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Stochastic Landau equation with time-dependent drift
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The stochastic difFerential equation roB, A =e(t) A —g3A'+ f(t), where f(t} is Gaussian white
noise, is studied for arbitrary time dependence of e(t). In particular, cases are considered where e(t)
goes through the bifurcation of the deterministic system, which occurs at @=0. In the limit of weak
noise an approximate analytic expression generalizing earlier work of Suzuki [Phys. Lett. A 67, 339
(1978); Prog. Theor. Phys. (Kyoto} Suppl. 64, 402 (1978}]is obtained for the time-dependent distri-
bution function P( A, t). The results compare favorably with a numerical simulation of the stochas-
tic equation for the case of a linear ramp (both increasing and decreasing) and for a periodic time
dependence of e(t). The procedure can be generalized to an arbitrary deterministic part
3, A =D ( A, t}+f(t), but the deterministic equation may then have to be solved numerically.

I. INTRODUCTION

and a pair-correlation function

(f(t)f(t') ) =2Fro5(t t')— (1.3)

representing white noise. The higher correlation func-
tions are, of course, simply calculable in this case. The
evolution of A(t) is then only known statistically, in
terms of its probability distribution P(A, t), which in
general depends on time, as well as on the initial distribu-
tion P(A, to) at time t =to. Even when the drift is in-
dependent of time the function P is difficult to calculate,

Many physical systems are subjected to a combination
of deterministic as well as stochastic forces, the latter
representing the effects of large numbers of degrees of
freedom whose action on the system is random and only
described in statistical terms. ' An important example is
the influence of molecular degrees of freedom (thermal
noise) acting on a macroscopic variable in a system at or
near equilibrium. Such a situation is typically modeled
by a stochastic partial differential equation. An even
simpler example is the stochastic ordinary differential
equation

roB, A (t) =@A —
g3 A 3+f(t),

where the deterministic evolution is represented by the
first two terms on the right-hand side (the "drift"), and
the stochastic force is f(t). This force is a random vari-
able defined by its probability distribution, rather than its
detailed time dependence. One often chooses for f(t) a
Gaussian variable with zero average

(1.2)

but the long-time behavior can be obtained exactly.
When the linear drift is an arbitrary given function of
time e(t), the probability distribution cannot be calculat-
ed analytically, and a number of approximate methods
have been developed for its evaluation. A particularly in-
teresting case is the evolution of P when the drift changes
from e &0 to e) 0, i.e., when it goes through the bifurca-
tion of the deterministic equation.

In the limit of weak noise (F« 1), Suzuki has
developed a well-known approximation for the case of a
jump in 6,

6'p&0 t &tp
e(t) = '

ei &0, t ) tp .

(1.4a)

(1.4b)

—Eo, t & —eo/p
e(t)= '

pt, t ) —eo/p .

(1.5a)

(1.5b)

This approximation relies on the fact that for t & tp and
for t ) to but t to «ro/e„ th—e quantity A (t) remains
small and the stochastic equation may be linearized. For
long times (t to))ro/e, ), on the—other hand, the sto-
chastic force is a small perturbation, and the determinis-
tic equation (f=0) is a good approximation. The elfect
of the stochastic force is merely to provide an ensemble
of initial conditions for the deterministic evolution. A
matching procedure interpolates at intermediate times
(t -ro/e&), thus providing a complete approximate repre-
sentation for P( A, t ).

A generalization of Suzuki s approximation to an arbi-
trary time dependence of e(t) was presented by Ahlers,
Cross, Hohenberg, and Safran (ACHS), and successfully
tested against a numerical solution of the model for the
case of a ramp,
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It turns out, however, that the approximation of ACHS
fails for e (0, and the success of the above-mentioned test
depended on having applied it primarily for e) 0. For
later work see the authors cited in Ref. 4.

The present paper seeks to correct this failing of the
ACHS approximation, by retaining it only for e) 0 and
essentially replacing it with the simpler linear approxima-
tion (g3=0) for e(0. One is then left with a matching
problem each time e crosses zero, and a number of pro-
cedures for carrying out this matching are proposed here
and tested in concrete examples. Specifically, we study
ascending and descending ramps (e=/3t, with P both pos-
itive and negative), as well as a sinusoidal variation

e(t) =co+5 sinait . (1.6)

This latter case is a particularly stringent test since the
system crosses the deterministic threshold repeatedly,
and small secular errors must not be allowed to build up.
We find that over a considerable range of variation of the
parameters f3, eo, 5, and co our approximation yields re-
sults in good (though not perfect) agreement with a nu-
merical evaluation of the stochastic equation (1.1).

We have considered only the case of a symmetric dis-
tribution P( A, t ) =P( —A, t ) for all t, and do not treat
asymmetric initial conditions explicitly. This means that
we do not calculate the switch-over time from the posi-
tive to the negative attractor in steady state (e=eo) 0),
or the equivalent quantity for sinusoidal modulation
(1.6). This time controls the transition between "or-
dered" and "disordered" regimes seen in experiments on
modulated convection. Nevertheless, even though we
cannot calculate the switch-over time explicitly, we can
estimate the position of the above-mentioned order-
disorder transition by analyzing symmetric distributions,
and we find reasonable agreement with a numerical calcu-
lation presented earlier. Onuki has also treated the
problem of sinusoidal modulation approximately, and al-
though the order-disorder transition we extract from his
formulas agrees with ours, the shape of the distribution
function he obtains deviates significantly.

In Sec. II the basic approximation is described and the
failing of the ACHS procedure for e(0 exhibited. Sec-
tion III presents an evaluation of P( A, t) for various
ramps and sinusoidal modulations, as well as a compar-
ison with the numerical solution of Eq. (1.1). A succinct
statement of our approximation, as well as a generaliza-
tion to an arbitrary nonlinear equation with a time
dependent drift, are presented in the Appendix.

A(t+)=AD,

namely,

R )Ao

1+R2 3 ()

where

(2.3)

(2.4)

R, (t)—:exp ro
' e(s)ds

t

R2(t)=2g3ro ' R i(s)ds .
t

(2.5)

Q.6)

r B, A =f(t)R, '(t)(1+ A R ) (2.7)

Since for e) 0, R, and R2 grow exponentially with time,
the variable Ao only affects A for early times (near t+)
when Ao is usually small, so we linearize Eq. (2.7) to find

r B, A =f(t)R, '(t) .

The ensuing Fokker-Planck equation is'

, a's,
B,P,(A„t)=r, 'FR, '

aw,' '

Q.&)

(2.9)

and it can be solved exactly when the initial distribution
is known. Let us choose

Po( Ao, t+ ) =P+ ( A, t+ )=, e
(2~A,')'"

(2.10)

with Ao and 2& arbitrary constants. Then the solution
of Eqs. (2.9) and (2.10) is

1 (ADA&) /2A
Po( Ao,t)=, e

(2~A ')'"
where

(2.1 1)

+R0 3

R3(t) =2Fro ' J R—, (s)ds .

Then the probability distribution for 3 is

dAO
P+(A, t)=PD(AQ, t)

(2.12)

(2.13)

(2.14)

The stochastic variable Ao defined by (2.4) satisfies the
equation

II. APPROXIMATE ANALYTIC CALCULATION

We consider Eqs. (1.1)—(1.3) with initial time to=t+,
assuming first that

P+(A,t)=, (Ao/A ) R i(2' A )'i
—(3 —A ) /2A

Xe

where from (2.4)

(2.15)

and

e(t)) 0 for t ) t+ (2.1) Ao(A)=
R —R

(2.16)

e(t+)=0 . (2.2) The above derivation assumes 2& )0. For a symmetric
initial distribution the solution has the form

We follow ACHS (Ref. 3) and introduce the deterministic
solution of Eq. (1.1) with initial condition P(A, t)= —,'[P(A, t)+P( —A, t)] . (2.17)
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From Eqs. (2.15)—(2.17) it follows that the average
& A ") is given by

E(t )=0, e(t)&0, r &t

and parametrize the initial distribution by

(2.29)

—( — ) /2
& A'"(r)&=(2') '-"f" dge

A 2(2

1+ran

=RL 1

r=A R /R =R A

gi=Ri Ai/AL

(2.18)

(2.19)

(2.20)

(2.21)

As the notation suggests, AL is equal to the average ob-
tained from the linear stochastic equation

1 —(a —a, )'/2W,'PAt = e
(2m A )'

(2.30)

r,a,P, (A, t)= —a, (~AP, )+Fa', P, .

The solution of (2.31), with initial condition (2.30) is

1 —(2 —3 ) /2A
PI A, t = e

(2~A )'

(2.31)

(2.32)

as in (2.10), but with diferent constants Ao and A i. We
first suppose simply that 3 satisfies the linear equation
(2.22), whence the probability distribution PL( A ) satisfies
the Fokker-Planck equation'

r,B, A =e(t)A+ f(r),
with initial distribution

(2.22)
where AJ is given by (2.19),

(2.33)
/2A

Pl (A, t+)=(2m A )
' e

namely,

/2AP (A t)=(2' A )
' e

(2.23)

(2.24)

with AI given by (2.19) and A by (2.12). At early times
(t near t+) we have Rz «1 and hence r(&1 [see Eq.
(2.20)], so by (2.18)

and the integrations in R, and R3, Eqs. (2.12) and (2.13),
now start at t=t

In order to improve the above approximation slightly,
we wish to take the nonlinear term in Eq. (1.1) into ac-
count approximately, but not in the same way as for
e&0, since (2.15) leads to large errors. Let us introduce
an integrating factor for Eq. (1.1) and define the stochas-
tic variable

& A'(t)) = A,', (2.25) B=ARi ', (2.34)

i.e., the linear equation is a good approximation. For late
times [t r+ »ro/e(t)] E—qs. (2.20), (2.6), and (2.13) im-

ply that r—+ oo, so we find from (2.18)

which satisfies the equation without linear drift

rdB= —gRB+R, 'f, (2.35)

& A 2n(t) ) =(R 2/R )~ (2 26) and leads to the Fokker-Planck equation

which agrees with the deterministic answer (2.4) at late
times where the latter is independent of initial conditions.

The foregoing approximation thus interpolates be-
tween the linear behavior near the instability and the
deterministic behavior in the strongly nonlinear region.
It is precisely the generalized Suzuki approximation in-
troduced by ACHS, except that here we have specified
that e) 0, and we take as our time origin in the integra-
tions in Eqs. (2.5), (2.6), and (2.13) the point t+ where
a=0. This was the procedure followed by ACHS in their
numerical example, but it was not realized at the time
that the condition e) 0 was necessary to obtain sensible
results. Indeed, suppose we try to apply the above ap-
proximation to the case of a constant e= —@0&0, for
which we know that the linear answer (2.25) should be an
excellent approximation, i.e.,

B =A, (1+R,A')-'" (2.37)

When this replacement is made, Eq. (2.36) can be solved
to yield

Ps(B,t)=, e
(2m A )'

(2.38)

where A 2(t) is given by (2.12). The corresponding distri-
bution for 3 has the form

OB,P~(B, t)=8~(g3R, B Ps)+FR, Os' . (2.36)

An approximate solution of this equation is obtained by
replacing the quantity B in the first term on the rhs by
BD, where BD is the solution of the deterministic equation
[(2.35) with f=0] with initial value BD(t )= A i, name-

ly,

(2.27)

Carrying out the integrals in (2.18) we find instead, at
long times,

(3 AD) /2AL

(2~A )'

with AI given by (2.19), and

(2.39)

& A (t) ) =(eo/g3)exp( 2Fot/ro), — (2.28) AD=R, BD=R, A (1+R A ) (2.40)

which is clearly incorrect.
To treat the case e(t) (0 correctly, we assume

(In all of the above expressions pertaining to e & 0, the in-
tegrations in the R; begin at t .) Thus the approximate
treatment of the nonlinear term in Eq. (2.36) has resulted
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in a nonlinear correction to the quantity A, appearing in
(2.32), so that A, —+AD. The full distribution P(A) is
again obtained by symmetrization, according to (2.17).

The above discussion determines the distribution func-
tion P ( A ) for either e )0 [Eq. (2.15)] or e (0 [Eq. (2.39)],
once the distribution is known at the crossing points t—+.
To find the latter in each case we shall fit to the distribu-
tion function in the preceding interval, i.e., we apply the
conditions

P (A, t )=limP+(A t —q),
g~p

P +( A, r+) = limP (A, t+ q)—,
g~p

(2.41a)

(2.41b)

to fit AD and A, appearing in (2.15) and (2.39). In prac-
tice these matching conditions are often satisfied by mak-
ing the following choices.

At t =t+:

A0= AL(t+), A, =0 .

At t=t
A =R (t ) [3&6R '"(t ) A '(r )]

A i=Re(t )/R2i (t ) .

(2.42a)

(2.42b)

p=P (O, r+}/P(A„t+) (2.43)

In addition, the initial distribution at t=tp must be
known, but in practice tp can be taken usually at
sufficiently early times so that P( A, r ) is independent of
P( A, ta). In view of the somewhat complicated nature of
our approximation we have restated the final result in the
form of a general recipe in the Appendix. The essential
point is that the time axis is broken up into intervals
where e(t) has a definite sign and the equation is integrat-
ed in each interval with appropriate initial conditions at
the crossing points t,

—+.
In the foregoing we imagine starting the dynamics with

a symmetric initial condition, which ensures a symmetric
distribution for all time. A more realistic but more
difficult case to treat is that of an asymmetric initial dis-
tribution [Eq. (2.10), say]. For periodic modulation (1.6)
one could then attempt to determine the time necessary
to achieve a symmetric periodic distribution P( A, t ). Al-
though a precise calculation of this time, which from our
point of view is part of the "transient" dynamics, is rath-
er difficult we can say generally that if the asymmetric
P( A, t) has little weight at A =0 the time will be long,
and if P(0, t ) is large the time will be short. In analogy to
the procedure employed by Onuki, we will therefore
define the ratio

Z= A)/A, (2.44)

in the ordered phase at t=t for e0) e0, (5). Taking
Onuki's values from his Eqs. (8.6) and (8.10) we find that
Z is a nonmonotonic function of e at fixed 5 in the or-
dered phase, surely an unphysical feature of the approxi-
mation. Moreover, Onuki's values for Z diA'er from ours
by factors of 2 —3 in the range 0.2 (5 (0.4,
1 ( ea/e0, 1.3.

III. COMPARISON W'ITH NUMERICAL SOLUTION

In order to test our approximate analytic solution we
have integrated the stochastic equation (1.1) numerically.
We used the function gasdev ( ) of Press et al. to gen-
erate Gaussian random numbers from uniform deviates
over the interval (0,1). The uniform deviates were gen-
erated by the function rani ( ) or ran3 ( ) of Press et al.
To test the validity of the numerical procedures we stud-
ied the case e= —O. l, using g3 =0 in Eq. (1.1) so that the
linear result given in Eq. (2.27) applies, and found agree-
ment within the statistical errors. '

The specific calculations we undertook involve upward
and downward ramps, @=at with P='+0. 27, +5.0, and
sinusoidal variation e=e0+6 sincot, with various values
of ep, 5, co. The noise strength F was taken as
F=5 X 10, and the other parameters in Eq. (1.1) were
'Tp =0.055 and g 3

=0.85. These values are representative
of those in the convection experiment of Meyer, Ahlers,
and Cannell. The resulting distributions P ( A ) are

TABLE I. Order-disorder transition (co = 1).

Present
work

&oc

SH
(Ref. 7)

Onuki
(Ref. 5)

0.2 0.1

0.5
0.1

0.08
0.07

0.06

0.06

e0 (6) in the (e0, 5) plane at fixed co, as was done experi-
mentally by Meyer, Ahlers, and Cannell and numerically
by two of us. The results for co=1 are shown in Table I
for various reasonable choices of p„and compared with
the values obtained numerically, and with those of
Onuki's Eq. (8.10), which corresponds to p, =0.1. It is
seen that the different results agree to within 25%, which
is probably all that can be expected from such crude esti-
mates. Another comparison is possible between our ap-
proximation and that of Onuki, namely, the value of the
order parameter

as a measure of how long it will take for the system to
make a transition from A = A

&
to A = —A &, and also of

the time necessary to achieve a symmetric distribution
(2.17). We will pick a threshold value p, and distinguish
between "ordered" (asymmetric) distributions for p (p,
and "disordered" (symmetric) distributions for p )p, .
We may thus evaluate an order-disorder transition line

0.3

0.4

0.1

0.5
0.1

0.1

0.5
0.1

0.16
0.14

0.24
0.22

0.14

0.23

0.13

0.22
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shown in in Figs. 1 —5, from which it is seen that the ana-
lytic expressions in general agree very well with the nu-
merical results. In particular, we show P( 3) at selected
times chosen to illustrate the changes in shape most vi-
vidly. For the ramps (Figs. 1 —4) the initial distribution
was taken to be a 6 function at the stationary values of A

[A =0 for e (0 and 3 =+(e/g3 )' for e )0]. The
matching conditions used were those given in Eqs. (2.42a)
and (2.42b) for positive and negative /3, respectively.

For the sinusoidal variation of F(t), the initial distribu-
tion is irrelevant since in both the theory and the numeri-
cal work the calculation was pursued until a periodic dis-
tribution was found. In particular, the matching condi-
tions (2.41a) and (2.41b) had to be iterated repeatedly, ad-
justing 3, to fit the position of the peak and 3o to fit the
peak height or the width at half maximum, until a
periodic P( A, r) was found. Although this procedure in-
volves trial and error, it is entirely self-consistent and no
external adjustments were necessary. For relatively slow
modulation (co=5, coro=0.275) the agreement shown in

—
I -2

200

P(A)

IOO

0
0

0
TIME, t

0.003
A

IOO

(a)

P(A)

400

P(A)

200—

0.006
0
0

0 I

O. I 6 O. I 7
I

O. I 8 O.I9

(cI)—

0.002

I

(a)
I50 ~

FIG. 2. Similar to Fig. 1, but for a downward ramp, e(t) =Pt
for P= —0.27. The times in (b) —(d) are t=0.3, 1.4, and 2.0, re-
spectively.

IO

P(A)

-2 0
TIME t

IOG—

P(A)

50—

0
0

I.O—

P(A)

0.5—

I

0.005 0.0 IG
A

(d)

Fig. 5 is excellent. For co=20 (coro= 1.1), on the other
hand, the distribution is extremely narrow at most times,
so the comparison is somewhat delicate. A sensitive test
of the behavior is exhibited in Fig. 6, where we show the
large changes in P( A, t) that occur when the average eo
is changed from +0.2 to —0.05 at fixed co, 6)) ~eo, and
fixed time in the period. Although the agreement is not

P (A)

0
0

2 I

0.05 0.IO
A

0 I I I I I

0 0.3 0.6
A

20—

0

— (a) 15 +

10—

P(A)

I

(b)—

I I I I I I

0 0.3 0.6
A

IO—

0
0.6 0.7

A
0.8

0.50
C

P(A)

0.25—

TIME t

0
0

l5—

P(A)

IO-

0.05
A

O. IO

FIG. 1. Probability distribution I'(3) vs A at various times
for Eqs. {1.1) and {1.3) with ~0=0.055, g3=0.85, F=SX10
and e(t) given by an upward ramp. (a) shows e(t) vs t for
P=0.27. The five points on the line correspond in order to the
times in parts (b) —(fl, respectively (t=0.0, 1.0, 1.4, 1.5, and 1.8).
The smooth line in (b) —(f) is the analytic approximation dis-
cussed in the text, and the jagged line is a histogram represent-
ing a numerical evaluation of the stochastic equation. Note the
vastly different scales in parts (b) —(f).

0
0

0—
IA I.6

FICx. 3. Similar to Fig. 1, for P=5. The times in (b) —(d) are
t =0.24, 0.38, and 0.44, respectively.
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0
0

(c)
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0
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A
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FICx. 4. Similar to Fig. I, for P= —5. The times in (b) —(d)
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~t/2 m
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Q
0

I I I, '
I

0.05 O.lo
A

perfect the overall trend is well represented.
In Fig. 7 we illustrate the variation with noise strength

F of the onset time t,„ for the bifurcation, by showing
how the distribution function P( A, t ) at fixed time t= 1.5
changes its shape. For large noise strength (curve a) we
have t,„(t and P( A ) is peaked at A =0.65, whereas for
low noise strength (curve d), t,„)t and P( A) is peaked at
A =0. From the intermediate cases shown in c and d, we
conclude that t,„=t=1.5 for F=10

Finally, in Fig. 8 we show the generalization of our
procedure, as described in the Appendix, Eqs.
(A17)—(A22), to a slightly different model, the Maxwell-
Bloch equation"

P{A)

0
0 0.3

A

P(A)

I I I I I

IO (e)

0.6

P(A)

0.25

400

P(A)

200

0.5 I.O
A

1.5

e(t) g3A-
+ (t) .

1+g3 3 (3.1)

The example studied numerically is the same as the one
shown in Fig. 1(b), i.e., a ramp e=gt with P=0.27,
t=1.5. For this case it is seen that the distribution func-
tions are almost identical in the two models. For further
references to the laser literature see Broggi et al. " and
Ciofini, Meucci, and Arecchi. '

In conclusion, we have obtained a useful analytic ap-
proximation to represent the dynamics of an imperfect
pitchfork bifurcation in a single-variable stochastic equa-
tion. By making detailed comparisons between the ana-
lytic and numerical simulations we have shown that the
time-dependent distribution function can be evaluated ac-
curately in the symmetric case.

Note added in proof. After submission of this paper we
received a copy of an interesting paper by Caceres, Beck-
er, and Kramer, ' who treat the case of periodic modula-
tion using a steepest-descent method, and calculate the
long-time behavior of the probability distribution.
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0
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FIG. 5. Similar to Fig. 1, for a sinusoidal modulation
E(t)=E'p+5 sincot, with up=0. 2, co=5, and 5=2. The times in
(b) —(h) in units of the period are cot /2m =0.1250, 0.1719,0.2188,
0.2734, 0.7075, 0.7520, and 0.7822, respectively.
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APPENDIX: ALGORITHM FOR APPROXIMATE
SOLUTION

5.0 '

Our approximate solution of the stochastic equation
(1.1) involves the following steps.

(i) For a general function e(t), t ) to, we denote by t,+

and t; the ith zero crossings of e(t), with de/dt )Q at
t;+ and de/dt (0 at t, , as shown schematically in Fig. 9.

(ii) The distribution function is obtained from

2.5

5Q ~ ( i 1 ~~)r a

P{A)
(b)

0:
0 0.2 OA 0.6

FIG. 7. Probability distribution P(A) vs A at t=1.5, as cal-
culated from the approximation discussed in the text for an up-
ward ramp e=Pt, P=0.27, as in Fig. 1, for various values of the
noise strength I' =5 X 10 (curve a), 5 X 10 ' (curve b),
5 X 10 (curve c), and 5 X 10 (curve d).
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FIG. 6. In (a) e(t)=eo+6sincot is displayed for co=0.2

(upper curve) and @0=—0.05 (lower curve) with 5=2 and m=20
vs cot/2~. The two points in (a) are at cot/2m. =0.673. (b) —(h)
give P(A) vs A at cot/2m. =0.673 for t p=0.2 0.1 0.05 0.025,
0.0, —0.025, and —0.05, respectively.

FIG. 8. Comparison of the stochastic Landau equation (1.1)
(solid curve) with the stochastic Maxwell-Bloch equation (3.1)
(points). The parameters are the same as in Fig. 1(e), i.e., an up-
ward ramp e(t) =Pt with P=0.27 at t = 1.5.
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Eqs. (Al) —(A10) imply the following formula for the mo-
ments:

t L/t: ~- t
t~

( A'"(t) ) =(2~)-'"I oo 1+re
(A14)

where

FIG. 9. Schematic representation of the time dependent
linear drift e(t) for t ) to, with the definitions of the ascending
(t;+) and descending {t; ) crossing points.

and

e)0
C

0, @&0 (A15)

Ri ~i~~z e&O

AD/AL, e (0 . (A16)
for E(t)(0. In the above formulas the quantities are
defined as

(v) The above formulas may be generalized to an equa-
tion with an arbitrary deterministic part,A (A)=A(R' —R A')-'"

+R3,
Az = ARI,

A. (A, )=R, A, (1+R,A )- ~

(A17)r,B, A =D(A, t)+f(t) .(A5)

(A6) Let the linear drift be

(A7) '"=
aA
aD

3=0
(A18)

R, =exp ro
' I e(s)ds

t

R2=2g3%0 ' R, (s)ds,

R3 2Frp I R, (s)ds

(A8)
and define the solution of the deterministic equation with
initial value A = Ao as(A9)

(A19)A(t)= AD(t, Ao),

and the inverse function

(A 10)

A (to, A ) = AD '(t, A ), (A20)

which we assume to be unique. (The functions AL, and
AD

' must, in general, be evaluated numerically. ) Then
the above formulas for P( A) still hold, except that (A4)
and (A7) are replaced by (A20) and (A19), respectively,
and e(t) is defined by (A18). In order to evaluate the
derivative BAo/BA appearing in Eq. (a2) we take a varia-
tion of Eq. (A17) (with f=0},

The quantity t; in (A8) —(A10) denotes the preceding
crossing point (i.e., t; for t; (t(t;++„e(0, and t,

+ for
t;+ ( t ( t;, e) 0). An examination of the above formu-
las shows that they determine P(A) in each interval in
terms of only two constants, Ao [Eq. (A5)] and A, [Eq.
(A7)], which characterize the initial distribution for that
interval.

(iii) To determine the parameters Ao(t, ) and A, (t; ) at
the ith crossing point the distribution function is
represented in the form

P(A, t, )=(2vrA 0)
' exp[ .—(A —A, ) /2A 0], (Al 1) ~,B,5A(t}= 5A(t),BD

(A21)

and is fitted to the distribution in the preceding interval,

P+ ( A, t; ) = lim P ( A, t;+ —g ),
g~0

(A12)
and integrate backwards along the trajectory
Ao(t, A ) = AD '(t, A) to find

P (A, t; )=limP+(A, t; —rI) .
q —+O

(A13) 5A(to)=5A(t)exp ro f ds aD(A, s)
BA' 3'= AD (s, 3)

In this way P( A) can be evaluated in succeeding inter-
vals once it is assumed to be known at the earliest time
t =to. A set of simplified matching conditions that are
often sufficient is given in Eqs. (2.42a) and (2.42b).

(iv) The expressions for the distribution functions in

(A22)

Then the derivative BAo/BA is the exponential factor
multiplying 5 A ( t ) on the rhs of (A22), which is given as a
function of A and t.
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