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In this paper we show how an extension of the nonequilibrium-statistical-operator method, rely-
ing upon the maximum-entropy principle set up by Jaynes [Am. J. Phys. 33, 391 (1965)], may be
used to describe the time evolution of an arbitrary many-body system. The Gibbs space of the ob-
servables describing the macrostates of the system is extended to include not only the conserved
variables, but additional ones whose origin is directly related to the microscopic nature of the sys-
tem manifested in its Hamiltonian. This allows us to go beyond linear irreversible thermodynamics
and enter into the domain of what is now known as extended irreversible thermodynamics (EIT).
Transport equations for the extended basic set of macrovariables are derived, showing that the
Maxwell-Cattaneo-Vernotte equations of EIT are obtained. The relaxation times and transport
coefFicients contained therein can be calculated from the microscopic dynamics of the system aver-
aged over an appropriate nonequilibrium coarse-grained probability density. Other outstanding
features of the methods are emphasized and related to already-established results for nonequilibri-
um systems.

I. INTRODUCTION

Nonequilibrium thermodynamics formulated at a phe-
nomenological level has remained more or less an open
subject beyond the linear approximation now referred to
as linear irreversible thermodynamics' (LIT). In spite of
the fact that several efforts have been made to extend the
validity of this linear theory, none of them can be con-
sidered fully satisfactory. ' One of the main reasons for
this is that so far they lack a solid justification based on
the general principles of statistical mechanics. The
difficulty that arises in this task of deriving irreversible
thermodynamics from the microscopic laws of physics re-
sides in the choice of a basic set of variables appropriate
to describe the nonequilibrium macroscopic states of the
system under consideration. Next to it stands the ques-
tion of the existence of a functional involving all of these
variables which provides a fundamental relation able to
generate the basic relations of the irreversible thermo-
dynamics for such systems. Of course, the well-
established laws of equilibrium thermodynamics and LIT
must be recovered from such a fundamental relation as
particular limiting cases. Since the entropy function en-
joys a preferential status in those cases, one may seek a
fundamental relation playing the role of an entropylike
function for the restricted description to be used in the
study of the macroscopic nonequilibrium states of a
many-body system. Finally, to close the theory it is
necessary to provide equations for the time evolution of
the macroscopic variables.

The underlying ideas behind the question posed above
go back to Maxwell and Boltzmann. Their analysis
went beyond equilibrium thermodynamics and construct-
ed evolution equations that have been successfully ap-
plied to a large variety of situations from gases to solids.
There is certainly a profound physical meaning in
Boltzmann's equation, but the task of solving the full
nonlinear equation and of clarifying its domain of validity
has been rather insurmountable. Nevertheless, very gen-
eral results are extracted from it such as the general con-
servation equations for the locally conserved densities
and the H theorem. The relationship between the func-
tion H and the equilibrium entropy of a dilute gas has
also been clearly established. Insofar as its relation with
irreversible thermodynamics is concerned, it is also well
known that the Chapman-Enskog solution of the
Boltzmann equation leads to the laws of LIT (Ref. I) and
that the moments solution set forth by Grad 30 years
ago leads to one version of extended irreversible thermo-
dynamics. ' '"

In the hands of Gibbs' and Einstein, ' the ideas of
Maxwell and Boltzmann were finally brought into a full
theory relating the laws of equilibrium thermodynamics
to those of microscopic physics. Yet, as some authors
have repeatedly emphasized, ' ' the use of the concept
of an ensemble to describe the time evolution of a system
undergoing an irreversible process has not yet been fully
exploited. There are a number of methods' ' that have
been successful in describing nonequilibrium phenomena
around the local equilibrium states of the system in con-
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sideration, thus providing a statistical basis for LIT and
fluctuations around the equilibrium state. Others, such
as the projection-operator methods erst devised by Mori
and Zwanzig ' may be used to deal in principle with
situations far from equilibrium, but the nature of the for-
malism is such that only in rather simple situations have
concrete relations with real systems been reached.

In this work we want to show how an appropriate ex-
tension of the nonequilibrium statistical operator method
(NSOM) provides formal results with remarkable
structural compactness and leads to natural and far-
reaching generalizations of the formalisms referred to in
the previous paragraph. To do so we shall work with a
Gibbs space of macrovariables (6), which is extended to
include Auxes of energy, momentum, mass, and others
deemed necessary for the appropriate description of the
nonequilibrium states of the system under study. Next,
using the Gibbs definition of the H function (often but in-
correctly referred to as an entropy), we construct a gen-
eralized entropy function using the maximum-entropy
principle set forth by Jaynes. ' This entropy is a function
of all variables in 6 and has a linear differential form in
G. Finally, we show how one can compute a generalized
entropy production, thus arriving at a condition which
allows the calculation of the time-evolution equations for
the Auxes elevated to the status of independent variables
in G. This procedure closely resembles the moment
method devised by Grad to solve Boltzmann's equations,
which was referred to before. As a consequence of the
theory, nonlinear transport equations for the G variables
are obtained, and with an appropriate mathematical
treatment, the transport equations for the G variables
agree, close to equilibrium with well-known results and
far from equilibrium with equations which have the gen-
eral structure of the Maxwell-Cattaneo-Vernotte (MCV)
equations, often taken as the most elementary extension
of LIT, to describe nonequilibrium states. '

However, we must point out that the underlying ideas
of the maximum-entropy formalism (MEF) here applied
to derive the basic macroscopic equations for systems in
nonequilibrium are by no means new. After Jaynes's
original papers were published, a number of applica-
tions followed in which the genera1 features about irrever-
sibility were discussed, as well as derivations of
time-evolution equations for the macroscopic variables
describing the states of the system given. In this latter
line of thought closely connected with our work, kinetic
and transport equations using the MEF were obtained for
very specific cases ' ' and afterward were brought to-
gether into a unifying scheme by Lewis. More recently,
Karkheck and co-workers have successfully applied
the method to generalize Enskog's kinetic theory for the
dense hard-sphere Quid onto a kinetic theory of Auids
which includes smooth potential tails. An H theorem
may be extracted from the formalism, and although the
correct equilibrium properties are predicted, no discus-
sion is given about the local entropy production in the
way that arises in LIT and that is obtained by other
methods. Finally, we should also mention the use of
the MEF to obtain time-evolution equations for the
steady-state conduction of heat in dense Auids" ' ' and a

generalized Grad-type foundation for extended irreversi-
ble thermodynamics (EIT) with altered thermodynamic
forces. These results seem to be encompassed and ex-
tended in the realm of the NSOM as put forward by Zu-
barev, ' Peletminskii, ' and others' ' when applied to
the description of irreversible phenomenological thermo-
dynamics, as described in this paper. In another publica-
tion it has been shown that the NSOM contains a prop-
er Gibbs equation, Prigogine minimum-entropy produc-
tion law, Glansdorff-Prigogine universal criterion for evo-
lution, and Glansdorff-Prigogine (in)stability criterion.

The structure of the paper is as follows: Section II
contains an overview of nonequilibrium thermodynamics
which we consider useful for later purposes. Section III
is devoted to a discussion of the NSO formalism where
we put all existing approaches under a unique derivation
based on Jaynes's maximum-entropy principle, comple-
mented with an additional assumption. The connection
with nonequilibrium thermodynamics is pursued, and
nonlinear transport equations are derived. In Sec. IV we
discuss a plausible criterion for the determination of the
basic set of dynamical variables appropriate for a class of
experimental situations. The average values of these
quantities over the nonequilibrium ensemble are inter-
preted as the macrovariables of EIT so that its quantum
statistical-mechanical basis is thus provided. Next, we
investigate how the general transport equations for the
macrovariables obtained in the previous section reduce to
well-known results close to equilibrium and to Mori-
Langevin type of evolution equations for the Auxes
beyond local equilibrium. The coefficients appearing in
these equations are in principle calculable as averages
over the nonequilibrium ensemble, which has an advan-
tage over others still containing the N-body dynamics.
Finally, Sec. V contains the main conclusions of this
work.

II. OVERVIEW
OF IRREVERSIBLE THERMODYNAMICS

Phenomenological irreversible thermodynamics is
often associated with linear irreversible thermodynamics
(LIT), which is founded in the ideas of Onsager and
Machlup, Glansdorf and Prigogine, de Groot and
Mazur, ' and others. These ideas resort to the basic
concepts of thermostatics to describe the properties of
the nonequilibrium states of any arbitrary system. The
time evolution of the variables performing such descrip-
tion is drawn from their underlying conservation equa-
tions, which are complemented by prescribing a linear re-
lationship between the thermodynamic forces, usually ex-
pressed as the gradients of intensive macroscopic quanti-
ties, and the fluxes or currents they produce in the sys-
tem. Furthermore, the matrix formed by the coefficients
appearing in these linear relations is proven to be sym-
metric a result now known as the Onsager reciprocity
theorem. As has been clearly established today, this
theory is rather accurate in describing a large class of
phenomena occurring near the equilibrium state. In a
more descriptive language, LIT is useful to deal with
nonequilibrium phenomena for very small wave vectors
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(large wavelengths) and small frequencies (long times). If
one desires to incorporate into a phenomenological
framework nonequilibrium phenomena which occur as
both the wave vector and the frequency increase, it be-
comes clear that LIT has to be modified. As was men-
tioned in the Introduction, many efforts have been done
in this direction in the past 20 years, although not a sin-
gle satisfactory theory has been developed, at least in the
same way that LIT has been rooted in more microscopic
principles.

Among such efforts, EIT has had a partial success in
carrying out the above-mentioned program. ' It also
has the advantage that one is able to prove how it stems
out of kinetic theory, ' much in the same way LIT is de-
rived from the Chapman-Enskog solution to the
Boltzmann equation. ' It thus appears reasonable to ask if
it is possible to relate the basic ideas of EIT to a deeper
microscopic description of the time evolution of an arbi-
trary system. Since the results obtained in this paper
clearly indicate that in fact such a relationship exists, it is
convenient to summarize the main hypothesis on which
EIT has been developed.

The first assumption of EIT concerns the nature of the
variables chosen to describe the states of the system. For
that purpose the space of state variables, to be denoted by
G, consists of the union of two subsets, one formed by the
locally conserved densities used in LIT, denoted by C,
and another subset formed by the nonconserved variables
and denoted by R. Thus G =C U R. The nature of the R
variables has been a long-debated question. ' ' From a
deep physical point of view, these variables should
represent the internal constraints of the system, not con-
trollable by an external observer, which characterize the
nature of the specific internal processes which take place
in the system. The "degree of advancement" of a chemi-
cal reaction would be a typical example. Yet, for the
overwhelming majority of the systems so far studied, it
has been impossible to detect such variables. The only
guide that has been available for this purpose is Grad's
moments solution to the Boltzmann equation where the
fluxes per se are raised to the status of independent vari-
ables. ' In most of the systems dealt with by EIT, this
prescription has been used rather successfully. We shall
have more to say on it later on. The second assumption
states that a certain function of the G variables exists,
and is continuous and differentiable. Thus, for any
infinitesimal irreversible process occurring in the system,
this function, to be denoted by g, has a linear differential
form whose coefficients will, in general, be tensorial fields,
whose properties are determined by the structure of G.
To obtain the time-evolution equations for the set of in-
dependent variables in G, since the time derivatives of the
R variables are unknown, one needs an additional as-
sumption. The choice mad by Jou, Casas-Vazquez, and
Lebon is that the function g satisfies a balance equation,
namely,

In Eq. (1), J„is the most general vector that may be con-
structed in G, and o.„is a scalar function which may be

—8 I =I +vgradT+

o o—6, ~=r+ 2g( gradu )'+' Bt
(2b)

where w is the thermal conductivity, g the shear viscosity,
and e,e, two undetermined coefficients having dimen-
sions of reciprocal time that are interpreted as the relaxa-
tion times associated with I and r, respectively. Equa-
tion (2a) is identical to that proposed by Cattaneo and
Vernotte to contend with the nonphysical prediction of
infinite propagation velocities for thermal disturbances
arising from the fact that the heat conduction equation
which comes from LIT is parabolic. On the other hand,
Eq. (2b) is the Maxwell-Kohlrausch equation which de-
scribes how the shear stress evolves in time in elastic
media. Equations (2a) and (2b) are now referred to as the
Maxwell-Cattaneo-Vernotte equations (MCV) and have
been applied to a variety of phenomena.

As we shall see in Sec. IV, a mechanism is here provid-
ed to derive MCV-type equations from a microscopic
point of view based on the NSOM. In fact, for a given
Hamiltonian, time-evolution equations are obtained for
the dynamic state variables containing transport
coefficients whose value depends on the dynamic interac-
tions between the atoms or molecules (or quasiparticles)
composing the system. These equations are far more gen-
eral than the linear approximation in the R variables re-

computed in two ways. One is by carrying out the opera-
tions indicated in the left-hand side of Eq. (1). The
second way is by recognizing that a.„is the most general
scalar which may be constructed in G. This defines a clo-
sure operation in space G (Ref. 53) and determines the
full form of the equations of motion for the R variables.
Furthermore, a compatibility requirement has to be im-
posed in Eq. (1), namely, that when the R variables prove
to be irrelevant for the description of the states of the sys-
tem, Eq. (1) must reduce to the ordinary entropy balance
equation of LIT. The set of nonlinear differential equa-
tions composed by the conservation equations associated
with the variables in C together with those derived from
Eq. (1) for the R variables is the full set of equations
governing the time evolution of the state variables for the
system under study. These equations, like all others de-
rived from phenomenological premises, contain a number
of undetermined coefficients whose knowledge has to be
drawn either from experiment or from a microscopic
theory. Given such coefficients, the system may be solved
in principle for given initial and well-defined boundary
conditions. Some approximations are usually introduced;
one is to regard all the coefficients appearing in the equa-
tions as constants, and the other is to neglect all terms
which are of order higher than two in the R variables.
In this, referred to as the first approximation, one obtains
linear differential equations for the R variables which are
identical to those proposed by Maxwell and
Kohlrausch and later derived by Grad. For instance,
in the case of a fluid, if we denote by I the heat flux and
by ~ the traceless part of the symmetric viscous tensor,
the corresponding equations read as
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quires. In fact, their general structure is nonlocal in both
space and time, thus indicating the existence of higher-
order approximations not yet explored even within the
context of EIT. Their implications will be discussed in a
separate paper.

III. REVIEW OF THE
NONEQUILIBRIUM-STATISTICAL-OPERATOR

METHOD

The NSO formalism has its sources in Boltzmann and
Gibbs ideas, and it has been considered a far-reaching
generalization of the Chapman-Enskog method in the ki-
netic theory of gases. Several methods, some of them
based on general arguments, ' ' *' others based on
projection-operator techniques, ' ' are currently
available to obtain an appropriate form for the statistical
operator p(t). In all cases p(t) is separated into two
parts:

p(t) =p«(t)+p'(t), (3)

where p« is a coarse-grained (CG) nondissipative term
that defines the mean values of the quantities P,
j=1,2, .. . , n, the dynamical variables which we assume
that form the basic set appropriate for the description of
the phenomenon under consideration. The average
values of the P 's are the macrovariables

Further, it is chosen as initial condition that at the initial
time t0 one has p(t0)=p«(tp) from which p evolves un-
der the action of the total Hamiltonian of the system. At
any subsequent time t ) t0, both p and pcG dier by p',
the second contribution in Eq. (3), a contribution that
carries the information on the dynamics relevant to the
description of the relaxation processes that develop in the
system.

The second equality in Eq. (4) clearly implies that the
subsidiary condition Tr(P~p')=0 must be obeyed for all
P 's. The relevance of this condition will appear later [cf.
Eq. (20)].

We proceed to derive a family of NSO using a varia-
tional principle based on Jaynes's maximum-entropy for-
malism (MEF), ' including memory effects. For that
purpose we first introduce the Gibbs entropy

Tr[p(t')] =1, (6)

for t0~t'~t.
Next, SG is made maximum subject to the constraints

Q (r, t'}=Tr[P (r)p(t')]=Tr[P (r, t' t)p(t)]—, (7)

SG(t) = —Tr[p(t)lnp(t)],

with p(t) defined in the interval (ta, t ) and normalized at
all times, i.e.,

Q (t)=Tr[P p(t)]=Tr[P.p«(t)],
which characterize the macroscopic state of the system.

for t0 ~ t' ~ t and j=1,2, . . . .
Following well-known procedures, ' we find that

n

p(t)=exp g(t) g f—d r f—dt'@J(r, t, t';t0)P, (r, t' t )—
j=1 0

where 1( and q& are Lagrange multipliers, with

n

g(t)=ln Tr exp —g f d v f dt'y (r, t, t';t0)P (r, t —t').
j=1 0

(9)

ensuring the normalization condition (6).
Equations (8) and (9) are the general solution to the

variational problem underlying the calculation of p(t).
We now introduce an extra assumption, namely, that the
Lagrange multipliers are of the form

In fact, given that w(t, t', t0)=dW(t, t', t0)ldt', items
(1) and (2) follow from the conditions

(1 la)

(r, t, t';t0).=w(t, t;ta)F (r, t ), (10) (1 lb)

which is proposed in order (1) to define the set of func-
tions F (r, t ) as intensive variables (fields) thermodynami-
cally conjugated to the extensive variables Q (r, t) [in the
way defined by Eq. (23)], to generate a complete connec-
tion with phenomenological nonequilibrium thermo-
dynamics, and (2) to define a function w in such a way to
fix the initial condition p (ta)=p«(t0), from which the
macroscopic state of the system evolves irreversibly.
Here p„(t} is the NSO p(t) for the specific choice given

by Eq. (10).

lim Tr[ W p (t ) ]= & W
l
t & .~0 (1 lc)

In Eq. (11c) the limit w~0 is taken after the trace
operation in the calculation of averages of any dynamical
operator 3 has been performed [Eq. (11c) defines a
quasiaverage in Bogoliubov's sense].

If one now substitutes Eq. (10) into Eq. (8) and carries
out a number of algebraic steps, one is led to the result
that
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lnp (t) Because of the condition imposed by Eq. (4), it follows
that

=1np«(t, O) — dt'W(t, t', ta), lnp «(t', t' —t ),
t0 di'

(12)

where

Tr[p'(t)]= Tr[Dii (t)p«(t, O)] =0,

Tr[P p'(t)]=Tr[P D (t)p«(t, O)]=0 .

(18a)

(18b)

n

pco(t„t2)=exp —P(t, ) —g f d r F (r, t, )P (r, t2)
j=1

and

n

P(t)=ln Tr exp —g f d r F (r, t)P~(r)
j=1

(13)

Equation (18a) is a result of the normalization ofp«, and
Eq. (18b) reffects the fact that there are no dissipation
effects in the ensemble characterized by pc~.

The connection with irreversible thermodynamics is
done, following Jaynes, through the identification of the
function S(t), to be called the NSOM-entropy function,
namely,

(14)
S(t)= —Tr[p (t)lnp«(t, O) ]= —Tr[p«(t, O)lnp«(t, O) ]

e
—A+B Y(g

l
1)e

—A (15a)

Y(8lx)=1+f du Y(Blu)e ""Be"",
0

the NSO of Eq. (13) can be written in the form of Eq. (3)
as

The first term in the argument of pcG refers to the time
dependence on variables F and the second to the time
dependence of operators I' in the Heisenberg representa-
tion. Note should be made of the fact that because of
Eqs. (7), (13), and (14), p is really a time-dependent func-
tional of the macroscopic variables Q .

For the sake of clarity, it is worth mentioning that the
Green-Mori NSO (Ref. 14) follows for W( t, t ', ta )
=1—(t —t')/ rta=t —r, and r~ ~, thus satisfying Eqs.
(11). Also, Zubarev's NSO (Ref. 18) is obtained putting
W(t, t;ta)=exp[e(t' t)], t0~——~, and e~+0. The
equivalence with NSO s obtained using projection-
qperator techniques has been discussed elsewhere. That
indeed the NSO of Eq. (12) satisfies a Liouville equation
with infinitesimal sources, which break its time-reversal
symmetry and introduces Prigogine s dynamical condi-
tion for dissipativity, has been also shown in Ref. 43.
Finally, using the operator identity'

n

=P(t)+ g F, (t)Q, (t),
j=1

(19)

defined over the G space, with the entropy of the phe-
nomenological nonequilibrium thermodynamics. In Eq.
(19) the second equality is a consequence of Eqs. (4), and
hereafter for the sake of brevity we omit the dependence
on the space variables. From Eq. (14),

=Q, (F&(t), . . . , F„(t))=Q,(t),j6F, t
(20)

and then S and P satisfy the Pfaffian forms

n

dP(t) = —g Q, (t)dF, (t),
j=1

(21)

dS(t) = g F, (t)dQ, (t),
j=1

(22)

where use has been made of Eq. (19) to obtain Eq. (22).
Therefore, the Lag range multiplier s F are the

differential coefficients of the NSOM-entropy function of
Eq. (19):

p„(t)=exp[lnpcG(t, O)+g (t)]=pc (to, O)+p'(t), (16)

where p« is given in Eq. (13), and

=F,(Q&(t), . . . , Q„(t))=F,(t) .
54(t)

J 1 & & It (23)

Because of Eq. (23), the intensive variables F (t) are then.
canonically conjugate, in the sense of nonequilibrium
thermodynamics, to the intensive basic variables Q, (t).

The rate of change of quantity S(t), which we call the
NSOM-entropy production, plays a very important role
in the formalism. It is obtained by time differentiation of
Eq. (19), namely,

(17a)

p'(t) =D (t)p«(t, 0), (17b)

(t)= f du Y(P lu)[p«(t, O)]"g (t)[pc~(t, 0)]

tg„(t)=— dt'W(t, t';t, ),lnp«(t', t' t), —'' dt'

Y(g lx )

(17c) o(t)= = QF, (t) Q, (t) .dS(t) " d
(24)

=1+f du Yg.(l )u[ p(t, o)]"g (t)[p (t, 0)]

(17d)

Defining the NSOM-entropy production operator
&(t,O)= —d lnp«(t, O) ddt, and the generalized correla-
tion function of operators 3 and B,



43 MICROSCOPIC APPROACH TO. . . . I. 6627

[ A;B ~t] =Tr A f du Y(g ~u )[p«(t, O))"AB[pco(t, O)]
0

where b.B=B—Tr[Bp«(t, O)], and using Eqs. (17a)—(17d), we can write Eq. (24) in the form

o (r) =Tr[&(t)p (t)]=Tr[&(r)D (t)p«(r) ]

=[&(t,O);g (t)ir]= f dt'W(t, t', r, )[&(t,O);&(r', r' —t)ir] .
0

(25)

(26)

This result clearly points out at the fact that the operator D (t) defined by Eq. (17c) is directly related to the NSOM-
entropy production. Since g (t) depends linearly on &, using for the generalized correlation function that defines cr its
expression as given by Eq. (26), it follows that the NSOM-entropy production function is a superposition of the vari-
ances in all orders of the NSOM-entropy production operator in the ensemble characterized by pco(t, O). In the so-
called NSOM-linear theory of relaxation (LTR), cr reduces to the self-correlation function of the NSOM-entropy pro-
duction operator and around equilibrium is positive definite. ' Further, in LTR around stationary states it follows that
the fiuctuations of quantities Q are Gaussian, and the Glansdorff-Prigogine universal evolution criterion as well as
Prigogine's minimum-entropy production law ' are verified.

Finally, to close the formalism and to perform calculations of thermodynamic functions and response functions,
one needs to obtain the evolution equations for macrovariables Q (t) Usin. g the definition of Q and Eqs. (17b) and
(17c), we see that

Q~(t)= Tr[P p (t)]dt ' dt

1=Tr [P,H]p (t)
tA

=Tr [P,H]p«(t, O) +Tr . [P,H]p'(t, O)
1 1

=(P ~r & + [P;( (t)~t]

=(P, ~t &«+ f dr'W(r, r', t, )[P,;&(t', r' t)~t], —
t0

(27)

where H is the total Hamiltonian of the system, and (iiri) [P ,H ]=P U. sing Eqs.. (17a), (17c), and (13), it follows that

Q, (r) =Tr[P,p«(r, O)]+ g f dr'W(r, r', t, ) [P, ;P„(r' t ) ~t ]F„(r')—

n

+ g f dr'W(r, t', t, )[P,;P„(t' r)~t ],F„(—r') .
k=1

0 g~ k dt k (28)

It can be shown that in the linear regime around equi-
librium Eqs. (28) go over to the set of equations obtained
by Mori. ' This suggests that Eqs. (28) may be con-
sidered a generalization of Mori's formalism for systems
arbitrarily away from equilibrium, and the last two terms
in Eqs. (28) combine to produce a collision operator that
depends, in Mori's terminology, only on the correlation
of the rapidly Auctuating generalized forces. In particu-
lar cases, those to be discussed in Sec. IV, the right-hand
side of Eq. (28) can be written in the form of a series ex-
pansion of collision integrals, of ever-increasing power in
the interaction strengths, involving only the calculation
of averages over the coarse-grained ensemble.

IV. BASIC VARIABLES
AND THEIR EQUATIONS OF EVOLUTION

In the description of the NSO formalism of Sec. III, we
have left aside the question of the choice of the basic set
of dynamical quantities [P~ ], the associated set of macro-

variables [Q (t)], and their conjugated [F (r) J. At
present there is no wholly satisfactory theory to generate
the basic set of variab1es appropriate for the description
of the macroscopic nonequilibrium state of a many-body
system. Some authors suggest that it must include all ap-
proximate integrals of motion (quasi-invariant variables);
others also claim that one should include enough vari-
ables that the collision operators in Eqs. (28) are almost
instantaneous in time. The adherents of EIT maintain
that the subset of quasi-invariant variables should be ex-
panded to include additional variables which, as ex-
plained in Sec. II, have so far been selected as the dissipa-
tive fluxes. It ought to be noted that, whichever set Q,
we must be able to obtain their equations of evolution,
and to integrate them initial and boundary conditions
need be provided, generally not an easy or sometimes a
not-so-feasible task. Further, Bogoliubov's principle
must always be kept in mind, namely, that a contracted
macroscopic description of a many-body system would be
possible if there exists a relaxation time for microinfor-
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mation, ~„, such that after it has elapsed the system loses
the memory of the distribution that describes the initial
state immediately after it has been driven arbitrarily
away from equilibrium. For t ))~„correlations with life-
time smaller than v„can be ignored and a description in
terms of a reduced set [Q (t)] (j=l, 2, . . . , n) may be
possible. Thus it is not always feasible to start with the
equilibrium distribution (or equilibrium values of the
variables) as an initial condition, but to specify what the
distribution p(Q (to)) is for to & r . Also, once the actual
physical system and the experiment to be performed on it
have been clearly defined, the interaction mechanisms, re-
laxation channels, and the instrumental resolution time
At influence the choice of the space G and to, the latter
because one can only use a description, appropriate in
Bogoliubov s hierarchy of relaxation times, with a ~„
smaller than or at least of the order of At.

In the NSOM, following the path set forward among
others by Zubarev' and Peletminskii and Yatsenko, ' the
choice of the set of variables j P ] is connected with the
separation of the total Hamiltonian of the system in a
"relevant" part Ho composed of the Hamiltonians of the
free subsystems and some of the interactions, and a
second part containing the interactions related to the
long-time relaxation mechanisms H'. The former one is
related to those interactions strong enough to have asso-
ciated very short relaxation times and possessing certain
symmetry properties. By very short relaxation times is
meant those much smaller than the characteristic time
scale of the experiment (typically, the instrumental reso-
lution time). Clearly, the symmetry characteristics of the
"relevant" part of the interactions also depend on the
physical problem under consideration. The required
symmetry (which we shall call Peletminskii-Zubarev sym-
metry condition) is that, in an adequate quantum repre-
sentation [usually provided by the (k, cu) space],

served under Ho, and their equations of motion contain
collision operators describing the evolution generated by
H' that are the manifestation of the microscopic degrees
of freedom that are suppressed in the coarse-graining
procedure. We recall that this separation is allowed
when there is a distinct hierarchy of time scales in
Bogoliubov's sense.

The Peletminskii-Zubarev condition of Eq. (29) pro-
vides a closure condition for the choice of the basic set of
variables: First, the secular part Ho of the Hamiltonian
has to be adequately chosen (as noted, it contains the ki-
netic energies plus the interactions strong enough to pro-
duce damping of correlations in times of the order of the
experimental resolution time). Second, one introduces a
few dynamical variables P deemed relevant for the
description of the physical problem in hand, and next
their commutator with Ho is performed. The dynamical
variables —di6'erent from those already introduced—
that appear in the linear combination indicated on the
right-hand side of Eq. (29) are incorporated to the basic
set. The procedure is then repeated until closure is at-
tained.

In a followup paper we illustrate the procedure by ap-
plying it to the study of the hydrodynamics of a photoex-
cited plasma in semiconductors. In that case the clo-
sure condition leads to an infinite set of basic variables,
consisting of the quasiconserved densities and their ten-
sorial cruxes to all orders. Such a case calls for a trunca-
tion procedure leading to a partial closure in the choice
of the basic variables that will depend on each specific
problem; a particular one is indicated for the aforemen-
tioned example in the hydrodynamic limit. Such illustra-
tion shows that the Auxes of the quasiconserved densities
are in fact to be taken as basic variables as repeatedly
stressed in EIT theory. For example, consider the
energy-density operator h(r) in a Quid of quasiparticles
and let Ho be the kinetic energy; then

(29)
i%'

[h (r), HO] = —divI(r),

where A.
&

are c numbers determined by Ho. Note should
be made of the fact that this condition is consistent with
Eq. (4), which defines the macrovariables under the same
prescription involved in Eq. (29), since p is associated
precisely with H, the weak interactions. Further, this
symmetry condition becomes of fundamental relevance
for the purpose of writing the equations of evolution in a
practical way consisting in putting the complicated su-
percorrelation functions on the right-hand side of Eq.
(27) [or Eq. (28)] in the form of an infinite series of col-
lision integrals which are instantaneous in time. These
equations of evolution can be considered" far-reaching
generalizations of Mori-Langevin equations, ' derivable
from the Liouville equation by the coarse-graining pro-
cedure associated to the NSOM. As noted, in one ap-
proach (that associated to LIT) the macrovariables Q (t)
are conserved and/or nearly conserved quantities, but
this approach requires additional constitutive equations.
The Peletminskii-Zubarev closure condition implies tak-
ing into account all dynamical quantities that are con-

where I(r) is the Hermitian operator for the energy flux.
In the representation provided by the reciprocal space of
vectors q,

[f(q) H ]=Aq I(q)

which is precisely of the form of Eq. (29), and then I(q) is
to be included in the basic set according to the rule.
Next, [I(q),HO] will produce a term proportional to a
rank-two tensorial Aux and so on; in this way we have the
microscopic approach of the treatment in EIT put for-
ward by Pezez-Garcia and Jou.

Once the basic set of dynamical quantities P, and
therefore of variables Q. (the G space), has been estab-
lished, the description of the irreversible evolution of the
macrostate of the system is given by the equations of evo-
lution for the basic macrovariables, which may be called
generalized nonlinear quantum transport equations.
These equations are given by Eqs. (28). The right-hand



43 MICROSCOPIC APPROACH TO. . . . I. 6629

side of this formal expression can be put in the form of a
series of collision operators of ever-increasing order in
the interaction strength coupling constants. In the so-
called NSOM-linear theory of relaxation (LTR), this
series of collision operators is truncated to second order

I

to produce MarkoSan transport equations given by

Q ( r, t ) =J,' '( r, t ) +J' "(r, t ) +J' '(.r, t ),
dt

where, in Zubarev's approach to the NSOM, '

(30)

J' '(r, t)=Tr . [P& (r), HD. ]pco(t, O)
1

iA
(31a)

J'"(r, t)=Tr . [P~(r),H']pco(t, O)
1 (31b)

J(2)(r t )

'2

f dt'e" Tr[[H'(t'), [H', P (r)]]pco(t, O)]o, ~ 5J'"(r, t)
+ f dt'e" g Tr[[H'(t'), Pk(r)]pcG(t, O)] .

i, =, Qkrr
(31c)

Consider now a set of basic variables (fields) [ Q (r, t ),I (r, r ) ],j= 1, . . . , n, composed of the secular variables Q. and
the set of their fluxes I~ (for the sake of simplicity we omit higher-order tensorial cruxes). The auxiliary statistical opera-
tor is in this case

n

pco(t, O)=exp —$0(t) —g f d r F (r, r)P (r). +II(t) (32)

where
n

11(t)=P,(t)+ g f d r a k(r, t) Ik(r, t), (33)

with $0(t)+P, (t) ensuring the normalization of pco, and $0(t) normalizes the statistical operator
r

n

p0(t, O)=exp —$0—g f d r F (r, t)P (r) (34)

i.e., the auxiliary statistical operator in the absence of cruxes I&. Further, according to the NSOM,

Q (r, t)= Tr[ P(r)p, (t)]=Tr[P (r)pco(t, O)],

Ik(r, t )=Tr[Ik(r)p, (&)]=Tr[Ik(r)pco(t, O)],
with Fz and ak being the thermodynamic conjugate parameters of Q and Ik, and p, is Zubarev's NSO.

Consider the NSOM-transport equations for the cruxes [cf. Eqs. (31)],namely,
2

I (ir, t )=JP'(r, t )+ f dt'e" Tr[ [H'(t'), [H', 1k(r)]]pco(t, O)],k
EA oo

(35a)

(35b)

(36)

(37)

(38a)

where we have taken J'" null for the sake of simplicity. We proceed next to reorganize Eqs. (36) in order to put into
clear evidence the contribution of the cruxes I to the collision operators. For this purpose we expand the auxiliary sta-
tistical operator in a series of powers in the quantity II(t) of Eq. (33). In order to do this, we rewrite Eq. (32), using the
operator identity of Eq. (15), in the form

pco(t, O) = [1+K(t) ]pa(t, O),
where p0 is given by Eq. (34), and

IC(t)= f 'au Y(ll~u )[p (t, O)]"II(t)[p (t, O)]
0

with Y satisfying the integral equation

Y(Ilgwu)=1+ f dx Y(11~x)[p0(t,O)] II(t)[pa(t, O)]
0

Hence
2

I (r,kt ) = J'(kr, t ) +. f dt'e" Tr[ [H'(t'), [H', I (r'k)]][1+K(t)]p0(t,O) ] .
Bt iA

(38b)

(39)
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We now take the linear approximation in the cruxes, i.e., the case of small deviations of po, which consists in taking
Y = 1 in Eq. (38a) to obtain

K(t)= f du[po(t, O)]" g f d r ai, (r, t) EI&(r)[po(t, O)]
0 k=1

(40)

where b, I= I—Tr( Ipo).
Further, a linear relationship between the fluxes I and parameters a can be obtained: Starting from the definition of

Ii, (r, t ) and using the operator relationship of Eq. (15), we find

Ii, (r, t ) =Tr[I&(r)pco(t, O)] =Tr[I&(r)[1+K(t)]po(t,O)],

and, in linear approximation in the fluxes,

m

Ii(r, t)=IP'(r, t)+ g f d r'A«(r, r';t)a, (r', t),
1=1

where

IP'(r, t ) =Tr[I&(r)po(t, 0)],
and

A«(r, r';t)= f du Tr[I&(r)[po(t, O)]"EI&(r')[po(t, O)] "+'j
0

is a correlation function of the fluxes Ik over the flux-free macrostate. Defining AI =I—I' ', we have that

bI i(r, t)=g f d r'Aii(r, r', t)ai(r', t),
I

and inverting it we obtain

(irt ) =g f d 'r A«(,r r'; t )b Ii ( 'r, t ) .
1

Replacing Eqs. (41) and (44) in Eqs. (39), we find that
m

Ii, (r, t)=JP'(r, t)+J'i, o(r, t) —g f d r'8i, '(r, r', t)AI&(r', t),

(41)

(42a)

(42b)

(43)

(44)

(45)

where

J' '(r t)=
2

f dt'e" Tr [ [H'(t'), [H', I&(r) ]]po(t, O)] (46)

8&&'(r, r';t)= g f dt'e" Tr[[H'(t'), [H', I&(r)]]f du[po(t, O)]"bI„(r')[po(t,O)] "+']A„&'(r,r', t) .f2 QO 0
(47)

Equation (45) is a linear Mori-Langevin-like equation
of a particular type: It consists of three terms: (a) a pre-
cession term Jk ', related to the modes of evolution in the
dynamics generated by Ho, (b) a term J'i, 0 involving relax-
ation effects of the flux while the macrostate of the sys-
tem is evolving in the subspace of the secular variables,
and (c) a term containing a nonlocal, time-dependent
relaxation-time matrix 8(r, r'; t ). The term J'i, ' is the part
that corresponds to the conservation equation (interac-
tion free) for I and should take the form of the divergence
of a tensorial fiux (see paper II, following article).

Equation (45) may also be considered an equation of
evolution for the fluxes of the Maxwell-Vernotte-
Cattaneo type, as those obtained in EIT. This is explicit-
ly shown in the particular case worked out in paper II.

Multiplying Eq. (45) by the matrix 8, we find

—bI.(r, t), (48)

where we omitted the term with J' '. In the quasistatic
regime, the right-hand side equals zero and corresponds
to the usual constitutive equations (in a nonlocal version),
e.g. , Pick's or Fourier's ones for the fluxes of matter and
energy, respectively. The term on the left, let us call it
Maxwell's term, leads to partial differential equations for
the corresponding quasiconserved quantities that are of

BI)(r', t )f d3r'8(r, r';t) = f d r'8(r, r';t)J~ '(r',t).
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the hyperbolic type (telegraphistlike equation) instead of
the parabolic one in the usual theory (e.g., Fourier's heat
equation), thus removing the problem of propagation of
thermal perturbations with infinite velocity.

V. CONCLUSIONS

As described in Sec. III, Jaynes s predictive statistical
physics ' allows for the construction of a general ap-
proach to the nonequilibrium statistical operator method.
The NSOM, on its own, seems to have an important role
in the generation of the statistical-mechanic foundation
for phenomenological irreversible thermodynamics. It
provides a way to rederive the basic theorems regarding
evolution and (in)stability of dissipative many-body sys-
tems and retrieves the results of LIT, Kubo's transport
theory, and linear response function theory. In this pa-
per we showed that it also covers the case of extended ir-
reversible thermodynamics. This is possible as a result of
the application of Bogoluibov's principle of correlation
weakening, fundamental for the construction of the
NSOM together with the separation in the system Hamil-
tonian of a secular part Ho plus the weak interactions, in
H, responsible for the dissipative collisional processes,
and the iterative application of the Peletminskii-Zubarev
symmetry condition of Eq. (29). Moreover, we also con-
struct the statistical NSOM entropy of the system which
contains the coarse-grained probability distribution func-
tion suitably expressed in terms of the intensive conjugate
variables to the set of macro-observables. The main
properties of this NSOM entropy is that it is a linear
differential term in G space and that its time derivative,
the NSOM-entropy production, may be regarded as the
natural extension of the entropy production of LIT,
which is semipositve definite in the linear regime around
equilibrium. ' It should be stressed that at present there
is no way to show such character for the general case of
systems arbitrarily away from equilibrium, i.e., for its ex-
pression as given by Eq. (26).

The accompanying nonlinear quantum transport
theory of the NSOM provides the equations of evolution
for the variables of 6 space. These equations, in their
general form, have the structure of transport equations
nonlinear and nonlocal in space and time. This structure
is too complicated to be analyzed in general, but we know
that for small deviations around equilibrium they reduce
to those derived by other methods. In this paper (Sec.
IV) we have restricted their calculation to the case of
weak dependence on the R variables (linear approxima-
tion) and the so-called linear theory of relaxation that
renders these equations Markoffian in character. In that
way they fit into a natural extension of LIT as it has been
conceived by some authors. ' ' " In particular, the

Maxwell-Cattaneo-Vernotte-type equations are recovered
with relaxation times and transport coefficients that may,
in principle, be calculated from the microscopic dynam-
ics of the system averaged over the coarse-grained proba-
bility density pco(t). In fact, Eqs. (48) are the statistical-
mechanic version of the phenomenological equations (2).
An extension of the calculations including nonlinearity in
the Auxes and memory effects, based on the formalism of
Ref. 63, is under way and will be reported elsewhere.

Summarizing, it is our belief that the NSOM seems to
be a rather adequate formalism to extend the macrovari-
able space G of ordinary LIT in a way similar to that first
formulated by Grad for a dilute gas. The structure of the
transport equations for the additional variables is a com-
plicated one, but the equations do resemble the Mori-
Langevin equations obtained using projection operator
techniques. Yet there is a drastic difference between
them, because in the latter ones the computation requires
full knowledge of the X-body dynamics, whereas in those
obtained by the NSOM the relevant quantities involve
taking averages over the nonequilibrium ensemble
characterized by p (t), whose explicit form in G space is
known.

Recently, Sieniutycz and Berry have also addressed
the question of deriving the conservation laws for nonlo-
cal thermodynamic equilibrium Auids with heat Aow
from a Hamilton-like variational principle which are
compatible with those obtained from kinetic theory up to
a certain approximation. The rather interesting results of
this work is the role played by the energy and entropy
representations in nonequilibrium thermodynamics as
well as the role played by the thermal momentum as the
natural nonequilibrium variable in the Gibbs equation
describing the Quid with heat, instead of the heat Aux it-
self. The relevance of this result in the light of previous
formulations of EIT remains to be studied with care.

Finally, we stress that the foundation of EIT provided
by the NSOM, besides its conceptual aspects, allows one
to obtain explicit expressions for the kinetic coefFicients
at the microscopic level, i.e., in terms of the molecular
dynamics averaged over the nonequilibrium ensemble:
Paper II provides an example based on the treatment of a
simple physical model. A detailed study of the MCV
equations of EIT that the NSOM provides, and the pres-
ence of certain novel aspects, is planned to be reported in
future papers.
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