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Asymptotic probability distribution for a supercritical bifurcation swept periodically in time
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By using a path-integral approach we have studied the asymptotic probability distribution of a
periodically swept supercritical bifurcation. The steepest-descent approximation has been used with
the corresponding time-dependent Onsager-Machlup Lagrangian of the Fokker-Planck equation.
We prove by using the Lyapunov function the uniqueness of the asymptotic time-periodic probabili-
ty distribution for periodically forced Markov processes; then the mixing property for these types of
stochastic processes is proved. An iterative matrix procedure is introduced to calculate the long-
tirne behavior of the probability distribution. Monte Carlo simulations were performed in order to
show the agreement between the path-integral approach and the numerical solution of the corre-
sponding periodically forced stochastic differential equation. A discussion on the problem of calcu-
lating the weak-noise Graham-Tel invariant measure is presented.

I. INTRODUCTION

A. General framework

The study of time-dependent modulation is of interest
in the analysis of pattern-formation phenomena. ' In
fact, in electrohydrodynamic convection in liquid crystals
the control parameter (voltage) is usually time periodic.
Moreover the inAuence of the stochastic forces is of great
importance in the evolution of time-dependent struc-
tures. '

Recently, in connection with the analysis of the so-
called stochastic resonance, the periodically forced sto-
chastic processes have been studied from the experimen-
tal and theoretical points of view.

Different approaches have been used in order to get an
approximate description for this type of nonstationary
stochastic processes. But due to the nonlinearity and
time dependence of the corresponding Fokker-Planck
operator, the description of this kind of stochastic pro-
cess presents a formidable mathematical problem.

Two types of approaches have been used in order to get
the asymptotic probability distribution.

(i) Graham and Tel" introduced the idea of working
with an equivalent two-dimensional stochastic differential
equation (SDE) by introducing in addition to the stochas-
tic variable x the phase y =At as an independent variable
(here 0 is the frequency of the external periodic force).
Then the invariant measure (the stationary probability
distribution in the variables x and y) in the limit of weak
noise, can be found by a mapping to a Hamiltonian sys-
tem. In principle the weak-noise invariant measure can
be analyzed by studying the associated nonequilibrium
potential @(x,y), which is defined variationally by
minimization of an action functional S([x],[y]). Under
the condition of C continuity the nonequilibrium poten-
tial satisfies an equation of the Hamilton-Jacobi type at
zero energy. Under this continuity assumption there is a
correspondence between the weak-noise limit and an as-
sociated mechanical system. However, they found that it

is not possible to get a smooth nonequilibrium potential
4(x,y) unless the Hamiltonian is integrable at zero ener-
gy. ' Similar results were found by Jauslin' who proved,
using Melnikov's criterion, the nondifferentiability of the
weak-noise nonequilibrium potential. In the Appendix of
the present paper we show in a simple physical may that
any small perturbation expansion (in both limits: the adi-
abatic 0~0, and the high-frequency Q~oo) for the
Hamilton-Jacobi equation gives a non-well-defined invari-
ant measure exp[ —4(x,y)/d], where d is the noise.

Using the two-dimensional Fokker-Planck-equation,
Jung and Hanggi showed connections between a Floquet
expansion for the solution of the time-dependent one-
dimensional Fokker-Planck equation and the eigenvalues
of the associated two-dimensional operator. Then under
the conditions of initially homogeneous phase distribu-
tion they were able to get the asymptotic probability dis-
tribution for the periodically modulated asymmetrical
bistable potential. In order to get this invariant measure
they used the continuous-matrix-fraction method' to
work our numerically the corresponding eigenvalues.

(ii) The second method (to get the asymptotic probabil-
ity distribution) is based on the use of a time-dependent
perturbation theory ' with the strength of the external
periodic force as small parameter. The perturbation is
carried out using a Floquet-like expansion with the set of
eigenfunctions of a suitable time-independent one-
dimensional Fokker-Planck operator. Unfortunately this
set of eigenfunctions is unknown due to the high non-
linearity of the equivalent potential in the time-
independent "unperturbed Schrodinger" operator' and
hard numerical work is required.

For the system in which we are interested the small pa-
rameter is the noise" " and the bifurcation is
supercritical. ' ' ' Our final aim is to study the correlation
function for these types of stochastic processes as a func-
tion of the strength of the external periodic force. So we
need to know the one-time probability distribution and
the propagator as a function of this parameter, even
when it is not small. Eventually we will consider the
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asymptotic behavior of the correlation function.
The normal form of the dynamical equation associated

with the time-periodically driven bifurcation is

x '= —[a+b cos(Qt')]x' —gx' +Md g(t'),
with b &0 and g )0. The primes are used to distinguish
from the scaled quantities introduced subsequently. In
(1.1) d is the noise amplitude and g(t') is a Gaussian sto-
chastic process characterized by

(1.2)

Our aim is to analyze ensemble objects characterized
by the SDE (1.1) at very long time. In order to do this we
need to calculate the asymptotic one-time probability dis-
tribution P„(x',t') and the conditional probability distri-
bution (CPD) P(x2, t2~xI, t', ). We are going to do this
by using the path-integral approach (with a time-
dependent Lagrangian) in the steepest-descent approxi-
mation (SDA). So in the present paper we choose a sub-
stantially di6'erent approach in comparison with the
works commented on before, because neither (i) nor (ii)
can be implemented in a simple and successful way to the
SDE (1.1). As a matter of fact, the first one (i) is only de-
voted to the asymptotic probability distribution (the in-
variant measure in the variables x,y) and the second one
(ii) is a perturbation in the strength of the periodic force
(which is not a small parameter for the system we wish to
solve).

Our path-integral scheme gives in a straightforward
way both objects: the propagator (the CPD) and, as we
will prove, the asymptotic one-time probability distribu-
tion. We wi11 show that the SDA is good enough to de-
scribe the essential physical behavior occurring in period-
ically modulated nonlinear instabilities. We have
checked the SDA with a Monte Carlo simulation and
found excellent agreement between both asymptotic dis-
tributions. The analysis of the cummulants of the SDE
(1.1) is planned to be published elsewhere. '

II. UNIQUENESS OF THE TIME ASYMPTOTIC
DISTRIBUTION

We want to calculate the CPD, P(x, t xo, to), and the
asymptotic one-time probability distribution P„(x,t) of
the stochastic variable x characterized by the SDE (1.6).
The evolution of this nonstationary Markov process is
described by the Fokker-Planck equation

8, W'(x, t)=[—8 E( x, t) +(e /2)B, ] W( x, t)

=a„(x,t, a. ) W(x, t),
where

(2.1)

x= —[A+B cos(t)]x —(B —A)x +&eg(t), (1.6)

where A =—a/Q, B —=b/Q, e=—dg/Q(b —a). We will be
interested only in the case B )

~
A ~.

The outline of the paper is as follows. In Sec. II we use
the Lyapunov function of the Fokker-Planck equation to
prove the uniqueness and existence of the asymptotic
one-time probability distribution, showing in this way the
mixing property for this type of periodically modulated
Markov processes. This adds to the discussion of the
mixing property in recent works. ' In Sec. III we intro-
duce the path integral formulation and its SDA for time-
dependent Lagrangians. In Sec. IV A we give a straight-
forward method to get the asymptotic one-time probabili-
ty distribution P„(x,t) in an iterative manner. In Sec.
IV B we plot P„(x,t) for different values of the parame-
ters and noise and give a short discussion of our path-
integral results. In Sec. IVC we introduce some basic
elements for the Monte Carlo simulation and compare
the histogram of the asymptotic one-time probability dis-
tnbution with the path-integral approach. The Appendix
is devoted to showing that, for the present model (1.1),
any attempt of a perturbation expansion for the solution
of the associated Hamilton-Jacobi equation leads to a
non-well-defined weak-noise Graham-Tel invariant mea-
sure.

B. Scaling
K(x, t)= —[ A +B cos(t) )x (B —A )x— (2.2)

x'+(t') =+&—[a +b cos(Qt')]/g

when cos(Qt') (—a/b.
We can scale the time in units of A as

(1.3)

t =At' (1.4)

and the "space" in units of the maximum amplitude of
the attractor [i.e., x'+ (~/Q)] as

x =&g/(b —a)x' . (1.5)

Using (1.4) and (1.5) in Eq. (1.1) we get the dimensionless
SDE:

Owing to the structure of (1.1) we see that if b )
~
a

~
the

e8'ect of the periodic modulation is to drive the system
from monostable (x =0) to bistable with instantaneous lo-
cal (degenerate) minima of the corresponding potential at
positions

There is no ambiguity in the Fokker-Planck operator
8„p. It is unique because the SDE (1.6) is additive. '

The functional &(t) defined as

&(t)= f W, ln(W, /W~)dx (2.3)

lim [ W', (x, t) Wz(x, t ) ]=0—
f~ oo

(2.4)

holds.
Clearly Eq. (2.1) is invariant under the discrete time-

translation transformation (in dimensional units T=2vr):

is a Lyapunov function' ' of the Fokker-Planck equa-
tion. Here 8'& and 8'z are two possible solutions of
(2.1) satisfying natural boundary conditions [W~(x, t)
~0; limx ~ + m] and normalization to l
[J W;(x, t)dx =1].

Then using that &(t) ~ 0 and B,&(t) (0, it is possible
to see that for the long-time limit, the condition' '
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'T: t~t+T . (2.5) III. THE PATH-INTEGRAL SOLUTION

Let W, (x, t)=P(x, tlx„t, ) be a solution of the above
Fokker-Planck equation. Then the distribution
W, (x, t + T ) is also a solution of (2.1):

[a, —a„(x,a„,t )]W, (x, t+ T)=0 . (2.6)

In general W&(x, t )W W, (x, t + T), but in the long-time
limit both solutions approach each other, i.e., using (2.4)
we get

In order to obtain a path-integral solution of (2.1) we
need to specify an e discretization. Then the associated
Lagrangian, L(x,x, t), is not unique. However, this is
not a real problem because if we use the a discretization
in a consistent way the path-integral propagator will be
unique. ' A different task is the approximation of the
path-integral solution by its SDA. Then we need to cal-
culate the most probable path, that is, the solution of the
equation of motion

lim [ W, (x, t) W,—(x, t + T)]=0 .
f ~ oo

(2.7)

5S[x]
5X(t) x =x,

BL
Bx

d BL
«ax X =X

C

=0 (3.1)

This means that W, (x, t) becomes periodic in the long-
time limit. The same result can be applied to another ar-
bitrary solution W2(x, t)=P(x, tlx2t2). From (2.4) and
(2.7) we conclude that in the asymptotic limit (t~ )

any solution of the Fokker-Planck equation (2.1) becomes
periodic in time with period T and converges to an
unique asymptotic distribution which is independent of
the initial conditions. In what follows we are going to call
this distribution the asymptotic time-periodic distribu-
tion (ATPD) P„(x,t).

Owing to this conclusion we can assure that any such
nonstationary Markov process which is invariant under
the transformation T and satisfies natural boundary con
ditions and norma/ization 1 is mixing.

This is so because the 2-time joint probability distribu-
tion P(x~, t2;x„t, )=P(xp t2lx, t, )P( x), t, ) goes in the
long-time limit (i.e., t2 —t, ~ ~ and t, ~oo) to

It has been proved for time-independent Markov pro-
cesses that the most probable path is characterized by the
Onsager-Machlup Lagrangian. The same conclusion can
be achieved for nonstationary Markov processes. There-
fore from now on we are going to use the time-dependent
Onsager-Machlup Lagrangian,

LoM(x, x, t ) = —,
' [x —K(x, t )] +(e/2)B, K(x, t ),

(3.2)

which corresponds to the a= —,
' discretization.

The propagator or CPD of (2.1) can be written' ' as

Xg
P(xf tf lxo, t0)= 2)[x]exp

Xp

—S [x] (3.3)

Here the path-integral sums the contributions of all tra-
jectories x (t) satisfying the boundary condition

P(x2 t2,'x(, t, )~P„(xq, t2)P„(x(,t) ) . (2.8) x(t0)=x0, x(tf) xf (3.4)

Then in this limit the correlation function y( t, , t 2 )

behaves as

g(t), tp) = [(x(t) )x(t2) ) —(x(t) ) ) (x(t2) ) ]

and the action functional is given by

S[x]=f dt LoM(x, x, t) .
0

(3.5)

(2.9)

which is in accordance with the conjectures of Ref. 7.
It is worth mentioning that if we transform the SDE

(1.6) into a two-dimensional set of equations (i.e., using
the phase transformation y =At ) the corresponding two-
dimensional functional

&(t)= f f W, ln( W, /W2)dx dy (2.10)

cannot be used anymore as a Lyapunov function because
the diffusion matrix in the corresponding two-
dimensional Fokker-Planck equation is not positive
definite. Of course this is connected with the existence of
a purely imaginary branch of eigenvalues in the corre-
sponding two-dimensional Fokker-Planck operator
8'pp(x, y, 8„,8 ). Only if we impose phase homogeneous
initial conditions [i.e., f W(x, y, t =0)dx = I/2n. ] the sta-
tionary probability distribution of the two-dimensional
Fokker-Planck system will be proportional to the
P„(x,t).

We conclude that the ergodic properties of the SDE
(1.6) are proved by Eqs. (2.8) ad (2.9).

S [x]= U(x/ t/) U(x0 t0 )

+ f '
,' dt [x '+K(x, t)'-+ma, K(x, t)

Ep

—2B, U(x, t)] . (3.7)

In the limit of small e noise the main contribution to
the path integral, (3.3), comes from trajectories close to
the most probable one, x, (t), which minimizes the action
S[x].

Using (3.7) we get the following equation of motion:

x, (t) = V(x, t)
X =X

C

(3.8)

V(x, t) =,'K(x, t)'+ ,'~a.K(x, t) a,—U(x,t), —(3.9)

Now we introduce the time-dependent potential U(x, t):

K(x, t) = —a. U(x, t),
(3.6)

U(x, t)=+ —,'[3+Bcos(t)]x + —,'(B —2 )x

Integrating by parts the cross term xK(x, t) one gets the
action functional
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1P(xf tf ~xQ, to)= exp
+2vreB ( to )

—S[x, ]

(3.10)

Here the function B (r) satisfies the equation

where the solution must satisfy the boundary condition
(3.4}. Then x, (t) can be considered as the path of a parti-
cle of mass 1 in the classical potential —V(x, t).

Making an expansion of S[x] around x, (t) the linear
contribution vanishes since x, (t) is the solution of (3.8);
the second order in 5x (t) gives a Gaussian path integral
which can be evaluated. The result for the propagator in
the SDAis' ' '

like correlation functions, cummulants, etc. in the asymp-
totic limit. Then we are interested in the statistical prop-
erties of the nonstationary process, Eq. (1.6), in its
asymptotic regime. We will show how the ATPD,
P,,(x, t), can be obtained from the SDA given in (3.10).
In principle this is not a simple task because we need to
calculate the most probable path x, for different parame-
ters and boundary conditions: x&, t&, x;, t;. Nevertheless
we are going to show that using the fact that the solution
(3.3) is invariant under the transformation 'T [see (2.5)],
we only need to calculate the propagator from to=0 to
times r ~ T (we remind that T =2' is the scaled period of
the external driving force). We compare this ATPD ob-
tained from the path-integral formalism with a Monte
Carlo simulation and we find good agreement.

B(~) f(r)B—(~) =0

with boundary conditions

B(tf ) =0, B(tf ) = —1,
and where

(3.11a}

(3.11b) IV. THK ASYMPTOTIC TIME-PERIODIC
DISTRIBUTION

(3.12) A. The matrix scheme

The classical potential —V(x, t) is given by Eqs. (3.9),
(3.6), and (2.2). Due to the nonlinearity of this potential
the most probable path x, must be found numerically.
Then Eq. (3.11a) can be solved in a similar way. Alterna-
tively we can express the quantity B(to), needed in Eq.
(3.10), in terms of the van Vleck determinant. Consider-
ing x, (~) as a function of x, (tf ), for a fixed final position
x, (tf ), we can write the solution of (3.11a) satisfying the
boundary condition (3.11b) as

Our next step is to introduce a matrix scheme to get
P„(x,t) from the path-integral propagator. We will need
the most probable path only with boundary conditions in-
side the time interval [O, TJ and we will iterate the
Chapman-Kolmogorov equation:

P(x„t, ~x„t,)=fP(x, , t, ~x„t, )P(x, , t, }x,., t, )dx, . (4.1)

dx, (r)B(r)=-
dx, (tf )

The quantity B(to) is then

dx, (to }B(to)=-
dx~(tf )

Using the identities

dx, (tf )

dx, (to )

(3.13)

(3.14)

In particular if t; =r+nT and n )) 1 Eq. (4. 1) gives the
ATPD P„(x,t). We start the iteration with the
Chapman-Kolmogorov equation from time T to 2T.

P(xz, 2T~O, O)= fP(x2, 2T~xi, 1T)P(xi, 1TIO, O)dxi

I x2 1T XI 0 I x& 1T 0 0 dx,

(4.2)

BS
Bx,(tf )

BS =x, (to)+K(xo to)
Bx~ to

= —x, (tf ) K(xf, tf)—

dx, (tf )

dx, (to )
B(to)=—

dx, (tf )

dx, (to)

we get for B(to) the expression
—1

(3.15)

The last equation is true because the propagator is invari-
ant under '7 [i.e., P(x, t —T~xo, to —T)=P(x, t~xo, to);
this can also be seen by setting the transformation
r=t+T into the path-integral solution (3.3)). The nth
iteration gives for P(x„,nT ~0, 0) the expression

P(x„,nT~O, O)= f fdx, dx2 . . dx„

X QP(x, , T~x, i, O)

(4.3)

Therefore B( to ) can be obtained by calculating the
derivative of the final position with respect to the initial
velocity of solutions of (3.8) with fixed initial position.
This reduces the numerical work.

Experimentally we get information of ensemble objects

with x, =0.
Then we can obtain the asymptotic regime by increas-

ing the number of iterations. The last step, in order to
get the ATPD, is to use Eq. (4.1) with t~=nT and
t, =~+n T, where 0 & ~ ~ T:
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P„(x,r)= lim f . fdx, dx . dx„P(x, r~x„,O)+P(x, , T~x, „0)
fg~ oo i=1

(4.4)

This equation gives the ATPD as a product of n one-
period propagators multiplied by the propagator from 0
to ~ H & T ) which corresponds to a simple multiplication
of matrices. We have checked the convergence of the
above method by using the identity

P„(x,O) =P„(x,T)= fP(x, T~x, , O)P„(x, , O)dx, , (4.5)

which is valid for the stochastic process (1.6). The nu-
merical convergence shows that depending on the param-
eters A, B, and e the number of iteration n is different.
But for the set of parameters we have used, with n be-
tween 5 and 20 we reach the asymptotic regime.

8. Discussion

Pattern formation is associated here with the breaking
of a single-peak probability distribution centered around
zero. The occurrence of a bimodality in the probability
distribution expresses the fact that the order parameter
(i.e., the amplitude x) in a supercritical bifurcation has a
value different from zero.

For a sudden jump of the control parameter from a
monostable to a bistable potential, the study of the decay
from the unstable state to the stable one gives quantita-
tive information on the appearance of the pattern. For
particular models of smooth sweep of the control param-
eter the analysis of the relaxation from the unstable state
can be extended and it is possible to define a generalized
Suzuki's onset time. In contrast, for periodically modu-
lated stochastic processes, a relaxation picture does not
work anymore because there is not a proper scaling onset
time. The competition between the scales I/A, 1/B, and
1/e plays an essential role in periodically modulated sto-
chastic processes. To understand pattern formation in
this type of processes we need to search for the breaking
of the monomodality in the asymptotic probability distri-
bution, i.e., the occurrence of additional saddle points
and maxima in the x-t plane. This will represent the ap-
pearance of macroscopic structure, which will be periodi-
cally repeated. The interesting problem of the coherence
of the patterns at subsequent periods are planned to be
analyzed elsewhere. ' This question was studied experi-
mentally by Meyer, Ahlers, Cannell, " ' and Swift and
Hohenberg studied it by numerical simulation.

Let us remind the reader that if B &
~

A~ the potential
U(x, t) will be bistable during the interval of time satisfy-
ing cos(r) & —3 /B. Depending on the parameters A, B,
and e three qualitatively different behaviors can be in-
ferred from the analysis of our results. The first one is
when P„(x,t) has a monomodality which is repeated
periodically in time. The second one is when P„(x,t) al-
ways shows a bimodality during the whole period of time.
The third one is when P„(x,t) changes periodically from
a monomodality to a bimodality distribution, i.e., a
periodically pulsating pattern formation.

In Figs. 1 —3 we show the altitude charts of the ATPD

for different values of A, B, and e noise by using the SDA
in the path-integral approach. The time is scaled in units
of A and the "space" x in such a way that the position of
the attractor at time t =m is located at +1 [see Eq. (1.5)].
We have plotted ln[P„(x, t)+1] during one period of
time for values of x inside the nontrivial domain. Due to
the scaling of x we expect that the maxima of the distri-
bution, if the ATPD has a bimodality, will be around the
values + 1.

In Fig. 1 we have fixed the parameter A (= 1) and noise
e (=0.1). Then if we increase the parameter B ( & A) the
monomodality is destroyed. For B=1.1 and 1.5 [Figs.
1(a) and 1(b)], respectively) the topological structure of
P„(x,t) is similar, the ATPD preserves its maximum
around zero and the distribution is widened around the
time ~. From Fig. 1(c) (B =2) we see that for times
around 3~/2 a periodic pattern starts to emerge, i.e.,
there are two saddle points at times near ~. This is the
result of a cooperative effect between the nonlinear and
the external periodic forces. The pattern will appear
after the maximum deformation of the time-dependent
potential U(x, t =sr). The ATPD shows two maxima, in
x, at amplitude smaller than 1. If 8 =4 a different topo-
logical structure appears (there are four saddle points
during one period of time). Figure 1(d) shows a typical
periodicity pulsating pattern-formation process, the max-
ima (x —= + 1) are after vr because the particles cannot fol-
low instantaneously the time-dependent potential U(x, t)
(see the comment on the adiabatic approximation given
in the Appendix) and nearly disappear after t = 3m/2.

In Fig. 2 we show the same graphs for A = —1. The
noise e and the set of values of B (=1.1,1.5,2,4) are the
same as in Fig. 1. The topology of P„(x,t) is different
from that of Fig. 1. For times around 2~ (or 0) the
ATPD shows a bimodality if B =—

~
2 ~. During the time

interval [n/2, 3n/2] the probability to be in the origin is
small for all the values of B. If B »

~

3
~

[Fig. 2(d)] the
periodic external force is dominant and the behavior of
P„(x,t) is a typical periodically pulsating pattern pro-
cess, similar to the case shown in Fig. 1(d).

At A =0 there is a crossover in the behavior of
P„(x,t) because the integral over one period of the linear
coefficient A (t) = —[ A +B cos(t)] of the SDE (1.6)
changes sign. If A (0 the time-dependent potential
U(x, t) will be more bistable than monostable. Then for
sufficiently small e noise P„(x,t ) exhibits a time-
dependent bimodality during the whole period. If A )0
the conclusion is similar, but in the reverse sense, i.e.,
P„(x,t) shows a time-dependent monomodality for
su%ently small e noise. For example, if we put e-=0.001
and use the same parameters 3 and B as in Fig. 1(c) [or
2(c)] we will get a monomodality (or bimodality) for the
ATPD during the full period. In Fig. 3 we show this de-
struction of the periodically pulsating pattern formation
due to the reduction of the e-noise amplitude.

It is interesting that due to the cooperative effect be-
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C. Monte Carlo simulation
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mean value and variance 1. Such random
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tion. The ATPD is always the same independently of
x(0).

solution of Eq. (A4) can be written as an expansion in the
small parameter g, :

ACKNOWLEDGMENTS @(x,y)= g qPC& (x,y) .
m=0

(A5)

One of us (L.K.) wishes to thank Professor P. C.
Hohenberg and Professor J. Swift for discussions on the
subject of this paper during a stay at the Aspen Center
for Physics. %'e have benefited from the help of the
Deutsche Forschungsgemeinschaft (especially Grant No.
SFB213). M.O.C. acknowledges partial support from
Consejo Nacional de Investigaciones Cientificas y Tecni-
cas, Argentina (Grant No. 1857/88).

APPENDIX

We here consider the weak-noise limit of the stationary
two-dimensional Fokker-Plank equation associated with
the SDE (1.1). We are going to study a perturbative ex-
pansion of the weak-noise Hamilton-Jacobi equation in
the low- and high-frequency limits.

1. Adiabatic limit (0~0)

x = —(1+Pcosy )x —(P—1)x ++6, g,
y=g&,

(A 1)

where p =b /a, g—,
—=0/a, and the noise intensity is

e&=dg/a(b —a). From (Al) we can immediately write
the associated two-dimensional Fokker-Planck operator

If we use the time scaling t =at' and the "space" scal-
ing as in Sec. I B [i.e., x =&g/(b —a)x'] in (1.1) we can
write the following two-dimensional SDE:

=P„(x,y) J P„(x,y)dx (A6)

all the constants and possible y functions in the N expan-
sion cancel out in (A6). We are only interested in the ex-
pansion of N(x, y =7)&t) satisfying the symmetry condi-
tions:

a C(x,y =q, t)~, =0,
i.e., the ATPD P„(x,t) must have the same symmetry as
the time-dependent potential U(x, t) [see Eq. (3.6)], and

Here 40(x,y) is the adiabatic approximation. So the in-
variant measure P„(x,y) can in principle be studied using
a perturbation method. But this perturbation scheme
breaks down because 4&(x,y) is a nondifferentiable func-
tion. On the other hand, it is possible to define a regular
and an irregular contribution to the nonequilibrium po-
tential @(x,y), but this split cannot be seen as an im-
provement because the regular contribution leads to a
non-normalized distribution. So, as we will show below,
even in the small-frequency limit a simple perturbative
expansion of the Hamilton-Jacobi equation (A4) is not
well defined.

Due to the fact that the invariant measure P„(x,y) can
be connected with the ATPD, P„(x,t), by the formula

P„(x,t)=P„(x,y ~y =r), t)

a„,(x,y, a„,a )= —y a~ (x,y)+e„,a.',
V=X,P

where

&"(x,y) = —(1+Pcosy )x —(P—1)x'
—:—[A (y)+yx ]x,

E~(x,y ) = rt, =const .

(A2)

(A3)

N(x, y =rt&t ) =@(x,y =q&t+2n),

i.e., the ATPD must be time periodic.
Inserting (A5) into (A4) we get a hierarchy in powers of

g&, which can be written in the form

8 +0= —2K

Here A (y) =(1+p cosy ) and y
—= (p —1). Note that this

Fokker-Planck operator does not satisfy detailed bal-
ance'" unless g& =0.

If we insert the ansatz P„(x,y)=—exp[ —@(x,y)/e&]
into the stationary equation

BFF(x,y, B„,B )P„(x,y)=0,
we will get, in the zeroth-power order noise 0, a
Hamilton-Jacobi equation for the nonequilibrium poten-
tial C&(x,y):

—'(8 +) +X"8,@+A~B @=0 .

From (A4) an associated Hamiltonian system can be
written. " This Hamiltonian can also be inferred from a
Lagrangian version in the limit of zero noise [see, for ex-
ample, Eq. (3.2) for the one-dimensional Fokker-Planck
Lagrangian].

In the limit of small frequency, i.e., q,:—0/a (&1, the

8 N, =(1/E )(8 4 ),
& @2= ( 1/E ) [—,

'
( 8,N, ) +8 @,] .

(A9)

@0(x,y) = 3 (y)x + (y/2)x +const . (A10)

The correction @&(x,y) is non-differentiable inside the
time interval where the potential U(x, t) is bistable (i.e.,
y H[y„y2] where cos(y, )= —1/p, y2=2~ —y, ). Up to
this order the ATPD is

(A 1 1)

Due to the structure of K'(x,y), see (A3), the perturba-
tion expansion (A9) is singular and the 8 4 (x,y) with
m ) 1 have a simple pole at the instantaneous position of
the attractor: x+(y) = A(y)/y. The contribution
&bo(x, y) gives the adiabatic approximation
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/Peg(x )
—

( 1)2—m P (y)
X,P

2p
C

X
2(2m —2)[x + A (y)/y]2

(A12)

where the C (m )2) are constant which can be obtained
diagrammatically (for example, C2=C3 =1, C4= 1+—,',
C~ =1+—,

'2+
—,', etc.). From the contributions for odd m

we see that it is not possible to get a normalized distribu-
tion. Therefore, even keeping only a suitable regular
part, a perturbative expansion solution of (A4), in the
small parameter g&, is not possible.

2. High-frequency limit (co~ ~ )

Using the same techniques, as in the adiabatic case, we
can study the high-frequency limit. To do this we scale
the time as t =At' and the space as before. Then we get a
two-dimensional SDE similar to (A 1), but now the func-
tions K (x, t) of the associated two-dimensional Fokker-
Planck equation are defined by

This expression can be physically interpreted as fol-
lows. The first factor is the adiabatic approximation and
the correction from 4, (x,y =g, t) narrows the adiabatic
distribution (in the "space" variable x) during the time
interval t H [0„t,] because the partial cannot follow the
instantaneous change of the time-dependent potential
U(x, t). The same conclusion holds for the time interval
t H [tz, 2m', ], but now the correction is obviously in the
reverse and the adiabatic approximation is widened (in
"space" x). Inside the time interval [t„t2 ] it is not possi-
ble to give a physical interpretation to N, (x,y) because
the perturbation is singular there. So, owing to the struc-
ture of 4&,(x,y), we see from (A9) that the next correction
has regular and irregular parts. For example, for @z(x,t)
we can choose as the irregular part the contribution
which comes from B 4, [note that N, is a
nondifferentiable function if cos(y) (—1/p]. The regu-
lar part of @„(x,y) can, in general, be written in the form

K"(x,y)= —g2[A(y)+yx ]x,
K~(x,y) =1, (A13)

4(x,y)= g g24 (x,y)
m=0

(A14)

in the Hamilton-Jacobi equation (A4) [now K (x,y) are
given by (A13)] and looking, as before, for the solutions
4(x,y) which satisfy the symmetry conditions (A7) and
(AS), we get, up to order gz, after integration

40(x,y) =const,

4&(x,y)=(x +y/2x ),
C&~(x,y) =2P sin(y)(x +yx ),
@3(x,y) = —P'(x '+ 2yx 4)cos(2y)

+4P(x+2@x )(x+yx )cos(y)+G~ .

(A15)

Here G~(x)=2P yx .
We see that the first correction 4&,(x,y) is an average

potential. This means that at very high frequency the
particles cannot "see" anymore the time-dependent be-
havior of the potential U(x, t). This contribution will be
a monostable or bistable "potential" depending on the
sign of the area:

I= —f [a+b cos(y)]dy . (A16)

From (A15) we see that all the corrections 4 (x,y)
(m )2) lead to a non-normalized distribution. So in the
high-frequency limit the weak-noise Hamilton- Jacobi
equation cannot be solved by a perturbation expansion in
the small parameter g2.

where A(y)=(1+pcosy) and y=—(p —1) as before, but
now the noise amplitude is 82 ——dg /Q(b —a) and

gz=a/Q. So, in principle, we can perform a perturba-
tion expansion in the small parameter g2 (the limit of
high frequency) to get the solution of the corresponding
Hamilton-Jacobi equation. Setting
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