
PHYSICAL REVIEW A VOLUME 43, NUMBER 12 1S JUNE 1991

Nearest-neighbor distances at an imperfect trap in two dimensions
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The distance between the nearest di6'using particle to a single trap has been shown to be a useful
characterization of self-segregation in low-dimensional reaction kinetics. Recent studies in two di-
mensions show that the average of this distance increases asymptotically as (ln t)' . In this paper
we study a two-dimensional system in which the trap is an imperfect one, modeled in terms of the
radiation boundary condition. Our exact solution shows that there exists a spatial and temporal
dependence on the trap absorptivity, but the asymptotic time dependence remains unchanged.
These results enable us to follow the crossover between the two limiting cases, namely, perfect trap-
ping and total reAection. Analytical expressions are also given for the concentration profile and the
reaction rate at the trap.

I. INTRODUCTION

the above-mentioned works, including

A number of recent papers' have been devoted to
the problem of nearest-neighbor distances at a single
trap. The trapping reaction, which is one of the simplest
models for chemical reactions, can be formulated as a re-
action of the form A +B~B where A is a particle and B
is a trap. This corresponds to the original Smoluchowski
work on coagulation, a process involving the trapping of
mobile particles ( A) by stationary aggregates (B). It has
recently become evident that in low dimensions the kinet-
ic properties can differ significantly from classical re-
sults. ' It has been shown that the anomalous diffusion
laws are related to the self-organization of the reactants.
In particular, the A —B reactions in A +B—+B result in
a depletion zone around the trap. This phenomenon of
se$f-segregatjo~ can be characterized. qua~tjtativegy by
statistical properties of the distance between the trap and
the nearest unreacted A particle. ' A second possible
measure is the distance from the trap to a point where
the concentration of A's is equal to a given fraction 0 of
its bulk value, hereafter referred to as the 0 distance.

In one dimension, the average distance from the static
trap to its nearest diffusing neighbor, (L(t)), has been
shown' to increase asymptotically as t ', whereas the 0
distance goes like t' . In three dimensions, the analo-
gous results are time independent, suggesting that self-
segregation plays a negligible role in determining the ki-
netic behavior.

Very recently attention has been given to the two-
dimensional case, ' in which the trap is assumed to have
a circular shape. Havlin et al. found that (L(t)) is
asymptotically proportional to (ln t)'~, and that the con-
centration profile in the neighborhood of the trap goes
like (lnr/ln t), yielding a nonuniversal scaling for the 8
distance. Similar results have been derived by Redner
and Ben-Avraham in the course of developing an ap-
proximate scheme for calculating nearest-neighbor dis-
tances.

All

Smoluchowski's, assumed a perfectly absorbing trap, an
assumption which requires an inevitable reaction at each
encounter between particles ( 3 ) and the trap (8). Obvi-
ously, this is not the most realistic case. A more physical
treatment must be based on defining the trap absorptivity
as a parameter, ranging between perfect trapping and to-
tal reAection (without reaction). The mathematical dis-
tinction between a perfect and imperfect trap is made by
replacing the absorption boundary conditon by the radia-
tion boundary condition. ' ' Collins and Kimball'
showed that this kind of modification of Srnoluchowski's
model eliminates a transient and unphysical infinity. in
the expression for the rate constant. In the present con-
text, we are interested in the effect of the partial trapping
on the statistical properties of nearest-neighbor distances.

In an earlier work, we studied the case of the imper-
fect trap in one and three dimension, s.how. kg. that the
detailed physical description does have an effect on the
kinetic parameters in the neighborhood of the trap, al-
though the asymptotic expressions remain unchanged.
Our solution enabled one to follow the transition in the
shape of the probability density of the nearest-neighbor
distance from a skewed-Gaussian function for perfect re-
action, to the exponential Hertz distribution for total
reAection in one dimension. Analogous results have been
obtained in three dimensions. In this work we are study-
ing the more complicated case of the imperfect trap in
two dimensions.

II. WXWLVSIS

Let the imperfect trap be a circle of radius a, centered
at the origin. Mobile A particles are assumed to be ini-
tially uniformly distributed throughout the plane with
concentration co. The diffusion equation governing the
diffusion of A particles in the infinite two-dimensional re-
gion bounded internally by the circle r =a is

(la)
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subject to the initial condition

p(r, 0)=c0

and the radiation boundary condition

=~p ]„..

(lb)

(lc)

The parameter ~ is a measure of the reaction strength
at the interface r =a. The value ~= ~ corresponds to a
perfectly absorbing trap, while ~=0 corresponds to com-
plete reflection. The exact solution of Eq. (1) is given by
the integral expression'

2~co „,„~Jo «» Y~ a» +~Yo au Yo «» J& au +&Jo au
p(r, t)= — e u 8u

u Y, au +~Y0 au + uJ& au +~J0 au
(2)

where JD(z), J, (z), Y0(z), and Y, (z) are Bessel functions. Since we are primarily interested in the long-time limit
(r ((Dt), we shall follow Refs. 17 and 18 to obtain

r 1
p (r, t) =2c0 ln —+

a ~a
1

ln(4T) —2y+ 2/tea 2+
[ln(4T) —2y+2/aa ]

(3)

where T=Dt/a is the dimensionless time parameter and y =0.577 22. . . is Euler's constant. Further mathematical
details are given in the Appendix. It can be seen from Eq. (3) that in the long-time limit p (r, t) is separable in the sense
that

p (r, t) =2c0 A (r)B (t), (4)

where each function contains a dependence on ~, the partial trapping parameter. This result reproduces the correct
limits for a = ~ (Ref. 6) and for x =0 [p (r, t) = c0].

Next we study the statistical properties of nearest-neighbor distances. Following the analysis of Ref. 1, let Q (L, t) be
the probability that the nearest-neighboring particle is located at a radial distance greater or equal to L. Then the cor-
responding probability density f (L, t) is given by f (L, t) = —BQ /dL. The expression for Q (L, t) in our two-
dimensional system with cylindrical symmetry is

L
Q ( L, t ) =exp 2mf—p (

.r, t ) r dr
a

Inserting p (r, t) from Eq. (3), then taking the derivative with respect to L, one obtains
T

f (L, t) =4+cDB (t)L ln —+ exp ~ 2ncQB (t)—L ln —— (L —a—) 1—L 1 z z

a xa a 2

(5)

(6)

where B(t) is proportional to [ln(4T) —2y+2/~a] ' in
the long-time limit. Equation (6) reduces to the result
found in Refs. 6 and 7 for the perfect trapping case
(v= oo). Figure 1 shows typical plots of f(L, t) in the
~= ~ limit, and Fig. 2 shows similar plots for the imper-
fect trap case, with a finite value of ~, which has been set
equal to —,'. One can see that with partial reflection, the
probability density of the nearest-neighbor distance is
larger in the immediate neighborhood of the trap, due to
the possibility of having reflected particles. If we consid-
er f (L, t) in Eq. (6) as a "skewed-Gaussian"-like function,
then it is shown that the effect of the imperfect trapping
is to shift this function towards the trap, where the
corrections involved are proportional to 1/(aa). Thus,
the slope of f (L, t) at L =a can be either negative (for
short times) or positive (for longer times). The crossover
from a negative to a positive slope occurs at a charac-
teristic time, which depends on ~ in a nontrivial manner.
If we keep only the leading term in B(t), then this
characteristic time is given by

a
p

4mC0 2+2y-
a (I+1/~a) ~a

For a given time, there exists an analogous crossover at a
characteristic x (Fig. 3), which to the same approxima-
tion is given by

47Tcpa
—2

a 1n(4T) —2y
(8)

Hence for small ~ the slope is negative as is typical for to-
tal reAection (~=0), but for larger ~'s it becomes posi-
tive, approaching the perfect absorption limit (~= ~ ). It
should be noted from Fig. 3 that significant effects of the
imperfect trap are expected only for very small values of
K, say OKK& 1.

The average of the nearest-neighbor distance is formal-
ly given by

(L(t))=J Lf(L, t)dL= J Q(L, t)dL . (9)
0 0
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FIG. 1. Perfect tra (sc= ~p s= ~ ). Some typical curves of f (L t)
as a function of L, the radial dista ia istance, for different values of
ime. he initial concentration is co =0.25 and t"an the radius of the

t =100 corresponds to the highest curve

FIG. 3. Im erfectp ect trap at a given time t =2000. Plots of
f (L, t) as a function of L for v

Th
or various values of K, and cp =0.25.
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(10)

which shows that the asympt t' t' do ic ime ependence is the
same as for a perfect trap, but the coe
significantl

u e coeKcient may be
'

can y difFerent, especially for small values of K,
where it becomes very small. I d d

'
n ee, in Fig. 2 we can ob-

serve that the nearest-neighb d'or istance increases with
ime much slower than for the perfect tra of F'c rap o ig. 1. For

g Ira )2), the dominant term in 10
d t of, d (L(r)) it is practically the same as for the
a.= m imit, namely proportional to (ln r )'~ .

Next we shall study the 0 distance, which is the dis-
~ ~ ~

tance from the trap to a circ e
pro e equals to an arbitrary fraction 0 of its bulk value.
This is given by the equation

p(ra, t)=8co .

Inserttng p r, t) from Eq. (3), but taking onl the le d'

term, one obtains
ny e ea ing

ra—-a(4T) exp — (1—8)
Ka

(12)

0.0

FIG. 2.. Imperfect trap with ~= —'. Plots of ~ L to, or t e same parameter values of Fi . 1. The
over of the slope at L = =1a =a = agrees with Eq. (7).
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the total refiection limit p(r, t)=co for every radial dis-
tance r.

The quantity of greatest practical importance is the re-

action rate, which is calculated from the fiux J(t) into the
circle. Using the exact form of p(r, t) from Eq. (2), we
obtain the exact integral expression for the Aux

J(t)=D Pa
r=a

4K coD 1
e 0 dQ

aw 0 0 Y1 QQ +KYo Qu + uJ1 QQ +KJO au
(13)

which reduces to the result of Ref. 17 in the v= oo limit. For the long-time limit we can use p (r, t) from Eq. (3) to get

2coDJ(t)= 1

ln(4T) —2y +2/ira 2+
[ln(4T) —2y+ 2/~a ]

(14)

which shows that the flux is proportional to [ln(4T) —2y+2/i~a] . As is intuitively clear, the efFect of the partial
reAection is to decrease the Aux. For K~ ~ we recover the result of Ref. 6.

III. THE SHORT-TIME LIMIT

(15)

Since self-segregation is relevant only in the long-time limit, we shall study the short-time limit only for the Aux at the
surface r =a. For this purpose we need first the form of the short-time limit of p (r, t) for both the perfect and imperfect
trap. Following Ref. 17, Sec. 13.3, we find that to first approximation

1/2
Q r —a

p (r, t) =co 1 — — erfc — +
&4Dt

for the perfect trap, and
1/2

a r —a
p (r, t) =co 1+x — (r —a) erfc

&4Dt

' 1/2
a 4Dt

K
r 7T

1/2
(r —a)

exp — + .
4Dt

(16)

coDJ(t)=
Q

1/2
1 1 1 T+(~T)'~' 2 4

1+ T+
8

for a perfect trap, ' and

(17)

' 1/2

J(t) =coDIr 1 —2~a
T 1 3

+KQ
4

T+

(18)

for an imperfect trap. Hence, in the short-time limit, the
Aux decreases as T ' for perfect absorption, whereas

for the imperfect trap, where erfc(z) is the complementa-
ry error function. Further approximation of these results
requires a knowledge of the relation between
(r —a) =distance from the surface, and &4Dt (which was
already considered small in obtaining these expressions).
Note that the short-time limit is formally a&Dt —+0, so.
that the perfect-trap case (~—& ~ ) cannot be obtained as a
limit of Eq. (16). But for a.~O, Eq. (16) does reduce to
the proper limit for total reAection.

The Aux at the short-time limit is actually calculated
from extended forms of Eqs. (15) and (16), and is found to
be

for partial absorption it is a constant proportional to K.
As before, J(t) of Eq. (18) does give the correct limit for
total refiection (s.~O), but not for perfect reaction
(~—+ co ).

IV. SUMMARY

We have analyzed the efFect of an imperfect, rather
than perfect, trap, on the statistical properties of'

nearest-neighbor distances in two dimensions. We found
that this generalization does not introduce any new time
dependence into the kinetic behavior. However, there
are corrections as a function of K, the measure of the
trapping strength. Most of the corrections are additional
terms proportional to 1/(va ), which may be very large in
the limit of small K. Indeed, we have shown that the
significant deviations from the perfect trap results ' do
occur for small values of K, allowing us to follow the
crossover between the limit of perfect trapping to the lim-
it of total reflection.

Further aspects of the nearest-neighbor distance theory
are of current interest. For example, Ref. 2 contains an
analysis of the opposite case, in which a mobile trap
difFuses in the presence of uniform density of static parti-
cles. Reference 5 presents predictions based on numeri-
cal results, for the intermediate case, where both particles
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and trap are allowed to di6'use. The question of di6'usion
subject to an external potential has been studied in Ref. 4,
where it was shown that the result (L(t) ) —t', derived
in one dimension for noninteracting particles, ' is valid
asymptotically also for particles interacting by means of a
hard-core potential. Motion in the presence of other
forms of external potentials is the subject of our present
research.
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Substituting expressions of Ko(z), Ki(z) for small

values of z (which corresponds to the long-time limit),
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a

(A3)

APPENDIX

The solution of Eq. (1) in the Laplace space is

Co tcKO(qr)1— q =&s/D
s qK i ( qa ) +KKO( qa )

P(r, s)=

(A 1)

where Ko(z), K, (z) are modified Bessel functions. Fol-
lowing Ref. 17 (Sec. 13-6) and Ref. 18 (Appendix), the in-
verse will have the form

xz v —1I, '(x):— e 'z' '(ln z) 'dz .
27Tl —oo

(A4)

In the limit of large x this integral is approximated by

N
'(x) —(

—1)'x g 8 ' '(lnx)
j=o

where Bo' =
& & i' = y B2' = 31

etc. Equation (A5) leads directly to Eq. (3) above.
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