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In this paper we study three fundamental questions: the characterization of the nonequilibrium
states of a macroscopic system using exclusively the information that is controllable by the experi-
menter through the constraints imposed on the system, the construction of a variational method
generating a probability distribution function in which the information available to the experi-
menter is contained, and finally the study of the time behavior of a functional, here referred to as
the Shannon-Jaynes entropy, in order to examine the existence of a criterion for irreversibility. It is
shown that the answer to the first two questions is provided by a theorem establishing the
equivalence between the coarse-graining operation in phase space as suggested by Ehrenfest and the
action of a projection operator, in fact, Zwanzig’s projector, acting on the full probability distribu-
tion function containing all the information available when the system is initially prepared. The
third question is partially answered by deriving an inequality characterizing the fact that every time
the system is observed, information is lost. Yet the full proof establishing the equivalent of
Boltzmann’s H theorem is only qualitatively analyzed. The connection between this work and a
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similar one carried out from a macroscopic point of view is also established.

I. INTRODUCTION

The question of how to define the entropy function for
nonequilibrium states of arbitrary systems has been a
long debated question. Furthermore, this task has often
been confused with the definition of coarse-grained H
functions appropriate to time-irreversible mesoscopic
evolution equations, which, as in Boltzmann’s case of the
dilute gas, do provide criteria for irreversibility and
asymptotically converge to —-Seqkﬂ, where S, is the
equilibrium entropy and k is Boltzmann’s constant, but
are not by any means justified to define the entropy of
nonequilibrium states. To do so, one should be able to in-
corporate in those functions the macroscopic variables
describing the states of the system in much the same way
that the temperature and the density are introduced into
Boltzmann’s H function through the well-known func-
tional assumption.!”3 Recently, there have been many
efforts devoted to the clarification of the concept of entro-
py in these regimes,* !° but no satisfactory answer has
yet been provided in the sense described above.

It is also pertinent to mention at this point that, from
the macroscopic point of view, the problem is quite con-
troversial. The definition of the state itself beyond the lo-
cal equilibrium regime and consequently the concept of
entropy has been a subject of a profound and inconclusive
debate,!' 13 a feature of this whole treatment to which
we will return later.

The purpose of this paper is to discuss some ideas that
will hopefully lead to a convincing solution of this prob-
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lem, at least in the context set forth by Jaynes many years
ago.'"* This point of view is intimately related to the ex-
tension of Gibbs’s conception of representative ensembles
to cope with the motion in phase space in such a fashion
that they are capable of describing the underlying irrever-
sible process. In Sec. IT we briefly summarize the physi-
cal ideas behind Boltzmann’s H theorem; in Sec. III we
prove that the act of coarse graining in the Ehrenfest way
is identical to the construction of a maximal solution to
the Jaynes-Shannon conception of a nonequilibrium en-
tropy, constrained by the information accessible to the
observer only through the act of measuring the relevant
dynamical variables chosen to describe the states of the
system; and in Sec. IV we show how the result allows us
to establish rather interesting properties about the time
dependence of the Jaynes-Shannon entropy compared
with the Gibbs entropy. Among these properties, the
most important is the one that has some resemblance to
Boltzmann’s H theorem, although the fine details have
yet to be refined. The paper ends with a small section
containing the important physical ideas implied in our re-
sults.

II. BOLTZMANN’S H THEOREM

Let f(r,v,t) be the single-particle distribution function
describing the nonequilibrium states of a dilute mona-
tomic gas. This function is assumed to obey Boltzmann’s
integro-differential equation, which we need not specify
here.! ™3 The H function is then defined as
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H= [ [drdvf(r,v,)lnf(r,v,1), %)
()
where the (i) index to [ [ indicates integration over the
entire u space.

If one now assumes that all integrals in © space con-
verge and that the microscopic equations of motion are
invariant under time reversal, thus guaranteeing that
both direct and inverse or restitutive binary collisions ex-
ist, he is led to the result that

dH _
ar <0, (2)

which is the well-known H theorem. The equality holds
true only if detailed balance is achieved, namely, the rate
at which direct and inverse collisions occur is the same;
and this condition alone, in a homogeneous gas, leads to
the Maxwellian distribution value for the function f.
This result, however, is not free from assumptions.
Indeed, to get the Maxwellian form for f, one must as-
sume that it becomes a time-independent functional of
the conserved densities, defined as the first five moments
of f, and that this information is fully concentrated in the
equilibrium form for f. This is how in equilibrium the
thermodynamic values of the temperature and density ap-
pear in f, and therefore —kH,, can be identified with the
equilibrium entropy S.,. It must be emphasized that this
identification is so far justified only for the equilibrium
state. The inequality expressed by Eq. (2) with a minus
sign and multiplied by k is not the second law of thermo-
dynamics. H (z) is a function of time alone, and not of
the state variables describing the nonequilibrium states of
the gas. Since entropy is a property of a state and not of
a system, one is not permitted to identify it with H unless
by some additional assumption, as in equilibrium, one
could express f(r,v,t) as a time-independent functional
of a set of observables. But this is not the case, and it still
remains an open question. Therefore, —kH () is not the
nonequilibrium entropy of a dynamical state of the dilute
gas,'> and Eq. (1) is not related to the second law of ther-
modynamics. We emphasize here that the second law
refers only to the difference in the values of the entropy
between two equilibrium states of any arbitrary closed
system when it undergoes a reversible or irreversible pro-
cess between two such states, but says nothing about the
values of the entropy in the intermediate states of the
latter one.

III. THE ACT OF COARSE-GRAINING

In this section we want to show how one can proceed
to describe the nonequilibrium states of an arbitrary sys-
tem using only the information that an observer has
about the system through the external constraints that
are selected to conform toit. Let 4,(I") (i =1,2,...)bea
set of dynamical variables whose values depend on the
coordinates of a phase-space point I" that are chosen to
describe the states of the system. For our specific pur-
poses, we take A ,(I')=H(T') to be the Hamiltonian of
the system. Clearly, these functions evolve in time ac-
cording to the deterministic laws of classical mechanics,
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which are invariant under time reversal. Next, assume
that the observer decides to carry out an “experiment” to
measure the values of these observables. For each one,
the observer obtains a number a; such that
a; = A(I')=a,; +da;, where da; is the experimental error.
Clearly, the numerical values of the A4’s are expressed in

terms of a nonequilibrium distribution function
gne(a,t)da, namely,
gnela,t)da=Prob[a<A(T')<a+da], (3)

where a=(a,...,aq;,...) and the same for A. Notice
that g .(a,?) is defined in a space and not in I space, so
that its motion is no longer governed by the deterministic
laws of classical mechanics.!®!” Nevertheless, for our
purposes we need not worry about its specific dynamics.

We now define the Jaynes-Shannon entropy S;(z) for
our system at time ¢ according to the expression

S;(t)=—k [ p(T,)Inp(,1)dT , @)

where the subscript I denotes information and p(I',?) is a
function to be determined as that which maximizes the
value of the integral in Eq. (4), consistent with the con-
straints

[p(r,ndr=1, (5a)
[ AL, )8(H(T)—E)8(A(I')—a')dT =g, (a,t) .  (5b)

Equation (5b) is the statement asserting that the set of mi-
crostates that are accessible to the representative phase
point of the system lies in the hypersurface in phase space
determined by the numerical values of the dynamical
quantities selected to specify the macrostate of the sys-
tem. Thus the phase-space region determined by the vec-
tor a is of course nothing else than the microcanonical
phase-space cell defined through Ehrenfest’s concept of
coarse-graining. The similarity between Egs. (4) and (5a)
and (5b) with Eq. (1) and the definition of f(r,v,t) is
straightforward.

As is shown in the Appendix, the solution to the varia-
tional problem leads to the result

PN, t)=Z lexp[ —MH(T),A(T),t)], (6)

where Z is an undetermined Lagrange parameter and A is
an undetermined Lagrange function, both to be deter-
mined by Egs. (5).

Now, for reasons of convenience, we denote the
characteristic microcanonical function in phase space
G (a,0), which is expressed as

G(a,0)=]] 8(4,(T)—a;)

=8(H(I')—E) [T 8(A4/(T')—a/)

i(>1)
=8(H(I')—E)G(a’,0), (7)

where A4,(I')= A4,(T",t =0).

If we now use G (a,0) to express Eq. (6) as an integral
over E and a’ and use the properties of the & function,
one easily arrives at the result
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. 8nela,t)
Z—l —ME,a',t) — , 8
e QEa) (8)
where Q(E,a’) is the extension of the microcanonical
phase-space cell given by

QE,a)= [dT G(a,0)= [dT 8(H —E)G(2',0) .  (9)

Equation (8), which is just the value of p(I',¢) evaluated
at A(T")=a, clearly indicates that its time evolution is no
longer governed by Liouville’s equation, but rather by the
nondeterministic evolution of g .(a,t). Moreover, use of
Egs. (6) and (9) in Eq. (4), together with the properties of
the & function, allows us to write

gn(E,a’,t)
Q(E,a’) ~’

which is the maximum value of the entropy at time .
Notice once more that the time behavior of S;(¢) is no
longer governed by a deterministic equation, but rather
by the time evolution of g, (a,?). %!’

In thermodynamic equilibrium, where p,,=®(H(I'))
is some function of the constants of the motion, the ener-
gy in our case, we easily see from Eq. (5b) that
8eq(E,a")=®(E)Q(E,a’), a result that when combined
with Eq. (6) appropriately written as an integration in a
space leads to the result

S(n=—k [dE [da'g,.(E,a’,0)ln (10)

AT, 1)=p (T fd G(a 0). (11)

So far in this approach we have only used a definition
of the concept of entropy in terms of the variables that
characterize the state of the system. We will now intro-
duce the only assumption required in this whole treat-
ment, namely,

lim g.(a,1)=g.(a) . (12)
t—> o0

Equation (12) resembles again the condition that one
imposes on f(r,v,t) in the dilute-gas case, namely, that
its long-time limit becomes the Maxwellian equilibrium
distribution function. Of course, we could still argue that
Eq. (12) would hold true if the system were ergodic (mix-
ing) or obey similar conditions, but we will not resort to
such profound concepts. When this result is substituted
back into Eq. (11) we get

lim (I, 2)=p.o(T") ,

t—

(12"

or, in other words, the Jaynes-Shannon distribution func-
tion is compatible with equilibrium and this in turn im-
plies, from Eq. (4), that

lim S;()=—k [ peo(D)lnp4(T)d T (13)

t— o0

in the equilibrium state, the information-based entropy is
identical to Gibbs’s expression for this thermodynamic
function. If one compares this result with that derived
from the Boltzmann H function, a similarity between
both is observed, except for the substantial difference that
the “entropy density in a space” according to Eq. (10) is
now a function of the state variables E and a’. In this
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sense, S;(E,a’,t), the integrand of this equation may be
regarded as the nonequilibrium entropy density for the
states accessible to the system under observation.

Notice here that, once more, we are able to speak of an
entropy function, the entropy density in this case, only
after the macroscopic information available to the ob-
server is introduced in the H function. In the Boltzmann
equation, this is precisely the idea behind the functional
assumption. Once we substitute f(r,v,z) by
f(r,v|n(r,t),u(r,t),e(r,t)), where n(r,t) is the local
density, u(r,?) is the local velocity, and &(r,#) is the local
internal energy density, the integrand of H, f Inf, de-
pends explicitly on the macroscopic variables determin-
ing, in this case, the hydrodynamic states of the system
thus allowing the identification of such a term with an en-
tropy density.!»1%1°

Finally, let us now seek a more physical interpretation
of the distribution function A(I',¢). For this purpose we
fix our attention on the initial distribution function
p(T',a,0), defined as

G (a,0)
Q(E,a’)

which is clearly normalized to 1.
Eq. (11), one gets

_ G(E,a',0)
QE,a") ’

Substituting (14) into

p(I',a,0)=

(14)

PN, )= [dE [da'g,.(E,a’,t)p(T,a,0) . (15)

Defining the scalar product of two arbitrary phase-
space functions 4 (I") and B (T") as!’

(4,B)= [dT A(T)B*(T), (16)
and noticing that, in general,
I',t),G(a,0)), (17)
we may rewrite, using Egs. (14), (15), and (16), that

P, t)=P,p(T,t), (18)

&ne(a,2)=(p(

where P, is Zwanzig’s projection operator, defined by?°

(f(T,t),G(a,0))
P2y (0= fd (1,G (a,0))

and f(I',¢) is an arbitrary function of the phase-space
point I and time ¢.

This is a rather satisfactory result, namely, that the
Jaynes-Shannon probability distribution function maxi-
mizing the value of S;(¢) given in Eq. (4) is nothing else
than the “coarse-grained” distribution function obtained
by projecting the Gibbs p(I',¢) probability distribution
function onto the microcanonical cell determined only by
constraints imposed on the system. This result is rather
pertinent, in view of the rather distressing opinion that
Jaynes himself wrote about this question in his seminal
paper in this subject almost 25 years ago.!> We quote
from Jaynes:

“Past attempts to demonstrate the second law for sys-
tems other than dilute gases have generally tried to retain
the basic idea to the Boltzmann H theorem. Since the
Gibbs H is dynamically constant, one has resorted to
some kind of coarse-graining operation, resulting in a

G(a,0), (19)
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new quantity H, which tends to decrease. Such attempts
cannot achieve their purpose, because (a) mathematically,
the decrease in is due only to the artificial coarse-
graining operation and it cannot, therefore have any
physical significance; (b) as in the Boltzmann H theorem,
the quantity whose increase is demonstrated is not the
same thing as the entropy. For the fine-grained and
coarse-grained probability distribution lead to just the
same predictions for the observed macroscopic quanti-
ties, which alone determine the experimental entropy; the
difference between H and H is characteristic, not of the
macroscopic state, but of the particular way in which we
choose to coarse-grain. Any really satisfactory demon-
stration of the second law must therefore be based on a
different approach than coarse-graining.”

As we see from the result expressed by Eq. (18), there is
no ambiguity in the procedure undertaken to coarse-
grain, provided A(T',¢) is determined only through the
external constraints imposed on the system.

IV. THE PROPERTIES OF §)(t)

In this section we want to study how the function S;(¢)
defined in Eq. (4) behaves in time, compared at different
times, and against the conventional definition of Gibbs’s
entropy. Substituting Eq. (18) back into Eq. (4) we find
that

S;()=—k [ p(T,t)inP,p(T,)dT , (20)

where use has been made of the Hermitian property of
P, and that P;zInP,p(I,t)=InP,p(I,t). Since the Gibbs
definition of entropy is

Sg(t)=—k [ p(I',t)Inp(T,£)dT 21

where p(T,t) is a solution to Liouville’s equation, thus
implying that dS;/dt=0, and using the fact that for
x>0, Inx >1—x "', we get, comparing Egs. (20) and
(21),

S84, (22)

the equality holding only if p(I',t)=p(T',t). Thus at
every time ¢ the Jaynes-Shannon entropy cannot be less
than the Gibbs entropy. In a finite time interval this
latter function remains constant, which means that at
time t' >t we know that Eq. (22) holds true, but we are
not yet in a position to assert whether S;(¢) is larger,
equal to, or less than S;(¢’), only that both values cannot
be less than the lower bound provided by S (7).

To establish a relationship between the values of S; at
different times, we start with our system prepared at the
initial time ¢, according to the prescription indicated in
Eq. (14) and call p(I',a,0)=py(T,ty). Clearly, at this
point S&P(2,)=5.%(t,), where the superscript zero will
indicate the stage at which the observation was made.
Take now any time ¢ > t, and compute py(TI",¢) according
to the laws of classical statistical mechanics.

Therefore,

polL,6)=U(t,t)po(T,2,4) (23)
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where U(t',t)=exp[—i(t —t')L] and L is Liouville’s
operator. It is then clear from Eq. (22) that

SPOZSP(), t>t, .

We arrive at the crucial stage of the proof, which is re-
lated to what Jaynes refers to as the act of conveying in-
formation from one observer to another. For simplicity,
take an arbitrary time ¢; > ¢, at which another observer
performs an independent measurement on the state of the
system. According to Eq. (18), what he obtains is that

pi(T,t)=Pzp(L,t) , (24)

where py(T,t,) is given by Eq. (23) evaluated at t =¢,. If
he decides to study the dynamical evolution of the system
with p,(T,¢,) as the initial value for the probability densi-
ty, he would find that at any time ¢’

P](r,t,):U(t,,tl)Pzpo(r,tl) N (25)
and also that
S =8P ) =S ¢,) (26)

for ¢’ >t,, the last equality following because in the time
interval (¢,,t'), Sé;” remains constant. However, the two
constant values of S;(¢) in the time intervals (¢,,7,) and
(¢;,¢") are not the same. Indeed,

S&t)=—k [ p\(T,t))inp,(L,1,)dT
= —k [ po(T,,InP,py(T, 2, )dT
> —k [ po(T, 1 )npy(T, £,)dT ,

the second and third equalities following from Eq. (24)
and the same arguments that led to Eq. (22), respectively.
Hence,

S )=8"e)=8PU¢,) , (27)

the first equality arising from the definition of the initial
state for the second observer.

Therefore, from the fact that S&(¢,)=S(t,)=S,(t,)
and (27) we are led to the conclusion that

SN()=8%01,), (28)

so that the Jaynes entropy cannot decrease in time. Thus
the following physical picture evolves: For a given finite
time interval in which a system initially prepared in an
arbitrary initial state is allowed to age, the Gibbs entropy
remains constant, while the Jaynes-Shannon entropy in-
creases. If at any time ¢ greater than the initial time ¢, an
independent measurement is performed on the system’s
state, the information conveyed to the observer is no
longer provided by the dynamics alone but by the mere
act of measurement expressed by Eq. (18). After that
time, the system ages following the same pattern until it
reaches equilibrium, where only the unique value for the
equilibrium entropy subsists. Once more, one must clear-
ly realize that the mere act of measurement upon the sys-
tem introduces a discontinuity in the value of S;(?).

This discontinuity arises precisely from the knowledge
about the states of the system available to the observer,
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FIG. 1. Gibbs vs Shannon-Jaynes entropy as a function of
time after different independent observations at #y,¢,... .

clearly expressed by Eq. (18). So each time we observe
the aged system, the initial value of p(I",¢) is determined
by Eq. (18), after which the corresponding value of the
Gibbs entropy never changes, but the Shannon-Jaynes en-
tropy increases. This pattern is shown in Fig. 1, where
each step is drawn according to these results.

It should be clearly stressed that Eq. (28) is not yet in
the form of an H theorem. Indeed, if we want to com-
pare the relative values of S;(¢) during the different aging
periods, as observed in different measurements, we would
have to solve the problem, which is schematically
represented by the dotted lines in Fig. 1, providing a cri-
teria to know how observer 2 in (¢,,¢,) would compare
his values of S;(¢) with those of the first observer, had the
latter one continued to follow the system until equilibri-
um was reached. S}%(¢) and S}'(¢) for t >, have to be
compared between themselves. The problem will be ex-
amined in a forthcoming paper.

We also note that the inequality (28) is not a new re-
sult. Indeed, in various forms it has been mentioned in
the past by several authors.?! 24

Finally, comparing S;(#) and S;(¢), both of which are
identical to S, when 7 — oo, the question arises as to how
one can visualize this process if only one observer is
present. The only picture compatible with the underlying
theoretical discussion for times ¢ < co when the inequality
given by Eq. (22) is satisfied and S;(¢#)=const is given in
Fig. 2. At t= o, S;(¢) has to change discontinuously,
since p(¢)—p,,, and, as shown before, the two entropies
are identical in equilibrium. Notice, however, that the

N _ ea

Selty)=S,(ty)

= —>oc0
t *O t
FIG. 2. Under the observation of a single experimenter, the
Shannon-Gibbs entropy follows an unknown curve (continuous
curve), consistent with the condition that S,;(z) > Sg(z) for all
times, but at — oo, in equilibrium, both entropies are identical.

path describing the time dependence of S;(¢) is uncertain
as long as the inequality expressed by Eq. (22) is fulfilled.

V. CONCLUDING REMARKS

Equations (18) and (28) are the main results of this
study. The former is a generalization of a well-
established result in equilibrium statistical mechanics to
nonequilibrium states. Indeed, recall that the micro-
canonical ensemble for equilibrium characterizes the
state of the system, given a set of external constraints.
Equation (18) represents the only accessible microstates
to the phase-space point representative of the condition
of the system described by the set of dynamical variables
{ 4;(I")}. These accessible states are defined by the inter-
section of all these hypersurfaces defined by the equations
A;(T')=const, i =1, ...,n. Mathematically, this region
is precisely the one associated with the projection opera-
tor as defined by Zwanzig 30 years ago. In the words of
Jaynes, transcribed here ad verbatim,® “If any macro-
phenomenon is found to be reproducible then it follows
that all microscopic details that were not under the
experimenter’s control must be irrelevant for understand-
ing and predicting it.” Equation (18) is precisely the
mathematical expression for one part of this statement,
namely the only information controllable by the experi-
menter is extracted through the operation indicated by
P,.

The second question underlying this statement is how
to construct a variational principle such that it allows the
prediction of the desired macrophenomena. This princi-
ple was first devised by Gibbs?® and is here expressed by
the results of Sec. II. Although we have not yet fully ex-
ploited all the consequences, concentrating on the prob-
lem of extracting an irreversibility criterion similar to the
H theorem, we have proved what may be considered a
preliminary result, expressed by Eq. (28). This inequality
simply expresses the fact that a sequence of observations
performed on a macroscopic system undergoing an ir-
reversible process always results in a loss of information
in Shannon’s sense. This is, however, not in the form of
an H theorem. A final step has to be undertaken, namely,
to study the time derivative of S;(¢) starting from its fun-
damental expression, that given by Eq. (10). Yet this is
not a trivial one, since it involves the appearance of
dg..(a,t)/dt, which is a rather complicated expression,
such that, although not invariant under time reflections,
it is nonlocal in time and in the a’ variables.

Here one will be confronted with the eternal question;
namely, is one justified in speaking about the definition of
the states when the variables describing it depend on the
previous history, or only when their values are to be re-
garded as instantaneous? In the first case, Meixner has
shown?’ that from a macroscopic point of view, the en-
tropy is either undefined or there are infinitely many ways
of defining it. In the second case, one always falls into a
somewhat generalized conception of the local equilibrium
assumption,"*!%28 and the definition of entropy poses no
problem at all. As it turns out, both postures are con-
sistent with the nature of the time solution equation for
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g..(a,1), but we shall leave all the details and results that
may be extracted from this analysis to a forthcoming pa-
per.

APPENDIX

The problem we wish to solve is a little bit different
from the standard one in statistical mechanics®® because
of the functional nature of the conditions imposed on the
distribution function in its dependence on the macroscop-
ic variables.”? We wish to maximize the value of S (1)
given by

S;()=—k [ p(T,)Inp(T,0)dT , (A1)

subject to the following conditions: first, that it is nor-
malized in T space [see Eq. (5a)]; and secondly, that the
following n conditions are obeyed, namely,

[ (T, dT=P(a;,t)Aa
a, < A(I,0)<a; +Aa

(A2)

for i=1,...,n, n being an arbitrary positive number,
and P(a;,t)Aa the known probability that, upon measure-
ment, the initial value of the phase function A(T,0) takes
a value lying in the range (a;,ai +Aa). Clearly A(I,0) is
assumed to be known, since it corresponds to a constraint
imposed in preparing the system at t =0.

We now constzuct the auxiliary function 7 (¢):

I1()=S;()—p [ p(T,t)dT

— S Mapt) [ AT, 0)dT

i=1 a,SA(I,0)Sa;+Aa

(A3)

where u is an undetermined parameter, as well as A(a;, ),
which depends parametrically on a; and time t. Equation
(A3) may also be written as

I()=S,()—u [ p(T,0)dT

A(I',0)—a

r
Aa ar,

n 1
_El Ma,-,t)AaK;fp\(F,t)D

(A4)
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where D is Heaviside’s function defined as
[1 if x €(xg,%x0+ Ax)

0, otherwise .

x —Xg

TAx (A5)

We will now take the limit of expression (A4) and as-
sume that P(a;,t)Aa may be substituted by a probability
function P(a;,t)da for all possible values of the vector
phase function A(T,0) so that

J  AT,ndT=P(a,nAa
a<A(l,0)<a+Aa

(A6)

for all possible values of a. This is equivalent to the form

. 1 A(T',0)—a _
Jim = [p0,0D | == ldT=P(a,) (A7)
or
J AT, 1)8(A(T,0)—a)d T =P(a,t) . (A8)

From this we see that the form of the auxiliary function
I(t) defined in Eq. (A3) that corresponds to the limiting
process specified in Eq. (A7) is given by

I1(=8,()—p [ p(L,0)dT

n
1
— L Ma,,t)Aa—
Jim ig‘ (a;,1) a
Aa—0

A(T',0)—a;

x [ p(r,nD v

dr ,

or using Eq. (A8),
I()=S;(t)—p [ p(T,1)dT

~ [darian | [pr,08AM,0—a)r | .

The function p(I',¢), which is a solution to the ex-
tremum problem defined by 81 =0 for all possible values
of 8p, is now readily obtained by standard methods and
leads precisely to Eq. (6) in the text. Clearly, the proba-
bility function here denoted P(a,t) corresponds to the
one we have called g,.(a,?) in the text.
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06240, México, Distrito Federal, México. On sabbatical leave
from Universidad Auténoma Metropolitana—Iztapalapa,
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México.
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