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A two-dimensional Monte Carlo simulation method based on the NpT ensemble and the Voronoi
tesselation, which was previously developed for single-species hard-disk systems, is extended, along
with a version of scaled-particle theory, to many-component mixtures. These systems are unusual
in the sense that their composition is not fixed, but rather determined by a set of internal degenera-
cies assigned to the differently sized hard disks, where the larger disks have the higher degeneracies.
Such systems are models of monolayers of molecules with internal degrees of freedom. The com-
bined set of translational and internal degrees of freedom leads to a rich phase structure that in-

cludes solid-liquid transitions (governed by the translational variables) as well as transitions involv-

ing changes in average disk size (governed by the internal variables). The relationship between these
two types of transitions is studied by the method in the case of a binary mixture, and results are
presented for varying disk-size ratios and degeneracies. The results are also compared with the pre-
dictions of the extended scaled-particle theory. Applications of the model are discussed in relation
to lipid monolayers spread on air-water interfaces, and it is concluded, by comparison with experi-
ments, that the hard-disk mixture is an excellent candidate for a minimal model of lipid-monolayer
phase behavior.

I. INTRODUCTION

Fluids consisting of multicomponent mixtures of
atoms, molecules, or particles are not easy systems to
study. For two-dimensional fluids, early theoretical work
concentrated on attempting to predict the behavior of
single- and multicomponent systems of hard disks using
scaled-particle theory (SPT) (Refs. l —4) and integral-
equation techniques. Although there exists a plethora
of work in three dimensions, fewer systems have been
studied in two-diInensions. Extensions to SPT and other
integral-equation theories have been made, though, for
single- and multicomponent systems of anisotropic parti-
cles with hard-core and soft interactions. ' More re-
cently, studies have been concerned with systems in
which the composition is not fixed, but is allowed to
vary. ' ' A typical example of variable polydispersity is
in the study of nonionic micelles formed by surfactant in
water, since theoretical and experimental studies indicate
that these micelles are likely to be polydisperse in size
with the degree of polydispersity determined by factors
such as head-group repulsion, bound water associated
with the head groups and the isomeric state of the hydro-
carbon chains, as well as surfactant concentration and
temperature. A knowledge of the functional form of the
low-density, underlying distribution allows the behavior
of the system to be determined and this behavior is found
to be in agreement with simulation results. It is also

found that, for small degrees of polydispersity, the ther-
modynamics of the quid is well understood in terms of an
eftective monodisperse ftuid. ' But what if the distribu-
tion cannot be expressed in functional form7 A typical
example of this situation is that of lipid monolayers
spread on air-water interfaces in which the "particle" un-
der consideration is a hydrocarbon chain consisting of,
say, 14—22 CH2 units. The study of lipid monolayers is
important, since they are models of biological mem-
branes. ' They may be thought of as pseudo-two-
dimensional systems of molecules with positional (lateral)
as well as acyl-chain conformation degrees of freedom.
These degrees of freedom and the couplings between
them impart the monolayer with a rich phase behavior,
including the possibility of condensation in one or both
sets of variables, sepatately or simultaneously. These
complications are reAected in the considerable difhculties
encountered in constructing realistic theoretical models
of lipid-monolayer phase behavior. The basic problem is
that, when both sets of degrees of freedom and their in-
teractions are modeled as realistically as possible, it
is diIIicult to make calculations in the transition region.
Therefore, the most successful theoretical studies of
monolayer phase behavior to date have been based on lat-
tice models which represent the acyl-chain conformation-
al variables accurately, but treat the lateral degrees of
freedom approximately via coarse-grained crystalline
variables (for example, Potts variables).
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The other approach is to emphasize the volume ex-
clusion interactions of the system and to approximate the
chain conformations. The pseudo-two-dimensional na-
ture of these systems invites the projection of the lipid
matrix onto the plane of the monolayer as a first approxi-
mation. It is this two-dimensional system that is then
studied. The method of projection used determines how
good the approximation is. The distribution of chain
conformations is polydisperse and continuously variable.
But the chains are too short for long-chain polymer ap-
proximations to be applicable, and yet are too long for
all the conformations to be included both easily and accu-
rately. ' Attempts at averaging the many conformations
into discrete sets of states were first made in the late
1970s. Scott and Cheng' considered multistate models
in which the number of states [for example, seven for di-
palmitoylphosphatidylcholine (DPPC)] varied with the
length of the acyl chains. The lipid molecules (as op-
posed to individual chains) were modeled as hard
cylinders with radii determined by the number of gauche
rotations in the lipid chains. Chain conformations were
grouped according to their cross-sectional area, and sta-
tistical weights were assigned using combinatorial argu-
ments. Projecting this system of hard cylinders onto the
two-dimensional plane produces a system of polydisperse
hard disks. Scaled-particle theory for hard-disk mixtures
(SPTM) was then used to model the effects of steric in-
teractions. This was combined with an additional long-
range attractive interaction to model the van der Waals
forces, and also with the internal rotational energy of the
chains. The composition of the system was determined
by minimizing the free energy at fixed temperature and
area. The interaction strength was varied to fit the tran-
sition temperatures for various chain lengths, and results
for the transition enthalpies agreed well with experiment.
The method allowed extensions to study mixtures of
lipids. ' The seven-state system of Scott and Cheng was
also used by Fraser et al. in Monte Carlo simulations to
examine in-plane orientational ordering of the DPPC
molecules. To reQect the asymmetric nature of the mole-
cules, hard-core triatomic molecules with variable bond
lengths were used instead of disks.

A simpler approximation was made by Doniach, who
considered just two conformational states: one ground
state representing the a11-trans conformation of the acyl
chain, which is dominant in the condensed, gel phase,
and one excited state representing all of the disordered
conformations, which are dominant in the ftuid phase.
As with the model of Scott, an internal rotational energy,
representing several gauche rotations in the acyl chain,
was assigned to the excited state as well as a high
effective weight or degeneracy. The ground state has
zero internal energy and is nondegenerate. By assigning
different cross-sectional areas and average nematic orders
to the states, according to the average conformations of
the chains, and formulating nearest-neighbor interactions
in terms of these variables, the model allows different in-
teractions between neighboring chains in different states.
These interactions represent both dispersion forces and
steric interactions. Doniach showed that this model is
isotropic to a nearest-neighbor Ising model with a

temperature-dependent external field H ( T) ~ ( T~ —T).
The transformed model is therefore a simple model for
first-order phase transitions provided that T, (T„where
T, is the critical temperature of the zero-field Ising mod-
el. The model is directly applicable to lipid monolayers
when an external lateral pressure H is included in the for-
malism, and again exhibits a first-order phase transition
at lateral pressures below the critical pressure. The
Doniach model has been studied using both mean-field
theory and computer simulations and has been extended
to include eight "intermediate" conformational states by
Pink et al. and all possible conformational states by
Tevlin et al. ' ' The problem with these models is
that they are lattice models that describe the principal
phase transitions in terms of configurational entropy and
internal energy. However, in both lipid monolayers and
bilayers, the phase transition under consideration is a
transition between a Quid and a solid phase and therefore
involves additional translational degrees of freedom.
Similarly, the conformational models of Scott, which are
based on SPT, can only be used to describe Quid phases.

In this paper we present studies of binary mixtures of
disks in which the composition is allowed to vary with
density and pressure according to preset degeneracies.
Since the degeneracies can be written in terms of internal
free energies of the disks, this system, with suitable
choice of parameters, can be considered as a minimal
model of a lipid monolayer. As such, it can be described
as a noninteracting Doniach model in which the two con-
formational states are replaced by interconvertable hard
disks. The larger of the two disk sizes corresponds to the
excited, conformationally disordered acyl-chain state and
the small disk size corresponds to all-trans state. The ad-
vantage of this model is that it exhibits both Quid and
solid phases in a natural manner. In a previous paper
(hereafter referred to as I) we presented the results from
constant Np T Monte Carlo simulations of two-
dimensional hard-disk systems which used a new tech-
nique, based on the Voronoi tesselation of the system,
to keep track of nearest neighbors. it was shown how an
analysis of the Voronoi tesselation can be used to isolate
the liquid-solid transition in single-species hard-disk sys-
tems. This analysis is based on the edge-length distribu-
tion function of the Voronoi polygons. A particular
decomposition of this distribution function provides a
strong signal of the liquid-solid transition that is superior
to the signal seen in the pressure-area (p-A) isotherm.
The same analysis, applied here to the binary mixtures, is
shown to reveal the liquid-solid phase transition of the
mixtures and the transition from large disks to small
disks with increasing pressure, which, for convenience,
we shall refer to as the "large-small" transition. It is im-
portant to note that this large-small transition is not a
phase transition but rather a continuous change in the
relative concentrations of the two disk sizes. The binary
mixtures studied can be described by two independent pa-
rameters. The first is the ratio of large-disk to small-disk
diameters, y=(o. , /o. 2), and the second is the ratio of the
degeneracies, v=(D, /D2 ). By changing these two pa-
rameters it is possible to- change the range of densities
over which the large-small transition takes place, that is,
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the position of this transition relative to the liquid-solid
transition, and the sharpness of the transition.

For comparison with the computer-simulation results
we present a theoretical analysis of this hard-disk binary
Quid based on the scaled-particle theory. This is similar
to the SPTM analysis of Scott and Cheng' but without
interparticle interactions. The SPTM has been extended
to include the degeneracy of the disks and a derivation of
this extension (SPTD) will be given in Sec. III. The
SPTD equation is used to predict the position and sharp-
ness of the large-small transition. Comparisons with con-
stant XpT Monte Carlo simulations show excellent agree-
ment in the liquid phase for all systems studied. The
SPTD predictions for the concentration-density profiles
are also excellent through the liquid-solid transition and
into the solid phase for all but a few systems. The few
systems that show deviations from the SPTD profile
through the liquid-solid transition region show agreement
again at higher densities. As with all theoretical equa-
tions of state, the compressibility factor (reduced pres-
sure) g=p/pkT as determined by the SPTD equation
diverges from the simulation data at the onset of the
liquid-solid packing transition.

For high degeneracies and large size ratios the p-A iso-
therms for the SPTD equation reAect, visibly, the large-
small transition. By selecting degeneracies and size ratios
for the Monte Carlo simulations such that the large-small
transition is coincident with the liquid-solid transition,
the liquid-solid packing transition can be used to accentu-
ate the large-small tansition. It can be argued that, al-
though the two transitions can be made coincident, such
that the system will contain predominantly large disks at
densities below the combined transition and small disks
above the combined transition, the system will not go
directly from a large-disk liquid to a small-disk solid.
The effects of the packing of the disks allow domains of
large-disk solid and of small-disk liquid within the transi-
tion region. The effects of packing are also seen to ac-
count for the aforementioned deviations from SPTD of
the concentration-density profile across the liquid-solid
transtion.

II. HARB-DISK MIXTURES

The simplest two-dimensional hard-disk system is that
consisting of a single size of particle. The hard-core na-
ture of the interaction potential gives a single equation of
state

pkT
where y(p) is some function of density p, only.

The equation of state of a hard-core mixture of s
species will depend upon the concentrations,
n = [ n „n2, . . . , n, j, and relative sizes,
o = to „o.2, . . . , o, j, of the different species present.

For this system Eq. (1) must be modified such that
y=y(p n, o ). For a binary mixture we have s=2 with
n, + n 2

= l. y(p, n, o ) then reduces to ip(p, n „cr,/o z ).
An extension of the hard-disk mixture is to allow the

concentrations of the species to vary with density. This is
achieved by assigning a degeneracy D to each species.
The degeneracy of species i, D;, can be related to an
internal free energy V,„,(i) such that

—
V,„t(i)lkTD ~e (2)

where T is the temperature and k is Boltzmann's con-
stant. If the concentrations n vary only with density, the
disk sizes, and the degeneracies D=[D&,D2, . . . , D, j,
then for a binary mixture we can write

III. SCALED-PARTICLE THEGRY

In the scaled-particle formalism, the chemical potential
and pressure of a system are determined by considering
the work done to insert a scaled particle into the system.
For a mixture of hard disks the SPT chemical potential
and equation of state are (SPTM)pi, m o~Xgpjoj m p=lnp;A, —ln(1 —g)+ — +-
kT ' ' 2 1 —q 4 kT

(4)

with

p 1 & ~i p&(~ o)'
pkT 1 —q 4p (1 —g)2

where q = ( m /4) g; p; o; is the packing fraction of the
system, p,- is the chemical potential of species i, and A, is
the ideal-gas partition function.

The chemical potential p; of species i can be written

p, =kT lnp;A;+ 8, ,

where 8'- is the nonideal-gas part of the chemical poten-
tial. Suppose that at low density there is a distribution of
sizes u;(cr;), which depends upon the internal energy of
the particles, V;„,(i) The dege. neracies D; are defined by

D,
u; = =C exp[ —/3V;„, (i)],

j j
which gives

PV;„,(i) =lnC —lnu, ,

with /3= (kT) ' and normalization constant C. The
nonideal part of the chemical potential is now

/3W; = —ln(1 —g)+ — + /3po, +/3V;„, (i) . —

p =y(p, g, v),
pkT

where g=o. &/o. 2 and v=D&/D2. In other words, there
should be a single equation of state for given values of g
and v. If, however, the systems exhibit metastability,
there are likely to be hysteresis effects.
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Consider the excess chemical potential p'
=kT lnp, + WI. Putting Eqs. (8) and (9) into (6) gives

m a~' Xjpjaj
Pp', "=1np, —ln(1 —i) )+—

2 1—q

D
P(j)= u =

1 2

Moves which would result in overlap were rejected. A
change of disk size was attempted before each positional
move.

+—Ppa, —lnu;+lnC . (10)
B. The Voronoi tesselation

7l) 02
ln

71 p

m p(at a2)a m p(al 2)+- +
2 1 —q 4 1 —q

2

+(o., —o.2)
po

4 1 —g

where o. =n, o.
&
+ n 2o.2. Consider

4
(1—ij) .—(n, cr, +nzaz) =2 2 =

KP KP

Multiplying Eq. (12) through by g (%0) gives

(13)

At equilibrium we must have p; =p equal to a constant
v for a given value of p= gp;. Using Eq. (5) for the
pressure we then get

(g p o, )o;
~(p) =ln(n;/u; )+—

2 1 —g

1 ~ Xjpj aj
+n'

1 rj —4

If we have a binary mixture, then equating Eq. (11) for
species 1 and 2 and putting p,. =n, p gives

The Voronoi tesselation of the binary mixture was con-
structed as described in I with the centers of mass of the
disks as seed points for the tesselation. The diferent disk
sizes required a minor modification to the setting up of
the initial configuration as described in I for single-
species systems. For the binary mixtures, the seed points
were randomly allocated to a species according to the de-
generacies D, and D2. The diameters of the hard disks
were then assigned with o.

2
&o. , =d;„, the minimum

nearest-neighbor separation.
The Voronoi tesselation was dynamically maintained

throughout the Monte Carlo simulations. The method
used is described in I and does not depend on the number
of species in the system. It was thus used unmodified.

In studying the Voronoi tesselations of single-species
hard-disk systems, we found that the distribution of
Voronoi edge lengths p (d) can be fitted by the sum of two
Gaussian functions, as described in I. The fits obtained
are good at all densities, and the fitting parameters are
found to reAect structural properties of the disk systems.

The distribution functions p(d') obtained from the
Monte Carlo simulations were fitted by a function of the
form

71) Qp
g ln +g( cr, —o ~)[(cr, + cr 2 ) +2a j

712 Q)

1
g (d') = — I

&
exp

i/rrco )

(d' —Q) )'

CO 1

+(cr& —o.2)a =0 . (14)

This is a quadratic in g and can be solved analytically for
a given value of n&. 0(n& &1, n7, +n2=1. The negative
solution to Eq. (14) is discarded as being unphysical. The
equation of state can then be calculated as a parametric
equation in n, from Eq. (5).

IV. SIMULATIQNS

A. Constant NpT Monte Carlo simulations

The simulation techniques used for the binary mixtures
are very similar to those described in I for single-species
systems. Here we will only describe the modifications re-
quired for binary mixtures. The positional moves of the
particles and the scaling moves of the system were made
precisely as described in I. A scaling of the system was
attempted once every Monte Carlo cycle (positional move
per particle). Binary mixtures of disks required a further
move consisting of a change in disk size. Consider a mix-
ture of disks of sizes a, and oz (o, & crz) and degenera-
cies D, and D2 (D, &Dz), as defined in Eq. (7). For a
given disk of size o.; a trial disc size o. was chosen with
probability I' (j ) where

1+ I&exp
rrco~

(d' —Q2)

672

V. RESULTS

The mixtures studied here are unusual in that the rela-
tive concentrations of the species are allowed to vary.
The simulations are therefore not at fixed composition.
As described in Sec. III, it is possible to use scaled-
particle theory, and in particular Eqs. (5) and (11), to pre-

where d'=d/cr2. The parameters Q„Q2, W& =(co,ln2),
and W2=(co2ln2) represent the means and widths of the
two Gaussians in units of o 2. I

&
and I2 give the areas un-

der each of the two Gaussians. Values for the parameters
were obtained by a least-squares fit to the Monte Carlo
data. The term "main Gaussian" will refer to the Gauss-
ian which is mainly responsible for the peak in the distri-
bution function p (d') and its fit parameters will be denot-
ed by the subscript 1. The other Gaussian, the "secon-
dary Gaussian", will be denoted by the subscript 2.

As in I, we emphasize that the functional form of g (d')
has no physical basis. The fit used is found to be a useful
tool that provides an excellent way of looking at the
structure of the systems.
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dict the packing-fraction concentration profile and the
equation of state given X=oi o.

z and &=Bi/&z ~e
will look first at systems for which "interesting" behavior
is predicted to occur in the Auid phase, well away from
the liquid-solid transition region. For convenience we
will refer to the loci of data for the single-species systems
(from I) as the base curues or lines Be. low we describe
our results for four different cases corresponding to
different values of v and g.

A. v=9, g=i.5

1.0

~ 0.8
0
~ 0.6
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c 0-4

o~ 0.2

0.0
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Systems of 225 disks with v =9 and y = 1.5 were first
considered. Equilibration runs of 10000 cycles were per-
formed followed by production runs of 10000 cycles.
Snapshots taken at the end of the production runs are
shown in Figs. 1(a)—1(d). The lowest-density system al-
ready has a significant proportion (45%) of small disks.
As the density increases, the concentration of large disks
decreases, as expected. The systems are sufficiently fl.uid
at all densities considered that the smaller population is
randomly distributed within the larger population. Fig-
ure 2 shows the packing-fraction concentration profile.
The solid line gives the SPTD prediction and the points
are from the Monte Carlo simulations. The agreement is
excellent, even at very low concentrations.

Figure 3 gives the fit parameters Q, and Qz from the
Voronoi edge-length distributions as a function of re-
duced pressure. The solid lines are the base curves from
the single disk species results (from I). The mean of the
secondary Gaussian is within the estimated errors of the
base curve, except for the lowest-density data, which

FIG. 2. The concentration of large disks n& as a function of
packing fraction for mixtures of 225 hard disks with v=9 and
g=1.5. The dashed lines give the liquid-solid transition region
for the single species systems (from I).

show some scatter and lie slightly above the curve. For
the highest densties, for which the concentration of large
disks is very small, the values of Q, fall upon the base
curve. The deviation of the data from the base curve at
lower densities increases with increasing large-disk con-
centration. Since the Voronoi edge-length distributions
are normalized with respect to the smaller-disk diameter,
the presence of larger disks in the systems causes an
effective change of scale. The slight shift of the Qz data
at the lowest densities is consistent with the shift in Q, .

B. v=i9, g=i.15

To see how the packing-fraction concentration profile
is affected by thermodynamic equilibrium, a system of
256 disks with v=19 and y=1.15 was studied purely
from compression runs, with large applied pressure. This
choice of v and g also places the middle of the large-small
transition coincident with the start of the liquid-solid
transition. The data points were each averaged over only
1000 cycles. For 1000 cycles, a change in disk size to a
small disk would be attempted, on average, 50 times per
disk, so although the systems would not be in thermo-

(b) 1.6

1.2— 0
0

0.8—

0.4—

0.0

& O-~~ == r-
2

2 4 6 8 10 12
reduced pressure p/pkT

14

FIG. 1. Snapshots of configurations of mixtures of 225 hard
disks, with v=9 and g=1.5, at pressures pjkT of (a) 1.72o.
(b) 2.57o. , (c) 3.46cr (d) 4.37o. . The systems are scaled to
the same box size and the shaded regions indicate the Voronoi
polygons associated with the smaller disks.

FICs. 3. The fit parameters Q, (o ) and Q, ( ~ ) as functions of
reduced pressure for mixtures of 225 hard disks with v=9 and
y=1.5. The error bars for Q, are within the open circles. The
solid lines are the base curves (from I).
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FIG. 4. Snapshots of configurations of mixtures of 256 hard disks, with v=19 and g= 1.15, at intervals of 5000 Monte Carlo cy-
cles. These nonequilibrium systems have high applied pressures p/kT of (a) 6.38o. (b) 7.74o. , (c) 17.4o. (d) 18.1o. , (e) 27.9o.
(f) 28.9o. , (g) 40.0o. , (h) 41.7o. . The systems are scaled to the same box size and the shaded regions indicate the Voronoi po-
lygons associated with the smaller disks.

dynamic equilibrium they would be expected to be near
equilibrium with respect to concentration. Snapshots of
some of the configurations are shown in Figs. 4(a) —4(h).
At low densities [Figs. 4(a) and 4(b)] the small disks that
are present are scattered randomly through the system.
The number of small disks increases with density. As the
packing fraction approaches g&;, the liquid edge of the
transition region for single species disk systems [Fig.
4(c)], there are roughly equal numbers of large and small
disks. Within the transition region [Fig. 4(d)], the large
disks appear to want to form crystalline domains, where
there are sufficient large disks to do so. The regions of
small disks are still liquidlike, though there is some or-
dering next to the larger disks. As the number of small
disks increases with density, g now at q„&, the solid edge
of the transition region [Fig. 4(e)], they start to order.
Now, though, there are insufficient large disks for large-
disk domains and they tend to be disordered between the
regions of more-ordered small disks. At the higher densi-
ties [Figs. 4(f) —4(h)] there are relatively few large disks.
Their presence is, however, enough to disrupt the pack-
ing of the smaller disks. Only at the highest densities is
the small-disk phase able to form a single ordered region.

The packing-fraction concentration profile is shown in
Fig. 5 on a semilog plot. The dashed lines give the posi-
tion of the single species transition region, and the inset
illustrates the superposition of the two transitions. The
solid curve is the SPTD prediction. The agreement of the
data with the SPTD prediction is remarkable. Not only
are the 1000 cycles sufficient to give concentration equi-
librium at a given average density, but scaled-particle
theory is seen to predict the packing-fraction concentra-

tion profile accurately, for these systems, in both the Quid
and solid phases.
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FIG. 5. The concentration of large disks n, as a function of
packing fraction for mixtures of 256 hard disks with v= 19 and
y= 1.15. The dashed lines give the liquid-solid transition region
for the single species systems (from I).

C. v=99, y=l. i5

Larger systems of 440 disks with v=99 and y=1.15
were studied, with equilibration runs of 5000 cycles and
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production runs of 10000 cycles. Snapshots of some of
the systems are shown in Figs. 6(a) —6(h). There are still
relatively few small disks in the systems right up to the
start of the liquid-solid transition, and all the systems are
disordered. Within the liquid-solid transition region
[Figs. 6(d) and 6(e)], the large disks form more-ordered
domains. The small disks are found between these
domains and within less-ordered, Auidlike regions. At
packing fractions slightly higher than g„& [Fig. 6(f)], the
ordered domains are much larger, and many of the small
disks take on the same order as the large disks. There are
still a few disordered regions within the systems. The
number of small disks starts to increase noticeably once
the structure becomes almost fully ordered. At the
highest densities, there are few large disks in the systems.

The packing-fraction concentration profile is shown in
Fig. 7. The solid line is the SPTD data and the dashed
lines give the liquid-solid transition region. The inset
shows the same data on a semilog plot. At low densities,
up to the liquid-solid transition region, and at very high
densities, there is very good agreement between the
Monte Carlo data and the SPTD data. Within the transi-
tion region, the number of large disks actually increases
slightly. At densities with g just above g„& the curve ap-
pears to follow a path parallel to the SPTD curve, but
displaced to higher packing fractions. Then, as the densi-
ty is increased, the concentration drops rapidly until it
rejoins the SPTD curve at higher densities. The start of
this drop corresponds to the density at which the systems
are fully ordered, though they do contain defects. The
sharpness of the drop is most apparent on the semilog
plot. The deviation of the Monte Carlo data from the
SPTD data is simply a result of packing considerations.

In response to the applied pressure, the system wants to
reduce its area. it can do this either by reducing its "free
area, " which requires an increase in its order at these
densities, or by reducing the total area of the disks and
leaving the free area the same. Across the liquid-solid
transition region, the increase in order within the large
disks is sufhcient to also allow an increase in the number
of large disks. The number then reduces gradually, while
the amount of order in the system increases further.
Once the system becomes fully ordered, however, the
only way to reduce the area is to reduce the number of
large disks. Scaled-particle theory predicts a drop in
large-disk concentration at a lower density, since it does
not take ordering effects into consideration.

Figure 8 shows the fit parameters Q, and Qz. The
solid lines show the base curves (from I). The data for Q,
lie consistently higher than the base curve for the low-
density systems. At a point which corresponds to the
start of the large-small transition, Q, starts to drop to-
wards the base curve. At higher densities, the data would
appear to follow the base curve. Exactly the same
analysis applies to the data for Q2. The fractional in-
crease in the values of Q, and Q2 at the lower densities
corresponds to g=1.15, that is, the ratio of the disk sizes.
If the edge lengths were normalized by o. , rather than o.

2

at these densities, then the data for Q& and Q2 would fall
on the base curves. The shift is therefore due to a scaling
of the typical length in the system. The effect of the
liquid-solid transition on Qz is the same as for the single
species disk systems. The large-small transition has no
affect on Q2 other than the scaling described above,
which is consistent with the observed scaling of Q, .

(a)

(g)

FIG. 6. Snapshots of configurations of mixtures of 440 hard disks, with v=99 and g=1.15, at pressures p/kT of (a) 2.79o. , (b)
5.86o-, (c) 7.14o. , (d) 8.51o-, (e) 10.5o. , (f) 12.0o. , (g) 13.9o. , (h) 16.4o . The systems are scaled to the same box size and
the shaded regions indicate the Voronoi polygons associated with the smaller disks.
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FIG. 7. The concentration of large disks n& as a function of
packing fraction for mixtures of 440 hard disks with v=99 and
y=1.1S. The dashed lines give the liquid-solid transition region
for the single species systems (from I).

FIG. 9. Lateral pressue as a function of area per disk for
mixtures of 440 disks with v=99 and y=1.1S. The points (~ )

are Monte Carlo data, the solid line is data from the SPTD Eqs.
(S) and (14). The dashed lines are the true and scaled base
curves (from I) as described in the text. The dotted line is the
high-density limit A =ma&/2&3.

The p-2 isotherm for this system is shown in Fig. 9.
The lower dashed line in the figure is the base curve from
Fig. 13 of I. The upper dashed curve is the same curve
but is scaled in both axes, so that it corresponds to a sys-
tem with disk diameters of 1.15o.. The Monte Carlo data
can be divided into three regions. At low densities, the
data follow the scaled base curve, but at a slightly re-
duced pressure. At high densities, the data join then fol-
low a projection of the base curve. In the intermediate
region, the data follow an almost straight path from the
scaled base curve to the true base curve. This is the tran-
sition region for a transition from a predominantly large-
disk system to a predominantly small-disk system. The
low-density limit of the large-small transition region, as
apparent from the p-2 isotherm, corresponds to the den-
sity at which the system first becomes fully ordered. The

1.0—

0.8—

0.6—

0.4 —
q

0.2—

0.0 5 10 15 20 25 30
reduced pressure p/pkT

FIG. 8. The fit parameters Q, (o ) and Qz (~ ) as a function
of reduced pressure for mixtures of 440 hard disks with v=99
and y= 1.1S. The error bars for Q& are within the open circles.
The solid lines are the base curves (from I).

high-density limit corresponds to the point at which the
Monte Carlo data rejoin the SPTD data on the density-
concentration plot. It should be noted that there is no
evidence in this plot to suggest the presence of a liquid-
solid, order-disorder transition.

The SPTD data„shown as a solid line, lie slightly above
the Monte Carlo data at low densities. The data are also
seen to cross to the base curve, but at a higher pressure
than that of the simulation data for the base curve. The
data point of the highest-density binary system is seen to
lie on the SPTD curve. This does not imply that the
SPTD data are good at high densities; rather, that the
two data curves only cross at this point. The dotted line
is the area corresponding to a close-packed system,
2 =no /2&3, which is the correct asymptote for hard-
disk, p-A data. In contrast, the SPTD data have an
asymptote at A =0.

D. v=10, y=2

Systems of 440 disks with v=10 and y=2 were stud-
ied following the methods employed with the previous
binary systems. Unless prohibitively long equilibration
runs are made, the systems are prevented from attaining
true equilibrium by the high value of v combined with the
relatively large di8'erence in disk sizes. Fast compression
and expansion runs were therefore performed in addition
to slower compression and expansion runs, closer to equi-
librium. For the fast compression run a very high pres-
sure of p/kT=300o. was applied and statistics were
averaged every 5000 cycles over a total of 7X10 cycles.
A low pressure of 1.0o. was then applied and the sys-
tern was allowed to expand over a total of 35000 cycles.
Statistics were averaged every 1000 cycles. For the
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slower compression run, the pressure was incremented
0.2o. every 15000 cycles up to a pressure of 15.0o.
The slow expansion run was similarly performed with the
applied pressure being reduced by 0.2o. every 15000
cycles. This expansion was then repeated from an ap-
plied pressure of 4.4o. with the same pressure decre-
ment every 30000 cycles.

Figures 10(a)—10(h) show snapshots of systems from
the slower compression run with pressures from 2.0 to
15.0o. . The concentration of small disks remains very
low through the liquid-solid transition [Figs. 10(a) and
10(b)]. At these pressures the system behaves as if it con-
tained only large disks. As the pressure increases, the
number of small disks increases. Most of the large disks
are in solidlike, ordered domains, and the small disks
tend to form disordered regions between these domains
[Figs. 10(c) and 10(d)). As the small-disk concentration
increases further, the large-disk domains become much
smaller, and many of the large disks are in small, isolated
groups. Some of the small disks then start to order,
though the structure of the system is still predominantly
disordered [Fig. 10(f)]. Increasing the pressure further
takes the system from this small-disk Quid through
another liquid-solid transition to a small-disk solid [Fig.
10(h)].

Snapshots are shown in Figs. 11(a)—11(h) for the slower
expansion run. The expansion of the system essentially
sees a reversal of the phase behavior observed during the
compression run. The slightly lower applied pressure
first allows the final configuration of the compression run
to equilibrate further. The few remaining large disks in
the system disappear and the small-disk solid becomes al-
most fully ordered [Fig. 11(a)]. As with the single-sized

disk systems studied in I, this system cannot be truly
commensurate with the simulation cell. The ordered
structure melts to a small-disk fluid as the pressure is re-
duced [Fig. 11(b)]. Large disks appear within the system
as the pressure is reduced, and where they form large
enough groups, they start to order [Fig. 11(e)]. As the
large-disk concentration increases further with decreas-
ing pressure, the larger large-disk domains do not order
fully [Figs. 11(f) and 11(g)]. The regions containing the
last of the small disks remain disordered, and then the
large-disk domains themselves start to melt, and a large-
disk fiuid is finally obtained [Fig. 11(h)].

An even slower expansion from a pressure of 4.4o.
produced configurations which differed little from those
shown in Fig. 11, except that the structures observed
were shifted slightly in pressure.

The configurations from the fast compression and ex-
pansion runs were also similar to those of the slower
runs. There were several noticeable differences, however.
As the large-disk concentration decreased, the remaining
large disks appeared to be quite randomly distributed
throughout the system. This is in contrast to the ordered
domains apparent in the systems shown in Fig. 10. The
final small-disk solid consisted of several large domains of
ordered disks. For these to merge into a single, large or-
dered domain would require a significant rearrangement
of most of the structure. The system has thus quenched
into a structure reminiscent of a glass or a polycrystalline
aggregate. During the rapid expansion, the structure
remained disordered. The large disks again appeared to
be randomly distributed throughout the system, and
there was no indication that they would prefer to form
more-ordered domains.

OO

0

(a) (b) {c) (d)

(g)

FIG. 10. Snapshots of configurations of mixtures of 440 hard disks, with v=10 and y=2, for the slow compression run at pres-
sures plkT of (a) 2.0o. , (b) 3.0o, (c) 5.4o. , (d) 6.0o. , (e) 8.2o. , (f) 10.0o. , (g) 12.0o, (h) 15.0o. . The systems are scaled
to the same box size and the shaded regions indicate the Voronoi polygons associated with the smaller disks.
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(a) (d)

(e)

FIG. 11. Snapshots of configurations of mixtures of 440 hard disks, with v= 10' and y=2, for the slow expansion run at pressures
p/kT of (a) 12.0cr, (b) 6.0o- ', (c) 4.0o- ', (d) 3.0O, (e) 2.6, (f) 2.2o, (g) 1.8O. , (h) 1.0 . The systems are scaled to the
same box size and the shaded regions indicate the Voronoi polygons associated with the smaller disks.

The large-disk concentration n
&

is shown as a function
of area per disk in Fig. 12(a). The solid points correspond
to the two compression runs, and the open points corre-
spond to the expansion runs. The central solid line gives
the SPTD prediction for this system. The two outer
curves are derived from the SPTD data by shifting the
area by +6A. Here, 5 A is given by half the difference be-
tween the fast compression and fast expansion results at
n, =0.5. The shoulders in the compression data at
n. , -0.95 are probably due to initial packing conditions in
the solid, as found in the v=99 systems. The Monte Car-
lo data would appear to follow lines roughly parallel to
the SPTD prediction for concentrations of between 0.05
and 0.8. This is quite remarkable, since the structures of
the systems in all the runs changed considerably over this
range. It can also be seen that, for the expansion runs,
doubling the number of Monte Carlo cycles between suc-
cessive decrements in the pressure from 15000 to 30000
has little effect on the large-disk concentration as a func-
tion of area. There is also little change when the concen-
tration is plotted as a function of packing fraction, as
shown in Fig. 12(b). The shoulders in the compression
data are much more apparent than in Fig. 12(a). The
dashed lines, which indicate the packing fractions at the
liquid and solid edges of the transition region in single
species disk systems, no longer serve to indicate the or-
dered or disordered nature of the systems at intermediate
concentrations. Where the slow compression data come
close to g„&, for n, ~0.3, the systems are disordered, and
where the slow expansion data come close to q»q for
n& ~0.7, the systems contain a number of regions of or-
dered large disks.

Figure 13 shows the fit parameters Q, and Qz as func-
tions of pressure for the slow compression and expansion
runs. Note that Q, and Q~ no longer scale simply with
the base curves, as they would do if plotted as a function
of reduced pressure. As with all other systems studied,
Q„ for the slow compression run, varies smoothly with
pressure. Q2, however, varies quite dramatically across
the range of pressures studied here. At the lowest pres-
sures, Q2 is about twice that of the base curve in the Quid

phase. This scaling is due to the disk-size ratio y= 2. Be-
tween pressures of about 2.6o. and 3o. there is a
marked jump corresponding to the large-disk liquid-solid
transition. Q2 remains at around the same value until the
pressure reaches 4.2o. . At this point the concentration
of small disks starts to increase, and the regions in which
they appear become disordered. Q2 drops almost linearly
with increasing pressure until a pressure of around
5.2o, at which point about a third of the system is
disordered. Qz continues to drop, though not as quickly,
as more small disks appear in the system and the regions
of ordered large disks break up. At a pressure of around
So. , the remaining groups of large disks are quite small,
and as they dissappear Q2 drops more quickly again with
increasing pressure until a pressure of 9.4o. is reached.
There are now few large disks in the system and the
structure is totally disordered. Q2 remains constant until
a pressure of around 12o, whereupon it starts to rise
again. At a pressure of 13cr there is a jump in Qz and
it joins Q, on the base curve. This corresponds to the
small-disk liquid-solid transition.

For the slow expansion run, Q &
follows the base curve
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right down to a pressure of about 4o. . There are still
very few large disks in the system at this point. Q, then
starts to increase as the large-disk concentration in-
creases. Q2 follows the base curve down to a pressure of
12.8o. . There is then a slight drop in Q2 as the pres-
sure drops to 12.4o. . During this period the few large
disks that remain in the system dissappear. This drop in

Q2 is the same as that observed in I for a crystalline sys-
tem incommensurate with the simulation box. Here the
system is seen to form one large crystalline domain [Fig.
11(a)]. As the pressure is further reduced, Q2 drops slow-

ly until a pressure of 8.6o. . It then drops suddenly
down to the base curve as the system melts and passes
through a small-disk solid-liquid transition. As the first
large disks start appearing in the system at a pressure of
around 5tT, Q2 drops more quickly. However, once
there are enough large disks to start forming ordered
groups, Q2 rises quite rapidly until most of the disks are
large, whereupon it starts to drop again. This maximum
corresponds to the pressures at which there is most order
within the groups of large disks. At the higher pressures
there are many disordered regions containing both large

and small disks. At the lower pressures there are few
small disks, but the regions of large disks have started
melting. The results for the slower expansion run (for
pressures below 4.4o ) differ from those of the slow ex-
pansion run only in that the maximum described above
occurs at a slightly higher pressure (2.4o. instead of
2.0o ) and has a slightly higher value of Qz.

To eliminate the efFects of disk size on the behavior of
Q2 we define Q=Qz/Q i. Figure 14 shows that P behaves
much like an order parameter, though we emphasize that
there is nothing to prevent it from increasing above unity.
Also shown in Fig. 14 is the defect density Xd,f, defined
as in Eq. (5) of I to be the fraction of particles with other
than six nearest neighbors. The behavior of i' is, predict-
ably, very similar to that of Q2. For the slow compres-
sion run [Fig. 14(a)], Nd, & appears to tell us little about
the changing structure of the system. Apart from a slight
kink at a pressure of 12.6o. , which is close to the
small-disk liquid-solid transition, all other changes in the
slope of Xd,r are at difFerent pressures to those of g. This
is not the case, however, for the slow expansion run IFig.
14(b)]. For all pressures right down to 4o, Xd,&

mimics
the behavior of ltj. The drop in p at a pressure of 12.6cr

is reAected by a drop in Xd,f down to zero. This is con-
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FIG. 12. The concentration of large disks n l as a function of
{a) area per disk and (b) packing fraction for mixtures of 440
hard disks with v= 10' and y=2, for the fast compression {~ )

and expansion ( o ) runs, the slow compression {R)and expan-
sion ( ) runs, and the slower expansion run (A). The solid
lines give the normal and shifted SPTD data, as described in the
text, and the dashed lines in (b) give the liquid-solid transition
region for the single species systems.
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FIG. 13. The fit parameters Q, (O) and Qz (~ ) as functions
of pressure for mixtures of 440 hard disks with v=10' and
y=2. The data for the slow compression run are shown in (a)
and data for the slow expansion run in (b). Also shown in (b)
are the data for the slower expansion run (,0). The solid lines
are the base curves (from I).
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FIG. 14. The parameter 1tj (o } and the number of defects
Nd, f (~ ) for the slow compression run (a) and the slow expan-
sion run (b) as functions of pressure for mixtures of 440 hard
disks with v=10' and y=2. Also shown in (b) are the data for
the slower expansion run (,0).

sistent with the evidence of the snapshots that the struc-
ture forms a single crystalline domain. The drop in g
across the solid-liquid transition is accompanied by an in-
crease in Nd, f. Nd, f then continues to rise as f drops.
There is a maximum in Nd, f as g rises sharply and then a
minimum at a pressure slightly lower than that of the
maximum in g. For the slower expansion run, the behav-
ior of both f and Nd, f is shifted to slightly higher pres-
sures.

It is noticeable that for the expansion runs, for pres-
sures for which the area of the system varies slowly, the
changes in Nd, f are in step with the changes in f (Qz).
These systems are likely to be close to equilibrium. for
the lower pressures of the expansion runs, where the area
changes rapidly, and for the compression run for which
the rate of change of the area is significant, the changes in

Nd, f appear to be out of step with the changes observed
in P (Q2). These systems are probably further from equi-
librium than the high-pressure expansion ones. It can be
surmised, therefore, that the extent to which changes in g
and Xd,f are in step rejects how close to true equilibrium
the systems are.

Figure 15 compares ttj for the slow compression run g,
and the slow expansion run g, . It is noticeable that be-
tween pressures of 2.0o and 13cr g, and P, are al-
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FIG. 15. A comparison of the parameter f for the slow
compression run (0 ) and the slow expansion run (~ ) as a func-
tion of pressure for mixtures of 440 hard disks with v= 10' and
g=2. Also shown (S) are the data for the slower expansion
run.

most totally complementary. This is a quite remarkable
hysteresislike behavior.

Although the fast nonequilibrium runs would appear
to preclude looking at thermodynamic properties of the
systems, we can make use of the SPTM of Eq. (5). The
agreement of the SPT pressure (for general convex parti-
cles) with that from constant XpT Monte Carlo simula-
tions has been shown in a previous paper' to be good for
very dense systems of polydisperse hard-core triatomics.
These systems did not exhibit an order-disorder transi-
tion. If a system is disordered, therefore, the SPTM of
Eq. (5) should adequately predict the pressure of an equi-
librium system with a similar structure, given the concen-
tration n

&
and the area per disk. If there is significant or-

der within the system, then the SPTM prediction for the
pressure is likely to be high.

Keeping in mind that the SPTM pressure prediction
will be high for systems with significant order, we now
examine the p-3 isotherms for both the compression and
the expansion runs. These are shown in Fig. 16. The
central solid line is data from the SPTD Eqs. (5) and (14).
The other two solid lines are derived from the SPTD data
by shifting the area by +63 for a given large-disk con-
centration and recalculating the pressure from Eq. (5).
The good agreement with the "fast" Monte Carlo data is
consistent with Fig. 12(a). The data for the slow
compression run are closer to, but still considerably
higher than, the SPTD prediction. Slight kinks are ap-
parent in the isotherm. These occur at pressures for
which there are kinks or discontinuities in g (Q2). For
the slow expansion run, at pressures above 4.4o, the
area changes very little. A very slight shift in area can be
seen between the data points for pressures of 8.4o. and
8.6o. . This is the small-disk solid-liquid transition for
which P changed dramatically from 0.7 to 0.4. As the
pressure is reduced below about 4.4o. , the area starts to
increase quite rapidly. At first, it would appear to be fol-
lowing a line between the SPTD curve and the fast ex-
pansion data. However, the data points gradually drop
down to the fast expansion data. The area cannot expand
as fast as it would like as a consequence of the dynamics
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which neglects effects due to global ordering processes.
The simulations as well as the extended scaled-particle

theory were applied to binary mixtures of disks of size ra-
tio y and degeneracy ratio v. By varying y and v, the fol-
lowing possible scenarios were found as a function of in-
creasing pressure [here we refer to a large-disk Iluid (LF),
a small-disk Iluid (SF), a large-disk solid (LS) and a
small-disk solid (SS)j.

(a) (v=9, y=].5.) A large-disk to small-disk transition
followed by a liquid-solid transition:

LF—+SF~SS .

I I I I I

2 3 4 5
2Area per disk ( units of o )

FIG. 16. Lateral pressure as a function of area per disk for
mixtures of 440 disks with v=10' and y=2 for the fast
compression (~ ) and expansion (0 ) runs, the slow compression
(R) and expansion ( ) runs, and the slower expansion run (8, ).
The solid lines give the normal and shifted SPTD data as de-
scribed in the text.

(b) (v=99, y=1.15.) A liquid-solid transition followed
by a large-disk to small-disk transition:

LF~LS~SS .

(c) (v=19, y=1.15.) A liquid-solid transition within a
large-disk to small-disk transition:

LF~LF+SF—+LS+SS~SS .

(d) (v=10, y=2. ) A liquid-solid transition and a
large-disk to small-disk transition: compression,

LF~LS~LS(+SF)MLS+SF~SF(+LS)~SS;

of the Monte Carlo simulation method. The maximum
change allowed in the box length when the system is
scaled (as described fully in I) is adjusted to keep a rejec-
tion ratio of 50%. When a very low pressure is applied to
the system, nearly all trials which would result in a small-
er system area are rejected and nearly all expansions are
accepted. If the system is close to equilibrium, however,
many more trials will be accepted for which the system
area is reduced, and fewer will be accepted for which the
area increases. The average area by which the system can
increase per Monte Carlo cycle therefore greatly reduced.
The slower expansion run data rejects this. Given twice
as many cycles for each decrement in the pressure, the
system can expand to a greater area. The isotherm is,
therefore, Aatter, and only rejoins the fast expansion data
where this rejoins the SPTD curve.

In the next section we discuss how the results of this
section can be used to describe the properties of lipid
monolayers, with special reference to Fig. 16.

VI. SUMMARY AND CONCLUSIONS

In this paper we present a method for studying model
mixtures of hard disks characterized by different disk
sizes and preset internal degeneracies. The model incorp-
orates both translational and internal degrees of freedom
and may display cooperative phenomena in terms of
these variables. The mixtures are studied by Monte Car-
lo simulation techniques, which faithfully account for the
full statistical-mechanical problem, including the
structural ordering transitions. We have also extended
the scaled-particle theory for mixtures, which accounts
for aspects of the packing properties of liquid phases but

expansion,

SS~SF~SF(+LF)~LS(+SF)~LF .

A surprising result is that the scaled-particle theory
not only predicts the composition in the liquid phase, but
also deep into the solid phase. However, in the transition
region, where packing considerations cannot be neglect-
ed, the scaled-particle theory breaks down.

The main result of our model study is that there is an
intricate interplay between packing and long-range posi-
tional ordering in mixed systems of disks of different sizes
that may undergo size changes. This leads to unexpected
results in the transition region with, for example, long-
lived metastable granular configurations or reentrant or-
dering transitions, reminiscent of the reentrant phase be-
havior of Kr on graphite.

The class of models for mixtures of hard disks intro-
duced and studied in this paper has a general sphere of
applicability. So far we have only explored the properties
of the models in the case of a binary mixture, but exten-
sions to multicomponent mixtures are straightforward.
The special property of these models is that their compo-
sition is not an independent variable, but is instead deter-
mined by a set of intrinsic chemical potentials, whose
values are fixed by the internal entropies associated with
the disk degeneracies. These degeneracies can be inter-
preted as reAecting the statistics of internal state varial-
bles, for example, conformational states of a Aexible mol-
ecule. Therefore, in their capacity of describing a system
having positional as well as internal variables, the models
become candidates for minimal models of lipid mono-
layers and bilayers.

The hard-disk models studied in the present paper,
therefore, open up a novel and promising way of model-
ing the phase behavior of lipid monolayers spread on air-
water interfaces. ' Here we outline the perspectives of
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such an approach by proposing the binary mixture model
with y=1 —2 and v&&1 as a minimal model of a lipid
monolayer. In this model, the large-disk size corresponds
to the extended (melted, conformationally disordered)
acyl-chain state, and the small-disk size corresponds to
the all tra-ns (confirmationally ordered) acyl-chain state.
The large value of v reflects the fact that the melted state
carries a large internal entropy due to the many excita-
tions of the disordered chain. The model is minimal in
the sense that it only explores the effects of excluded
volume and internal degrees of freedom and neglects
direct, soft interactions.

Comparison of the model isotherms (Figs. 9 and 16)
with experimental isotherms for monolayers of fatty acids
and lipids (see, for example, Refs. 41 —47 and references
therein) suggests that the minimal model has captured
the essential physics of these systems and hence under-
scores an earlier assertion by Nagle that the excluded
volume interactions are the dominant factor for their
phase behavior. The nonzero slope of the isotherm at the
start of the "plateau" region is quite reproducible for
many experimental systems. Although the rate of
compression of the monolayer has been observed to affect
the isotherms across this plateau and at higher pres-
sures, even the use of very slow compressional speeds
does not eliminate this positive slope. Furthermore, it is
well accepted that compressional-decompressional hys-
teresis is observed even at the slowest compressional
speeds. Despite this, there is very little literature avail-
able on hysteresis in these systems. Most studies examine
only the compression branch of the hysteresis loop, since
the range of pressures over which the isotherms can be
determined is limited to surface pressures below that at
which the monolayer collapses and forms a three-
dimensional multilayer system. The asymmetric shape of
the hysteresis in the isotherms presented in Fig. 16 is,
however, very similar to that found experimentally for
certain temperatures and compression rates [see, for ex-
ample, Fig. 3(b) of Ref. 44]. It is interesting to see that
this asymmetry is reflected by almost symmetrical hys-
teresis in the plot of large-disk concentration as a func-
tion of area [Fig. 12(a)].

For the few experimental systems for which hysteresis
has been reported, no discussion has been made of the
phase structure around the hysteresis loop. However, in
our simulations, we find that there are two intermediate
phases observed for v=10 as the system is compressed

with increasing pressure from the low-density fluid phase
to the high-density solid phase. The first of these phases
is characterized by chain conformational disorder and
positional order (that is, a large-disk solid in the language
of the minimal model), and the second is characterized by
chain conformational order and positional disorder (a
small-disk liquid). As the system is expanded with de-
creasing pressure, only the second of these is observed as
a distinct intermediate phase. This indicates that hys-
teresis can be associated with a rich phase behavior in
systems such as lipid monolayers.

It should be pointed out that there is a close thermo-
dynamic relationship ' between pressure-induced transi-
tions in lipid monolayers and thermally driven transitions
in fully hydrated lipid bilayers. Hence the models
presented in this paper may also provide a new approach
for studying the phase behavior of bilayers at constant
pressure. In the bilayer systems, the acyl-chain confor-
mational ordering transition and the crystallization pro-
cess are believed to occur simultaneously in equilibri-
um, ' although they may decouple out of equilibrium
or due to the presence of a suitable second component
such as choloesterol.

The models proposed in the present paper hold a
promise for advances in the theoretical modeling of lipid
systems. This not only applies to pure systems but also to
lipid systems with other molecular components in fixed
concentration, specifically molecules like proteins,
cholesterol, and anesthetics, for which the packing prop-
erties in the lipid layer are very important for the phase
behavior and ultimately for membrane function.
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