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Macrokinetic theory of electrons in gases
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A closed, macroscopic description of the dynamics of an assembly of electrons under the
inAuence of a space-time-varying field is presented. This is accomplished by approximating the
phase-space distribution function in an equivalent space whose coordinates are the infinite set of
moments, I m, ;j = 1, . . . , oo I. An attempt has been made to formulate a rigorous procedure for ob-

taining approximate distributions with varying degrees of space-time resolution and for establishing
their range of validity. Expressions are presented for the approximate distribution function and the
transport parameters with resolution corresponding to the scale for energy relaxation.

I. INTRODUCTION

In previous papers, ' the macroscopic behavior of an
assembly of electrons has been described using the con-
cept of macrokinetic distribution (MKD) functions.
These are velocity-dependent (kinetic) distributions with
macroscopic space-time variation. It has been argued
that, in general, the variables that characterize the mac-
roscopic dynamics of the electron assembly depend on
average properties of the single-particle kinetic distribu-
tion (KD), f (v, r, t) (where v is velocity, r is position, and
t is time) over extended velocity intervals; moreover, that
dynamical changes in these average properties occur over
space-time scales that are coarser than those of the
KD.' The KD has a space-time resolution correspond-
ing to those of a two-body collision, and thus contains
more information than necessary to provide a characteri-
zation of the assembly in terms of macroscopic variables.
A distribution function with less space-time resolution
(coarser) than that of the KD, and equivalent (as far as
macroscopic properties) velocity dependence, can equally
serve to determine macroscopic properties of the assem-
bly. This distribution is the MKD. The scale of resolu-
tion of the MKD is dictated by the characteristic scales
of variation of the dynamical macroscopic variables,
which scales are self-consistently obtained as appropriate
averages over the distribution function.

In formulating a theory for obtaining the MKD, the
question arises as to which set of macroscopic variables
can be used to specify with some measure the macroscop-
ic scales of variation of the assembly. Moreover, given
this set of variables, how can the corresponding (coarse)
distribution function be determined and its range of va-
lidity assessed' These questions have been briefly treated
in Refs. 1 and 2. This treatment has been partially based
on physical arguments and on use of the Bogoliubov an-
satz, and provides neither rigorous answers to these
questions nor a foundation for the establishment of the
theory. In this paper, a macrokinetic theory is developed
starting from basic principles. It makes use of moments
of the KD to specify the macroscopic scales of variation.
The theory is formally developed in the next section, and

applied in Sec. III to the description of an electron assem-
bly with a resolution in the scale of energy relaxation.

II. THEORETICAL FOUNDATIONS

At the kinetic level, the ensemble-averaged dynamic
behavior of the assembly is described by the KD, f,
which obeys an equation of the form '

B,f+v.V'f+ EV'„f=I—(f),

f (u, x, t) =—I e ""P(s,x, t)ds
277

and using the series representation for P,

m, (x, t)
P(s, x, t)= g '. (is)' . (2b)

A formal expression can be obtained for the distribution
in terms of its moments; namely,

f (u, x, t) = pe(x, t)g~(u). (2c)

where I(f) is the linear scattering operator. Equation (1)
is the starting point for classical' and semiclassical elec-
tron kinetics. Once the distribution function is found,
desired space-time-dependent macroscopic properties
(which can be measured) can be calculated by velocity
averaging over the KD the corresponding microscopic
properties.

To formulate a macroscopic description of an assembly
of electrons using moments of the distribution to define
its scale of resolution, a unique correspondence between
the KD and the infinite set of moments, Im;(r, t)I,
where m;(r, t) corresponds to a velocity moment of the
distribution, which may be a scalar, vector, or tensor, is
established. For algebraic simplicity in presenting the
formulation of this description, consider a distribution in
one-dimensional (1D) velocity and configuration vari-
ables, (u, x). Expressing the distribution in terms of its
characteristic function, P( , stx), where
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with B,m, +B,m, +,—ajm, = —g C, m, (3b)

where 5(u) is the Dirac delta function. Equation (2c) in-
dicates that the space-time dependence of the distribution
may be regarded as implicit through its moments. To ex-
hibit this dependence, the arguments of the distribution
may be rewritten as follows:

f (u, x, t)=f(v, [mJ(x, t)J )=f (u, [m ]) . (2d)

An alternate (formal) approach to Eq. (1) for obtaining
f is to use Eq. (2a) and the equations for the [m ['s.
These are obtained from Eq. (1) by taking velocity mo-
ments. ' In 1D, these are

with

C = —f v'I(g )du . (3c)

(4)

where k is the highest moment not satisfying this inequal-
ity. Equation (3b) for j )k can be rewritten in the form

Regard the sequence [m ] as being arranged according
to increasing values of

~ CJ~ (this corresponds to an order-
ing of the sequence of moments), and consider time scales
such that

B,m +8 m +i ajm —i= f v~I(f)du, (3a) (5a)

with

and

a= ~E
m

m, = f u'f du .

An integral without limits implies integration over all ve-
locity space.

To obtain a formal closed set of equations for the
[m& J

's, substitute the expansion for f, Eq. (2c), into (3) to
obtain

+g T; r),' Mk ( x, t ) (5b)

where

where Mz and Mk are column vectors whose components
are the moments m, j & k and m, , 1 (i ~ k, respectively;
and, A and 8 are matrices whose elements are obtained
from the coeKcients in Eq. (3b). Treating the term pro-
portional to Mk as a source term, Eq. (5a) can formally be
solved for Mh,

Mh(x, t)=exp f A(x', t)dx' Mh(0, t)
0

T; =g f dx f dxi . f dx A (x„t) A (x, t) f B(g t)
0 0 0 0

J

(Sc)

and the subscript + indicates a space-ordered product of
matrices [similar to Eq. (Sc)]. Thus, in the region where
the contribution from the first term can be neglected (this
requirement determines how far from the boundary, at
x =0, the results are valid), Eq. (Sb) establishes that

m, k=7([m, „,J, [B„'m, „,;i =1, . . . , ~J),
(6)

where 9' ( ) represents a function of. Using this observa-
tion, a distribution function, f~~"' can be defined with
resolution in the time scale of Eq. (4). Using Eq. (6) in
Eq. (2d), this distribution has a functional dependence of
the form

f~'=f(v, [m, =k, . . . i], [~.'m, =g i,'i =1, . . . , ~]) .

(7)

The transition from Eq. (2d) to Eq. (7) can be given a
geometrical interpretation. Consider f to be a vector in
the infinite [m i } space. Equation (7) represents
an approximation to f where the contribution from the
coordinates m, j )k are approximated (for times & C )

by the ith space derivative of the lower moments, 8' m,
j ~ k. This procedure corresponds to an approximation

I

in the infinite [m. ] space as opposed to a projection in v

space, in which a finite subset of a complete set of v-space
functions are used to represent the phase-space distribu-
tion. ' ' Moreover, Eq. (7) represents a variation from
the Bogoliubov -Chapman-Enskog ansatz in that the
derivatives of the moments are explicitly treated as in-
dependent coordinates that are used to properly account
for the contribution from the higher-order moments.

The discussion leading to Eq. (7) suggests a procedure
for obtaining a macroscopic description of the electron
assembly. For a given scale of resolution specified by k in
Eq. (4) (or equivalently, for a given finite set of moments),
a distribution function, fM', is defined whose functional
dependence is given by Eq. (7). A formal expression for
fM can be obtained by substituting Eq. (5b) into Eq. (2a).
Each value of k defines a scale of resolution [assuming no
degeneracy in the C, Eq. (3c), otherwise the number is
accordingly reduced]. The set of fM' have been collec-
tively named macrokinetic distributions (MKD). This
name refers to the fact that these are velocity-dependent
(kinetic) distributions with macroscopic space-time reso-
lution.

An alternate approach than using Eq. (2c) for obtain-
ing a working expression for the MKD is to solve its
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defining differential equation. This equation can be ob-
tained from Eq. (1) by noting that in the scale of resolu-
tion of Eq. (4) (and returning to 6D space), '

f(v, r, t):fM—' .

It is convenient to define the normalized ith spatial
derivative of m. , 6;-, which is symbolically written as
V'mj /ml. (where V is the spatial gradient, and the nature
of the 7' operation depends on whether m is a scalar,
vector, or tensor) and rewrite Eq. (7) as

fM'=f(v, [m~ k, j, [Gj
With this dependence,

B,n+V (nu)=vn,

B,(ns)+V (ev) —qE nu= —v,nE,

where

(10a)

(10b)

from that corresponding to the C22' time scale.
In this paper, the theory corresponding to the C22'

time scale, i.e., that of energy relaxation, is developed
from the theory presented in this section. It provides a
suitable description of the evolution of the assembly for
fields that are changing with time at rates up to C22. In
this time scale, the Mz vector in Eq. (Sa) only contains
two elements, n and nc. . The equations corresponding to
Eq. (3a) are, in 3D, '

k
"d,f= g B f'"'B,m +gB f'"'d, G;.

j=1 l

k

Vf = g B f1"'V'm +gB f'"'VG;

(9a)

(9b)

(9c)

71 u —f vfM dv, (10c)

and the angular bracket implies an average over the dis-
tribution fM), c, = —,'mu, and v(=C»), v, (=C22) are the
(space-time-dependent) efFective ionization, and energy-
exchange frequencies, respectively. These frequencies are
defined by

Using the 3D version of Eq. (3a) for the m, 's and Eqs.
(9a)—(9c) in Eq. (1), the defining equation for f '"' is ob-
tained. '

For electrons in gases, the sequence [m. j [arranged as
indicated in the statement following Eq. 3(c)] is given by
(n, nE, nu, . . . ), where n, E, and u are the electron density,
mean energy, and average velocity, respectively, and the
ellipses corresponds to higher-order moments. ' This is a
consequence of the fact that C» (C» (C33
where the C. 's are the characteristic time scales of
n(j =1), nF(j =2), nu(j =3), and so on. ' The macroki-
netic description of the electron assembly with a resolu-
tion corresponding to C, ,

' [k =1 in Eq. (4)], yields the
theory of drift and diffusion, ' which is based on the con-
tinuity equation [Eq. (10b) below]. Macrokinetic descrip-
tions with resolution in the Czz time scale has been dis-
cussed by Roumeliotis and Cram" and in the C33 time
scale have been discussed by Kunhardt, Wu, and
Penetrante. ' However, the MKD that has been used to
close the moment equations in this last case is obtained

vn= fI(f)dv,
v,nE= f —,'mu —I(f)dv,

with f =f~1I The equation for fM' is presented in the
next section, and is solved (approximately) for the case of
a quasi-Lorentz gas model of the collision operator in Eq.
(1) 2, 12

III. DESCRIPTION OF THE ELECTRON ASSEMBLY
IN THE ENERGY EXCHANGE TIME SCALE

In the time scale of energy exchange, r, ( =v, '), Eqs.
(4) and (8) lead to

fM'= f (v, n, ns, [g; j, [h; j;i =1, . . . , 00 ),
where g; =(V'n )In and h, =(V'nE)ins, with the same in-
terpretation for the V' operation as in Eq. (8). Placing
Eqs. (10a) and (10b) and Eqs. (9a) and (9b) (with k =2)
into Eq. (1), the equation for f~11 is obtained; namely,

aV+naV2n +sg aV3g;+ga4 Vh;+B„f~'vn+B„j'M' qE f vfM'dv v,ns + .V—,fg'=I(fM1)+O(V ),
l l m

(1 la)

where 0 (V ) represents terms proportional to the second
spatial derivatives of n and n c, and

a, = — d„f~' f vd„fM'dv

a = — d„f' 'f vd„j' 'dv

+a„j"1f ,'mu 2va„f"'dv—vB„f"'—(1 lb)
+~„jM I— u v~„jM d ~„j

(1 lc)
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a, = —a„f"'fva, f"'dv

+a„J' ' I ,'mu —va f' 'dv va —f' '

a = — a„f' 'f va& f' 'dv

+a„J'"f,mu'va„f'"dv va —fI '

with the conditions

JfM''( ,'mv —)dv=nE,

ffM'dv=n .

(1 1cl)

(1 le)

of the electric field term in Eq. (11a) [last term on the
left-hand side (lhs)] as compared to the other terms on
the lhs, solutions for fM' can be obtained that diff'er in
their range of validity. In this paper, the lowest-order
solution to Eq. (11) is obtained in the regime where the
spatial derivatives are small.

In order to proceed further with the discussion, consid-
er a quasi-Lorentz gas model (m /M «1, M is the mass
of a neutral gas atom per molecule) for conditions such
that the ionization rate v is zero and the only spatial
derivatives of importance are the gradients of density and
mean energy (the objective being the investigation of
their first-order effects). Moreover, only the contribu-
tions from the linear terms in fl' [the last terms in Eqs.
(1 lb) and (1 lc)] are to be retained. Transforming vari-
ables from (u„,u, u„ns) to (u„,v~, g, n, g), with
(=u, —nK/(mnu), g= (nE/(mnu), and consequently,

Equation (11) is the working equation from which various
approximations to fM' can be obtained using perturba-
tion procedures. The perturbation parameter can be tak-
en to be proportional to any of the g s or h s which are
considered to be small in a given situation. To simplify
the algebra (for the sake of clarity), assume that the ap-
plied electric field is in the z direction [E=Eo(z,t)a„
where a, is a unit vector in the z direction] and that the
spatial variations in energy and density are also in the
same direction (V —+a, a, ). Depending on the magnitude

I

a„,= (a, a, )—+o(a„,nu ),1

and letting

fM nfM(v nE)

Eq. (11)becomes

(12a)

(12b)

B,nK
u, fMa, n+u, n

mnu
( a,fM+a~f—M )+ n 2

qEO f v, f~dv( a&f~+a&f—M )
mnu

nc qEO
+nv, (a(f =agfM)+ na(fM=nI(f ),' mnu fPl

(13a)

where the coefficients are yet to be written in terms of g and g. Since

J uzf~dv

the last term in the lhs of Eq. (13a) cancels the first contribution in parentheses from the third term; and, dividing
through by n, Eq. (13a) becomes

B,nEB,n
vz fM+ uz

n
M ' mnu

v~77 E, qEO
( d~f +arf )—+ a(f +

mnu I a(f =I(f ) . (13b)

(13c)

Writing the coefficients in terms of g and g (since u, =/+ g and n e =gmnu) and rearranging terms, Eq. (13b) reduces to
T

( P P ) z (
a f m I (f )

( g +g ) P f + (( g ) z N + 0 eq a f

where

v, nE

qnu

Consider situations where

&1.a, n

'qE, /m n

E E, g+g a(ng)—
q+eq /™

(13cl)

(13e)

This defines the range of validity of the solution to Eq.
(13c) obtained below. In particular, it imposes a condi-
tion on the rate of change of mean energy, Eq. (10b). The
ordering of the first inequality is not necessary; its only
purpose is to highlight in first order the contribution
from the spatial derivatives. As a consequence of the or-
dering, the second term inside each large parentheses in
Eq. (13c) can be neglected in comparison to the corre-
sponding first term, and regular perturbation theory can
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be used to solve the resulting equation by treating the rhs
as a source. It is convenient to make a further change of
variables from (U„v,g, n, g) to (w, w, w„n, nF), where
U =w, U~ =w~, (g+g) = w„mnug= nE. ' To obtain an
analytic solution to the resulting equation, a spherical
harmonics expansion of f~ in terms of w is used, namely,

fM(w, n, nZ)=gfM (w, n, nE)P, (cos8) .

Substituting this expansion in Eq. (13c), using the ortho-
gonality properties of P;(cos0), and keeping only the first
two terms in the expansion, the following equations are
obtained for the coefficients fM and fM ..

0 1

1 2 1 nE 8 n
(w a, f ) — 8 (af +/3B f )= — 8 f +B,nrem„,f + f (14a)

3 w B,nE eq w z"d f +f = — 8 f — B,nEB„,f + f
5 vm mnQ &m &m

(14b)

where a, =qE,q/m and the quasi-Lorentz collision
operator has been used; namely,

1~(fM)=, ~ «fiick +/3~ fM ) v fM cos|—)

with

ma= —w v

P= wvkT

v =To (w)w,

with the condition 1 fow dw= 1. o. (w) is the momen-

tum transfer cross section, X and T are the density and
temperature, respectively, of the background gas. Subse-
quently, the first term in the rhs of Eq. (14b) is neglected
with respect to the second term so that

garding the velocity dependence of the distribution. In
fact, it can account for highly singular distributions in ve-
locity space, as occurs, for example, at very high fields or
when inelastic scattering is of the same order as elastic
scattering.

The physical interpretation of Eqs. (14a) and (14c) is as
follows. The applied field E appears as a source term in
the moment equations [Eqs. (10)] and as such causes
changes in n and no. These equations determine the evo-
lution of n and nc in the scale of energy relaxation, and
consequently, serve as "filters" for the applied field in
that the Quid variables n and nc. cannot follow any faster
variations that the applied field may contain. Thus, the
equivalent field, Eq. (13d), corresponds to the "filtered"
field that the distribution "sees" that is consistent with
the corresponding changes in n and n F.

In the two-term spherical harmonics and quasi-Lorentz
gas approximations, Eq. (10c) for the current density can
be written, with use of Eqs. (12) and (14b), as

aeq w B,n
a.f~ — a, nEa fM + fMI &m

(14c)

As pointed out in Ref. 2, Eqs. (14a) and (14c) have a simi-
lar form as the equations for fo and f, obtained by
spherical harmonics expansion of the steady-state
8oltzmann equation' with a quasi-Lorentz collision
term, and with the 8,f„8,f0 terms expressed in terms of
the variables nE and n. The physics of the two sets of
equations, however, are strikingly different. Equations
(14a) and (14c) are also time dependent, in that the "ac-
celeration" a, , is space-time-dependent and only in-
directly related to the applied field (recall
a,q=v, nF/mnu); whereas the acceleration in the equa-
tions for fo and f i is simply due to the applied field.
Note that the corresponding time-dependent equations
for fo and f, are actually valid in the same time scale as
Eqs. (14a) and (14c), namely, that of energy relaxation.
However, the corresponding complete equation in this
time scale obtained by projecting in moment space is Eq.
(13c), where no specific assumptions have been made re-

4~ w 2nua = n —
aqua fiick w dw

~m

4 2—na, nEf" "
a f~ w'dw

~m

B,nf — fMwdw a,
4~ w

~m
(15a)

or, in terms of transport parameters,

nu = Wn+DB, n, (15b)

W= —f aqua fM v dw
~m

2

~m
(16a)

(16b)

where W and D are the drift velocity and diffusion
coefficients, respectively, defined as
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Similarly, using Eqs. (12) and (14b), and the two-term ap-
proximation, the mean energy Qow, (sw) in Eq. (10b),
takes the form,

(sv)=(sw)= n —f "w'8 fM w'dw
3 2 v

4 2

Vm

B,—n f f~ w dw . (17)
3 2 v

D=O 9r. /(mv ) . (21)

Energy gradients have no efT'ect on the diffusion
coeScient in this order of approximation.

From Eqs. (17) and (18), the average of energy fiow is
found to be

tion of the evolution of an isolated electron swarm in the
scale of energy relaxation needs to take into account the
effect of energy gradients on the drift velocity. From
Eqs. (18) and (16b), the diffusion coefficient is similarly
found,

Separating the component proportional to B,r in Eq. (16),
a coeKcient of mean energy conduction can be defined in
analogy to that of thermal conductivity. This is further
discussed below.

The lowest-order solution for fo is obtained from Eq.
(14a) by neglecting contributions from the rhs. For
o (w) proportional to w (i.e., constant collision fre-
quency) and (a, /v ) ))kT/m, this solution has the
form of a Maxwellian distribution, '

5(ew) = —M
6

VqF

Vm Plu

2 M
3 Pl Vm

azc
Olu Plu Vm

and with the use of Eq. (19)

(sv) = —,'MWou +J&, (22)

where J& plays the role of mean energy current, and has
the form of Fourier's law

fM = exp( —w/8),1

0
(18a) Jg = KB E, (23)

where

2M
3m

1/2
Vc

Vm Plu
(18b)

with K, the mean energy conductivity, defined by
2 2

5 M vc cK— n —.
9 m v v

(24a)

It is valid in the regime defined by Eqs. (13e) and (14b).
This result can now be used to explicitly evaluate the
averages defined in Eqs. (10a)—(10c), nu and (ew), ' al-
ternatively, Eqs. (16) and (17). From Eqs. (17) and (16a),
the drift velocity component of nu is

For v, /v =2.66m /M,

~=3.99nE/v
or

x/D =4.5mn . (24b)

W =(I+5)Wo,

where
1/2

V~K

Vm Pl

(19a)

(19b) 2E 2

~ VcVm
(25a)

For conditions in which the rate of change of mean ener-
gy with respect to time is small in comparison to the last
term in Eq. (10b), E, =E; then, neglecting gradient con-
tributions, Eqs. (13d) and (19b) become

3fPl Vm

1/2

v (mr)'" ' (19c)

Note that in this time scale, the drift velocity does not ex-
plicitly depend on the applied electric field Fo so that the
mobility ( W/Eo) may not be a useful concept. (This is
further discussed below. ) Letting v, = aviv, with the energy
loss factor g approximately equal to 2.66m/M, ' Eqs.
(19b) and (19c) become

Wo ——1.63(r/M) 'i (20a)

5=0.38
m

' 1/2
zF

(20b)

Thus, for example, in situations where (M/m)=10,
v =10" sec ', and B,r/r=10 [which can occur at
high E/N (Ref. 16)], the percentage change in drift veloc-
ity is of the order of 20%%uo. For such cases, the descrip-

8 =qE/m v (25b)

as expected from Eqs. (10). In this limit, only the
changes of density with time [Eq. (9a)] are significant.
This is the hydrodynamic regime which has been dis-
cussed in a previous paper.

Higher-order contributions to nu arising from the
terms proportional to a;, i = 1 —4 in Eq. (10a) can be ob-
tained by extending the calculation of fI ' to the next or-
der. In situations where the spatial gradients are strong,
the terms proportional to B,n and B,ns in Eq. (11a) need
to be taken into account in lowest order, as shown in Ref.
2.

Recently, Ingold' has obtained expressions for 8' D,
and (ew) by assuming (for v =const) a distribution of
the form given by Eq. (17), and further assuming 8 to be
proportional to c.. This form of distribution has also been
used by Roumeliotis and Cram" as an approximate
MKD in the C22 time scale. These assumptions yield re-
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suits that are similar to those presented here for situa-
tions where the ratio v, /v is independent of the mean
energy. A subtle difference appears when considering the
approach they used for obtaining 0. The equation for 0 is
obtained by requiring self-consistency between the mean
energy obtained by taking the energy moment of Eq. (17)
and the mean energy obtained from Eq. (10b). If Eq. (17)
were the exact distribution, then this requirement must
be true. However, since it is an approximate distribution,
Eq. (10b) should be used to define E, while the approxi-
mate distribution should be used to approximate [in
lowest order in the case of Eq. (17)] the value for the un-
known parameters in Eq. (10b). To achieve self-
consistency, higher-order corrections to Eq. (17) would
have to be used. An issue that remains to be addressed is
the sensitivity of the solution to Eq. (10b) to errors in the
value of the parameters.

IV. CONCLUDING REMARKS

A closed, macroscopic description of the dynamics of
an assembly of electrons under the inhuence of space-
time varying fields has been presented. This has been ac-
complished by approximating the distribution function f
in a space whose coordinates are the infinite set of mo-
ments, tm; j =1, . . . , Oc I. For a given scale of resolu-
tion [defined by Eq. (4)], it has been shown that moments
with faster variations can be formally expressed in terms
of the slower moments and their spatial derivatives [Eq.
(5)]. Thus, an approximate distribution function f~("' can
be obtained in the alternate space whose coordinates are
the slower moments and their derivatives [Eq. (7)]. To
each resolution scale corresponds a different f~("', dis-
tinguished by the index k. These distributions have been
called macrokinetic distributions (MKD) since they are
distributions in velocity space with macroscopic space-
time resolution. The distribution obtained via the
Bogoliubov -Chapman-Enskog ansatz corresponds to
one of these distributions for k =3.

The approach presented in this paper is conceptually
different from those that approximate the phase-space
distribution by using projections in v space. ' ' ' In
these projections, the dependence of f on v may be
severely altered in velocity ranges that may significantly
contribute in the calculations of transport parameters

and rate coefficients. ' %'hat is desired for this purpose is
a distribution with no a priori assumptions made regard-
ing its velocity dependence, and possessing a space-time
resolution which at least corresponds to that of the rnac-
roscopic description to which these parameters and
coefficients pertain. This upper limit is provided by the
MKD. Note that the use of the MKD does not preclude
the possibility for using truncated expressions in velocity
space to obtain an approximate solution to Eq. (11) for
the MKD. This has in fact been done in Sec. III. How-
ever, other approaches (including computational) are
available for obtaining such a solution.

In the scale of the electron energy exchange time, the
description of the assembly is given (for constant collision
frequency) by Eqs. (10), (11), and (17). In this time scale,
the electron density and mean energy are independent
variables that specify the dynamics of the assembly. The
applied electric field inAuences the velocity distribution
only through its effect on the mean energy. For applied
fields with space-time variations in the scale of the mean
energy, Eq. (10b) must be used to determine the behavior
of nE. nE in turn determines the equivalent field [Eq.
(13b)] that drives the MKD corresponding to this scale of
resolution. This MKD is used in the calculation of the
energy relaxation time in a self-consistent manner.

To illustrate the approach formally outlined in Sec. II,
expressions for the MKD in the regime defined by the en-
ergy exchange rate have been derived in Sec. III for the
case of collisions with cross section proportiona1 to w
Expressions for the unknown averages defined in Eqs. (9)
have been obtained [Eqs. (19) and (22)]. In particular, the
drift velocity [Eq. (16b)] diffusion coefficient [Eq. (16c)],
and the mean energy conductivity [Eq. (24a)] have been
explicitly evaluated. Thus, Eqs. (9a) and (9b) form a
closed set that can be used to describe the macroscopic
dynamics of the assembly. From the solutions to these
equations, other macroscopic variables can be obtained
(in this scale of resolution) from the MKD [Eq. (18)].
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