularities are real). Since there is no
Aow between each part according to the symmetry, the
properties of each part are the same as those of the Quid

I i I t I i I t I (

-3 -2 -) 0 1 2

.0 ~ ~ ~ I ~ ~ ~ I ~ ~ ~
/

~ I I t ~ ~

0.8

0.2

0..0 ~ ~ 5 l ~ ~ ~ I ~ ~ ~ I ~ I ~ I ~ ~ ~

0.0 0.4 0.8 1 . 2 1.6 2.0

0.8

O. 7

0.5
0.35
T I lTl 8

FIG. 7. The motion of the leading singularity for the simula-

tions shown in Figs. 4 and 6. Here p(t) is plotted against time
for do = 10 (solid line) and do =0 (dotted line).

FIG. 8. The interfaces for fourfold symmetry. The compar-
ison for the shape of the interface {a) and the motion of the
singularities (b) between d&=10 ' {solid lines) and do=0 (dot-
ted lines) for an initial q-pole case. In both cases, the interface
has a fourfold symmetry and the initial condition is A (0)=1.0,
z(0) =0.00, p (0)=0.1. (a) The corresponding times are 0.0, 0.5,
1.0, and 2.0 from inside out. The evolution of the interface with
nonzero surface tension follows that without surface tension
closely. But we do see some difference at the latest time at the
places where fjords develop when there is no surface tension.
(b) We see again as in Fig. 7 that the motion of the polelike
singularities towards the unit circle is slowed down by the sur-
face tension.
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2. Larger surface tension

3 I ~ ~ « ~ I ~ ~

2

3 ~ ~ ~ I ~ I ~ « I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ a ~ I ~ ~ ~ a

We used again the same initial condition as in (23), but
chose d o

= 10 '. Figure 9(a) shows the interfaces as
times 0, 0.5, 1, and 1.5. Figure 9(b) shows the interfaces
for do =0 at the same times as those in Fig. 9(a). The sur-
face tension changes the interfaces considerably. With
zero surface tension, the interface at t =1.5 has already
started to develop fjords; while with this relatively large
surface tension, the interface becomes circular as time
goes on. The structure of the Fourier spectrum does not
change much, but the motion of the singularities is to-
wards the center of the unit circle instead of towards the
unit circle. Figure 10 shows p(t), which describes the
motion of the leading singularities with respect to time
with and without surface tension. Notice that in the
presence of surface tension, the leading singularities move
towards the center of the unit circle. This motion makes
the actual interface become rounder and rounder.

The linear analysis gives us some idea as to why this

happens. The rate of change for the nth Fourier
coefficient is proportional to qn —don q . When the sur-
face tension is of the order of 1/q, this rate of change
becomes negative even for n =1. Indeed, for q =3, we
found that the behavior of the singularity changes when
the surface tension is of the order of 0.1.

B. Initial condition of the q-zero form

g(to, t)I o= 1—0.5

CO

(25)

Thus, in the previous notation, A (0)=1.0, z(0)=0.5,
q =3.

Figure 11(a) shows the resulting interfaces for
do=10 at t =0, 0.18, 0.36, 0.54, and 0.59. Here the
critical time when do=0 is t =0.5625. . . . We can see
that for the d&=0 case (Fig. 3), the tips of the interface
develop into cusps when t =t„while for do=10, the
tips look much rounder. In the latter case, we can carry
the calculation beyond t, . In Fig. 11(b), the two cases
are compared for I; (t, .

From the two dents in the sides of the finite-surface-
tension interface [see Fig. 11(b)], one might guess that
g(to, t) perhaps has two identical singularities, complex
conjugates of one another. If these are the singularities
that lie closest to the unit circle and lie at p (t) and p'(t),
which, respectively, has phases +8(t) and —6(t), then
for large n, the Fourier coefficient will have the following
form:

Smaller surface tension

To find the finite-surface-tension analog of the q-zero
behavior, we first used do=10, and the initial condi-
tion

g„=C„~p (t)
~

"cos(n 0), (26)
e ~ ~ ~

«

.-(b)
I F ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I I ~ ~ % I ~ ~ ~

where C„changes very slowly in comparison with the
other two quantities.

0

~ 0 I ~ 8 ~ ~

0.8—

I ~ I I I ~ ~ ~ ~ ~ ~ ~ ~ J+ s «@~I«« 'I
~I«W

0
0

«

2 ~

3 s ~ ~ ~

3 Q 2 - 1 0 1 2
0.4

FIG. 9. Interface motion with larger do. The q-pole initial
condition used is the same as that in Fig. 8. The times are 0,
0.5, 1, and 1.5. The interface in (a) has do =10 ', while the one
in {b) has do =0. As in Fig. 4, fjords develop against an almost
circular front when there is no surface tension. But when there
is relatively larger surface tension, the interface gets more and
more like a circle, which is a result of the polelike singularities
moving towards the center of the unit circle, as is shown in Fig.
10(b).

9.2
- 110

0 0''
0.0

~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ s I I k R I ~ ~ ~ ~ I ~ ~ I

0.5
Tl f08

1.0

FIG. 10. The motion of singularities for the Bows shown in
Fig. 9.
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The actual Fourier coeKcients g„, as shown in Fig.
12(a), has an n dependence rather similar to (26). We fit
the envelope to the data by a straight line to get an esti-
mate of lpl. The we apply Fourier transform to the series
g„e"~ to get an estimate of 0. Finally, we change lpl, 8,
and 00 around their estimated values to get the best fit. If
the structure in Eq. (26) is true, the quantityR:g /(e IP'

g + I +e ) lg I ) should be weakly depen
dent on n. Furthermore, as n —+ ~, this ratio goes to
2/cos(6) when lp'l = lp l. In Fig. 12(b), where R„ is plot-
ted against n, we see that for the high frequencies, R„
does become constant. The positions of the singularities
fit by the two different methods agree to 1%. Given Gts
of this quality, it seems reasonable to call p(t) and p*(t)
the positions of the singularities.

Figure 13 shows how these singularities move inside
the unit circle. Here we are looking at the singularities in
the co plane. The original three zeros are marked by 6 in
the figure. Each of them splits into two poles, which then
move towards the unit circle. Figure 14(a) shows how the
quantity 1 —

lp (t)l, a measure of the distance between the
singularities and the unit circle, changes as a function of
time. The distance is plotted on a logarithmic scale. It
suggests that the singularities might approach the unit
circle exponentially in time. Figure 14(b) shows the
phase ofp (t) as a function of time.

These singularities may not be poles. The basic equa-
tions do not seem to admit pole solutions, ' but nonethe-
less the singularities generated by the numerical work do
appear isolated and polelike.

We then did a calculation for a case with sixfold sym-

2 ' 2
0 g g ~

I
i i I
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G. G

g J
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I
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FIG. 11. The three-zero initial condition is run with finite
surface tension. The initial condition is the same as that in Fig.
3. The innermost bubble is our initial condition; the times for
the other bubbles are 1.18, 0.36, 0.54, and 0.59 from inside out.
(a) The interface development. (b) Figure 3 (dotted lines) and (a)
(solid lines) are compared. Only one third of the interface is
shown here.

FIG. 12. Plot of g„vs n for the case depicted in Fig. 11. (a)
Plot of log, og„vs n at time =0.36. The periodic bumps on top
of a straight line suggests a two-pole-like singularity structure
for each of the three parts of the interface. (b)
g (el''lg +&+e

—IP'Ig, ) is plotted against n for high frequen-
cies for times 0.36, 0.45, and 0.54, corresponding to the bubbles
shown in Fig. 11(a). The almost-horizontal lines confirm the
previous observation that the leading singularity structure is
two-pole-like for each of the three parts of the interface.
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metry and an even smaller surface tension do=10
The initial condition was

g (co, t) ~, o= 1—0. 1

CO

(27)

We found similar behavior in both the shape of the inter-
face and the motion of the singularities. Figure 15(a)
shows the interfaces at different times compared with
those of do=0. The critical time for zero surface tension
is 0.7659. . . . Again, with small surface tension, we
could calculate the interface beyond that time. Figure
15(b) shows the motion of the singularities in the complex
plane. In this case, each of the six points in the complex
plane (which correspond to the sixth roots of the initial
zero) splits into a pair of poles that are complex conju-
gates to each other, and the resulting poles move towards
the unit circle.

change of the nature of the singularity in the following
fashion. Consider a function of the form 1/(1+0. 1/co"),
whose pole singularities are described by the quantity—0. 1; it can be expanded into, ignoring the higher-order
terms, 1 —(0. 1/co ), whose zero singularities are de-
scribed by the quantity +0.1. So ignoring the higher-
order terms, a q-zero initial condition could be con-
sidered as almost a q-pole case, with the kth pole of the
total q poles having an extra phase factor of (k —l)m /q.
We think that under relatively larger surface tension, the
polelike singularities, described by a quantity p (t), which
lies on the different side of the real axis from the quantity
z(0), which describes the initial zeros, might have come
from this "almost q-pole" initial condition.

The interfaces at different times are shown with those
of do=0 in Fig. 17. We have carried the calculation
much longer than the critical time for zero surface ten-

2. Larger surface tension

For relatively large surface tension, we found different
behavior of the singularities. Consider the surface ten-
sion 10 and the initial condition

0.5

0.4

g (co, t) ~, o= 1—0. 1

CO

(28)
0.3

When t &0, the Fourier coe%cients alternate in their
signs, and the logarithm of the absolute values of the g„'s
shows a linear relationship with n (see Fig. 16), and the
slope of the line increases with time. This means that the
leading singularities are polelike and are described by a
quantity p(t). This quantity lies on the opposite side of
the real axis from the quantity z (0) that describes the ini-
tial zero and moves towards —1. We can understand the
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Time

~ 5 I I g I
I ~ I I I 1

I I ~ I I
(

1 I I I l I 12
(b)

2 ' 0

0.0

-0. 5
th

~ 1.0

-1.0-1 ~ 0 -0 ' 5 0.0 0 ' 5 1 ~ 0 p 5 I I I I I ~ I I I I I I I l I I ~ I I I I I I ~ I I I ~ ~
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Time

FIG. 13. Motion of singularities for the case shown in Figs.
11(a) and 12. The loci of the singularities are shown inside the
unit circle. The initial zeros which are cubic roots of 0.5 are
denoted by A. Each of them splits into two poles, which are
complex conjugates to each other, and the resulting poles move
towards the unit circle. On the bottom lines, towards the unit
circle, the symbols X mark the position of the poles on those
two lines for times 0.1, 0.2, 0.3, 0.4, and 0.5.

FIG. 14. Position of the singularities for the case shown in
Fig. 13(a). 1 —p(t), the measure of distance between the singu-
larities and the unit circle from our fitting results, is plotted in
logarithmic scale against time. It looks like a straight line for
large time, which suggests that the poles might asymptote the
unit circle exponentially in time. (b) The phase of p (t) in rad vs
time.
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sion, which is 2.8349. . . .
We also found, for some intermediate values of surface

tension, some intermediate behavior between what we
found for relatively small and relatively large surface ten-
sion. For some early times, the logarithm of the absolute
values of the Fourier coeKcients versus frequencies had
some bumps on top of a straight line, which was similar
to the behavior found when relatively small surface ten-
sion was used, as in Fig. 12, except that the number of
bumps was much smaller and decreased with time. After
some time interval, the bumps disappeared, and we saw
the same behavior as we did when relatively large surface
tension was used, as in Fig. 16. We have not studied this

~ ~ ~ ~ I
~ ~2
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-12

i I ~ I ~

I I ) I l I
I

I I I
(

I I

200 300

2.2 =

0.0—

dp-0 dp = IO

Fig. 16. log&~„vs n for an initial q-zero case with a larger
surface tension (10 ) and the same initial condition as that in
Fig. 15(a). The straight line suggests that the singularity is a
polelike, which is diFerent from what is shown in Fig. 12(a).
The corresponding times are 1.3, 2.6, 3.9, and 5.2. Since the
slope of the lines increases with time, the polelike singularities
move towards the unit circle.

2 l

—2.2

1.0,

c e I s I I l I I I l I I I L.
0.0 I. I 2.2

~
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I

behavior suKciently to fully understand it. We speculate
that the reason for this to happen might be the following.
Initially, as in the case with relatively small surface ten-
sion, each initial zero turned into two poles that were
complex conjugates to each other except that they lay on
the other half of the complex plane, and then the two
poles merged into one and moved towards —1.

0 ' 5

0. 0
~ g I

/
I I I ) I I I

)
~ ~ ~

d 10

-0 ' 5

-1 ~ 0
-1.0 -0 ' 5 0 ' 0 0 ' 5 1.0 0.0

FIG. 15. Motion of an interface that has sixfold symmetry.
The q-zero initial condition used is 2 (0)= 1.0, p (0)=0.0,
z(0) =0.1. (a) The evolution of a bubble with and without sur-
face tension. The zero-surface-tension case is shown as the dot-
ted lines for t =0.0, 0.25, 0.50, and 0.75. The bubbles with
do=10 are shown as the solid lines for t =0.0, 0.25, 0.50,
0.75, and 0.80. The bubble without surface tension develops
cusps around t =0.77. Again, we were able to calculate the
problem beyond that time with even small surface tension. {b)
The motion of the singularities inside the unit circle for
do=10 . The initial zeros, which are sixth roots of 0.1, are
marked by dots, except that the one on the real axis is marked
by A, and the resulting polelike singularities of this point in
later times are marked by A. As in Fig. 13, each of the initial
zero splits into two polelike singularities, which are complex
conjugates to each other and move towards the unit circle.

-2. 1
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FIG. 17. The growth of a bubble without surface tension
(dashed lines) and with surface tension 10 (solid lines) with
the same initial conditions as those in Fig. 16. The times for the
zero-surface-tension case are 0, 1.3, and 2.6; for the nonzero-
surface-tension case, 0, 1.3, 2.6, 3.9, and 5.2. The critical time is
roughly 2.83. Again, with nonzero surface tension, we could
carry the calculation long after the critical time.
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V. CONCLUSIONS
g(co, t)= g g„(t)ro

n=0
(A 1)

We calculated the bubble growth in the Hele-Shaw cell
for the nonzero-surface-tension case and compared them
with the corresponding zero-surface-tension case. For
the q-zero initial condition, a small surface tension does
change the shape of the interface significantly, and the
existence of this small surface tension enables us to carry
our calculation longer than the critical time. But for the
q-pole initial condition, a small surface tension does not
seem to affect the solution very much. In all the cases
considered, a relatively large surface tension changes the
solution qualitatively considering both the shape of the
interface and the motion of the singularities. We notice
that polelike singularities seem to maintain this form
even with nonzero surface tension. Conversely, an initial
condition with zeros in g is quite unstable against the
"perturbation" caused by surface tension. We speculate
that isolated singularity structures might be a good solu-
tion to the equations even for nonzero surface tension,
and that these singularities might maintain their form
even at very large time, when the singularity position
asymptotically approaches the unit circle.

Note added in proof. After we submitted the
manuscript, we did some more studies on the initial q-
zero case with a small surface tension. It seems that the
analytic structure of the function g can perhaps be better
described by a continuous distribution of polelike (more
precisely, branch cuts of some power) structures and
their complex conjugate on a circle with a radius smaller
than 1. We suspect that this might also be the case for
the initial q-pole case. Further studies are needed to
determine the nature and the number of these singulari-
ties.
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APPENDIX: COMPUTATIONAL METHODOLOGY

Following Bensimon, we use a pseudospectral method
to solve Eq. (7). We can make a Fourier expansion of the
function g(ro, t), which is also its power expansion in co,

since co is on the unit circle. Considering the q-fold sym-
metry on the unit circle in the m plane, this expansion
looks like

The expansion is truncated at a certain number of
terms N, beyond which all g„ fall into roundoff error. All
the space derivative calculations are carried out in the
Fourier space and then transformed back to the real
physical space if necessary. The analytic continuation is
done in the Fourier space using Eq. (9). In order to better
control the growth of the high frequencies, we add and
subtract a linear damping term, which we get from linear
analysis, to the time derivative of the Fourier coefficients.
So the equations in the Fourier space look like

dgn =L„g„+(X„L„g„)—, (A2)

where N„ is the nth Fourier coefficient of the right-hand
side of Eq. (7) and L„ from linear analysis, is proportional
to qn —don q; For high frequencies, i.e., large n, L„ is
negative. Equation (A2) is then solved using a method
similar to the second-order Runge-Kutta method. In the
simulation, we incorporate the q-fold symmetry into our
scheme to save time. In most of the cases considered, as t
increased, the singularities moved towards the unit circle
and the high Fourier coefficients grew steadily. When the
highest frequency components exceed the roundoff error,
the errors in the highest Fourier frequencies will propa-
gate to the lower ones until the solution diverges. To
make the solution converge, we had to use more frequen-
cy components in the calculation so that the highest fre-
quency components were always smaller than the roun-
doff error. Since we used fast Fourier transform routine
to do the Fourier transform, we doubled the number of
points and give them an initial value of zero just before
the highest frequency components exceeded the round-off
error.

In the calculation where do=10 and a q-pole initial
condition was used, we began with the first 256 terms of
the Fourier transform of the function g (half of which
were of the negative frequencies and were therefore
nonzero), and the corresponding time step was 10 . Be-
fore the highest Fourier component exceeded the roun-
doff error, we doubled the number of points by assigning
the rest to be zero and decreased the time step according-
ly. Generally, if the number of points used is N, the time
step used is proportional to d0/qX3. We stopped the cal-
culation just before the highest frequency of the Fourier
spectrum of 1024 points exceeded the roundoff error, the
time step being 10 . In order to check the program, we
did another calculation for the same problem. We began
with 1024 points and a time step of 10 . After 3 000000
iterations (when the time was 0.3), we compared the
Fourier components with those obtained from the previ-
ous calculation. The lower Fourier coefficients agreed to
the tenth or eleventh digit, and the higher Fourier
coefficients agreed to the twelfth or thirteenth digit.
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