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Properties of the nonlinear Schrodinger equation on a lattice
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We add an on-site potential to the integrable lattice nonlinear Schrodinger equation and show
how a number of interesting and novel features can be understood with the help of a simple soliton
collective variable approximation. Results include: trapping of a soliton in a linear potential and
on a maximum of a smooth potential; trapping of a soliton on a repulsive impurity and breaking
into two solitons beyond a critical impurity strength; and a crossover from a soliton state to a local
impurity mode upon increasing the strength of an attractive potential. In addition, we prove and il-
lustrate the complete integrability of the system for a linear on-site potential. Results are compared
with those for a nonintegrable discretization of the cubic Schrodinger equation.

I. INTRODUCTION

Understanding the interplay between disorder and non-
linearity is of fundamental importance in many physical
contexts, and this combination of ingredients raises a
number of unsolved mathematical questions. ' The last
three decades have seen enormous progress in identifying
the essential roles of nonlinearity and disorder separately.
Each may lead to self-localized excitations —"soliton"-
like structures due to nonlinearity and "Anderson locali-
zation" due to disorder. It is therefore natural to ask
how these effects might reinforce, complement, or frus-
trate each other. In particular, we need to understand
their combined roles in transport and transmission
coefficients. Do solitons behave as "particles" in the
presence of disorder, for instance, or interact very strong-
ly with other degrees of freedom? Does the randomness
of deterministric chaos mimic that produced by stochas-
tic external forces? These and other issues are of great
experimental concern in fields from nonlinear optics, to
polaron formation in solid-state materials, ' to vibron lo-
calization in natural and synthetic biomolecules.

Disorder may be parametric or additive, temporal or
spatial. Furthermore, the "color" of the noise or disor-
der is often relevant. As a first step, in this program, we
consider the discrete nonlinear Schrodinger equation in
(1+1) dimensions and investigate some elementary forms
of parametric spatial disorder —namely, constant bias,
isolated impurities, and periodic spatial variations.
Several novel features have been found as a result of the
discreteness of the lattice, and it is these on which we
wish to focus here.

Over the years, it has been demonstrated that a certain
set of completely integrable, soliton-bearing, partial
differential equations can be very useful models for the
effects of nonlinearity in the absence of disorder. Despite
their exact integrability, they contain enough of the
essential physical ingredients to represent the dominant
behavior of many nearby equations. The nonlinear
Schrodinger equation is perhaps the most ubiquitous of
these exact soliton systems, modeling self-localization,
self-trapping, and self-focusing phenomena. On the other

hand, tight-binding models have proved to be important
for gaining insight into the effect of disorder in "linear"
solid-state problems (Anderson model, Hubbard model):
It is therefore natural to modify these models to incorpo-
rate nonlinearity effects. Among such models is the so-
called self-trapping of electrons in ionic crystals through
polaronic lattice distortion. (The same equation models
self-trapping in many other coupled-field situations. ) A
simple adiabatic way to model this self-interaction via lat-
tice distortion in the tight-binding approximation is
through the lattice nonlinear Schrodinger equation

iP„=—Q„+)—g„,+2~~1'„~ 1b„+V„f„,
where ~P„(t)~ is proportional to the electron density at
site n and time t; x.=+1, leading to repulsive (attractive)
self-interaction; the dot stands for the derivative with
respect to time t; V„ is an on-site potential that the elec-
trons experience, e.g. , arising from impurities in the lat-
tice. In the continuum limit Eq. (1) with V„=2 leads to
the completely integrable nonlinear Schrodinger (NLS)
equation with soliton or "dark-soliton" solutions for
~= —1 and +1, respectively.

It is well known that Eq. (1) (for V„=2) is a nonintegr
able discretization of the completely integrable continu-
um NLS equation. Instead, in Sec. II we introduce a
different discretization which is integrable and allows us
to compare the effect of on-site potentials with the known
analytic behavior of the unperturbed dynamics. In the
case of the integrable discretization, ~g„~ can no longer
be interpreted as a local density. We do not introduce
this integrable version because of its superior physical
relevance, but rather in the spirit of soliton equations
noted earlier. However, it is worth noting that the in-
tegrable model is widely studied for its interesting (classi-
cal and quantum) features in its own right.

In some respects the integrable and nonintegrable dis-
cetizations, of course, lead to different behavior. On the
other hand, we find that certain distinctive features of the
discreteness in the integrable model are preserved in the
nonintegrable case. These features seem to have general
relevance, but their investigation is greatly facilitated by
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the integrability of the model in question.
In this article we show how the interplay of discrete-

ness, nonlinearity, and a site-dependent on-site potential
gives rise to some novel e6'ects, even in the absence of
global disorder. Our main intention is to illustrate four
important points: (i) There are some interesting qualita-
tive features of the solutions of the discrete integrable
NLS in the presence of disorder (e.g. , isolated impurities,
spatially periodic or random on-site potentials); (ii) there
are novel efFects of discretization, particularly the ex-
istence of upper and lower potential bounds for the
motion of NLS solitons; (iii) a simple soliton collective
coordinate approximation gives an extremely robust an-
satz for the treatment of the dynamics in the presence of
the above-mentioned perturbations; and (iv) the station-
ary solution approach, familiar in the disordered linear
Schrodinger equation, is incomplete in the discussion of
the disordered NLS, where the full space-time dynamics
must be treated.

After introducing the nonintegrable and integrable
discretizations and their Poissonian structures in Sec. II,
we discuss exact traveling solutions of the integrable sys-
tem in Sec. III. In Sec. IV we address the influence of
slowly varying on-site potentials and treat this case by a
collective variable approximation. We find that solitons
can be trapped in a linear potential and on a maximum of
a smooth potential. This property of the discretization
holds in both the integrable and nonintegrable cases. In
Sec. V we construct traveling solutions for the integrable
discretization with on-site potentials depending linearly
on the spatial coordinate. Then we show that the collec-
tive variable approximation is exact in this case. Numeri-
cal evidence for the complete integrability of the system
with a linear potential is given in the form of previously
unobserved time-periodic two-soliton collisions. Finally,
the complete integrability is proven analytically. Section
VI discusses the interaction of a soliton with attractive
and repulsive single-site impurities: a crossover from a
soliton (i.e., nonlinearity-dominated) state to a local im-
purity (i.e., disorder-dominated) mode upon increasing
the strength of an attractive potential, and the (dynamic)
trapping of a soliton on a repulsive impurity and break-
ing into two solitons beyond a critical impurity strength.
Finally, Sec. VII gives a summary and outlook.

II. TWO DIFFERENT DISCRETIZATIQNS

The discrete model given by Eq. (1) can be derived
from the Hamiltonian

(4.4.*+i+4."0.+i)

Equation (1) is not completely integrable, even for
V„=const (as opposed to its continuum limit), leading to
complex behavior in space and time. Indeed, recent in-
vestigations of the spatial properties of time periodic
solutions g„(t)=e ' 'y„of Eq. (1) for v= —A/2(0
show that the (complex) amplitudes g„are connected by
a nonintegrable symplectic map. Therefore, the power-
ful theorems of nonlinear dynamics, like the
Kolmogorov-Arnold-Moser (KAM) theorem, '

apply, al-
though it is important to explore the full time depen-
dence, as we do below.

As Eq. (1) is nonintegrable for arbitrary potential V„, it
is not so easy to compare the e6'ects of a nonconstant V„
with a constant one analytically in cases where the integr-
able continuum limit approximation does not hold.
However, there exists a second lattice NLS equation,
which is completely integrable for constant V„

i P„=—( P„+,+itj„,)( 1 —a
~ g„)+ V„g„. (6)

Comparison with Eq. (1) shows that 2g„has been re-
placed by itj„+,+P„, in the cubic term. Equation (6)
can be derived from the Hamiltonian

X(4.it.*+—i+4.*4.+ i )

with the nonstandard Poisson brackets

j e., C.*}=i(1—.Iq. I')~.. .

0. }
=

}0* 4.* }
=o

and ~=+1. For i~= 1, we assume
~ P„~ ( l.

If V„ is constant, Eq. (6) is completely integrable and
possesses an infinity of independent conserved quantities
which are in involution with the Hamiltonian H. For
nonconstant on-site potential V„, Eq. (6) is no longer
completely integrable in general (see below). However, at
least one integral of motion (besides H) still exists:

From Eq. (2) it is apparent that v positive (negative)
amounts to repulsive (attractive) self-interaction. The
Hamiltonian Hi and Eq. (1) are both invariant under glo-
bal phase change. The corresponding generator, the
norm X&, is therefore conserved:

N, =O with X, =g~f„~

+~ & lg„l'+

with the Poisson brackets

playing the role of a norm.
From now on we set i~= —1 (attractive self-interaction)

and observe that, by rescaling g„(t) with &k for A, )0,
Eq. (6) takes the form

, it'„'} =i5 „, jg, g„}= [g*,g„*}=0,
i j„= (q„,+q„,)(I+—X~q„l')+ V„q„. (10)

and the equation of motion

(4)
Therefore, it will be sufficient to investigate Eq. (10) for
A, =1.
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III. EXACT SOLUTIONS AND THEIR INTEGRALS

For a vanishing potential ( V„—=0), traveling and oscil-
lating solutions are easily found to be either of the form

2 cn(P, k )cosa
dn (P, k)

2 sn(P, k )sina
Pdn(P, k)

(12)

or of the form gained upon interchanging cn and dn in
Eqs. (11) and (12) and rescaling A by k '. The parame-
ters a, P, and k have the following ranges: —m. & a & m.,
0&p& co, and 0&k &1. For k~O and p=O, the pho-
non dispersion relation is recovered: co= —2coso.'. For
0 & k & 1 the solutions (11) are phononlike, whereas for
k ~1 they are one-soliton solutions:

f„(t) =sinhP sech[P(n ut —xo )]e-
go = —2 coshP cosa,

2 sinhP sina
u =

(13)

The form (13) implies that narrow solitons travel faster
than wider ones having the same a.

As the energy E=H and the norm N for the one-
soliton solutions (13) are invariant under continuous
translations, they are easily found by integration:

E= g( P„P„*+,—+ 1f „'P„+,) = —4 sinhP cosa,

N =g in[1+ sinh P sech (Pn ) ]
n

= f in[1+ sinh P sech (Px )]dx

(14)

The last line implies that narrow solitons have larger
norms than wider ones.

Upon imposing periodic boundary conditions
(P„+I —= f„with L =l,h„.„),the strict soliton solutions are
excluded and only k values are allowed for which
PL =4m'(k), where m gives the number of humps the
solution has. However, by increasing p the modulus k
can be arbitrarily close to 1, and the corresponding solu-
tions for m = 1 are practically indistinguishable from iso-
lated solitons.

IV. SLOWLY VARYING ON-SITE POTENTIALS

If we place the one-soliton solution (13) for t =0 as an
initial excitation into Eq. (10) with a nonconstant poten-
tial V„, we do not expect Eq. (13) to describe the evolu-
tion for t)0. But under certain conditions, namely, if
the potential varies slowly over the soliton hump, we ex-
pect a one-soliton solution (13) with time-dependent pa-

g„(t)=3 cn(p(n u—t —xo), k)e ', (ll)

with amplitude 3, frequency co, and velocity u given by

k sn(P, k)
dn(P, k )

rameters a(t) and p(t) to be a good approximation to the
exact, unknown solution of Eq. (10). This so-called "col-
lective variable approximation" or "adiabatic approxima-
tion, " well known in the continuum limit, seems to work
extremely well in the lattice case, as shown by the numer-
ical evidence which we present below.

For V„=V=const, we observe

E= —4 sinhP cosa+ VN,

N=2P .
(15)

E = —4 sinhP cosa(x ) +2P V(x ) =const . (16)

The spatial discreteness of the model under investiga-
tion now leads to an interesting effect. As ~cosa(x)~ & 1,
there exist upper and lower bounds for the potential that
the soliton can enter, depending on the initial condition
E = —4 sinhP cosao+ 2P Vo:

E = —4 sinhP+ 2P V,„=4 sinhP+ 2P V;„,
leading to

2 sinhP
V „—Vo= (1—cosao),

Vo —V;„= (1+cosao) .
2 sinhP

(17)

(18)

In the continuum limit, the unusual lower bound disap-
pears.

To integrate the differential-difFerence equations (1)
and (10) numerically, we used a fifth- and sixth-order
Runge-Kutta-Verner method and checked the accuracy
using the conserved quantities H and N given by Eqs. (2),
(5), (7), and (9). These were conserved to a relative error
less than 10

Figure 1 shows two cases where the soliton is trapped
in a linearly increasing potential V„between V;„and
V,„. Figure 2 shows the same cases, but for the nonin-
tegrable discreteness [Eq. (1)] for comparison. Although
in the latter case the soliton decays quite rapidly, it re-
focuses. The total structure remains localized and
spreads only very slowly. V,.„~,„~ in Eq. (18) give a
good estimate for the size of the structure after the first
reemergence. Figure 3 shows that the soliton can be
trapped in a minimum of V(x) as well as on a maximum
[V„=+2cos(em/52) in Eq. (6)]. Again, in both cases
the turning points of the soliton motion are well approxi-
mated by V;„~

The soliton might be regarded as a particle moving in
an effective potential V,s(x), which can be found as fol-

Now we assume V„varying so slowly with n that, within
a good approximation, the soliton of width P ' feels only
a constant potential: V„+,—V„«pV„. Whether the ra-
diative decay of the soliton is weak enough that the use of
collective variables makes sense may be decided either
perturbatively' or by inspecting numerical simulations.

Introducing the notation V(x) for the slowly varying
potential V„(n =x), we see from Eq. (15) that under the
assumptions made above the soliton does not change
shape (N =2P is independent of V) and changes of the lo-
cal potential V(x) lead to changes of a only:
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lows [u (x)= —2 sinhP sina(x / is thepi e oio o iy

2u V(x)[PV(x) E—] 16
'

h P E-
2p 8p'

where V,s(x)=(1/2P)V(x)[PV(x E—la s th
the effective potent 1 d h

' - an
1 th o1 f h

n ia an the ri ht-han
o e o t e particle ener bg» o p go
on i sons. This explains the aon i son e apparent para-

rappe on a maximum of V
experienced by the solie ective potential expe

'
d by li

h' ll l' dy app ie one.

V. LINEAR ON-SITE POTENTIALS

Specializing to V(x)=an+b for aAO
rif h h o1 p ' g

g„(t)—A cn(P[n —x(t)] k)e

with A given by Eq. (12), and

(20)

a(t) =at+ao,
2 cn(P, k)

[ a t) —sinao]+Po+bt, (21)

(t) 2 (Pk)
[ osa(t) —cosa ]+x
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solutions (toFork —+1tis eash' 1 d to oscillating soliton so
=0)simplify expre1'f essions we have taken ao=Po=

—i[/(t)+ v„t]P„(t)=sinhP sech I P[n —x ( t) ] ] e

p(t) = ——coshp sin( at)+br,
a

(22)

(a)

3.0

2.0

x(t)= sinhP[cos(at) —I]+xo .
a

s that for a linear potentia
'

1 V =an+b the
b E (18) 11 hV and V;„given y q.-" n.f h. -l---nb,collective variable description o t e so i

Eq. (19), are exact.

As E . (6) is completely integrable for constant V„,As q. i
+ litons suffer only phaseasymptotic y

'
all for t~ Oo so

Fi . 4). Remarkably, evenif their aths cross (see tg.
or a linear on-site potentia „, so i

~ ~

ollision. This is shown most striking-

eriodic in time. This is clearly a iscre ene
an s d ith the behavior in the contin-and should be contrasted wit e

m limit '4uum hmit.
f th olitons in Fig. 5 is com-Althoug h the motion o e s

i ht-line behavior for thepiete y1 different from the straig t- ine
ith constant potential, thecomple e y gtel inte rable system wit con

h' h
'

t pical for a complete-t in a way whic is ypica
s stem. This raises t e in eres

'

ltl i t bl foof whether Eq. (10) is comp ete y in
ich we now discuss.V„=an+b, w ic

NLS equations atiall continuous
inte rable even for on-site poten ia s
in the s atial varia e.q

that Eq. (6) for a linear potentia „=an
1 inte rable by casting it in the form of a zero-

eter X. Following Ref. 12, the compatibi ity con i
'

a vector F„(t,k(t)), obeying the equations

1.0

0.0

F„+,=L„(t,A, )F„,
dF„ = W„(r,k)F„,
dt

is of the following form:

(23)
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&ict(„*
'

L„(t,A)=,
+Pn

1+irg„*g„,—A. +f„ &a(A, 'f„*,—Ag„* )

the zero-curvature condition (24) leads to

f„=yn+5,
A(t) =Roe'r',

V„=2+f„+f„+,=2yn +2(5+ 1)+y =an +b,
(26)

This proves the complete integrability of Eq. (6) for linear
potentials. Whether Eq. (6) is also integrable for quadra-
tic potentials, as in the continuum case, ' deserves further
investigation.
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FIG. 5. Two-soliton collision on a tilted plane: Solution of Eq. (6), for l,h„„=104;zero boundary conditions; V„=16n/l, h„„, ini-
tial soliton parameters: a, =rr, a~ =0, (a) and (b) P, =/32=0. 4, and (c) P, =0.5 and 132=0.3, integration time T=90.
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VI. TRAPPING ON AN IMPURITY

Now we turn to another interesting set of phenomena
which can be investigated by a collective variable ap-
proach: the trapping of a soliton by an impurity po en-
tia = „o.'

1 V = V5 . Stationary solutions are readily found by
matching parts of stationary solitons &

n

(a=O) for V=O
having the same frequency to = —2 coshP:

i/j„( t) =sinhP sech I P[ ~
n

~

—sgn( V)g] ] e

where g) 0 and coshp(=2sinhp/(co —4 —V )
2 2 1/2 Foi

an attractive impurity ( V (0), the solution t/„has a max-
0& it has aimum at n =0; for a repulsive impurity ( V) 0&, i

minimum at n =0 between maxima at +no=(. For
V=O the original soliton with /=0 is restored.red. In all
cases one finds

negligible (N =N', E=E') we find

V ln(coshP)cosa' =+cosh(P/2)— (31)

4 sinh(/3/2) [cosh(P/2) —1]
ln(cosh/3)

4 sinh(P/2) [cosh(P/2)+ 1]
ln(coshP)

(32)

where + refers to a=O or vr (staggered initial solution).
Ir e approac eIf ' oaches one of the critical values 0 or ~, t e
emission of the two solitons is slowed down: u ~ . n
the limit, the two-soliton decay is prohibited. ini ia y
o.=0 then the two-soliton decay is possible for

7

co —4 —V
i/. =o(t) '= (28)

4.0— (a)

showing that solutions (27) exist only for sufficiently large

Two remarks should be made. First, looking for stag-
gered solutions of Eq.
t/j„(t) =( —I)"g„(t),one immediately verifies that i/t„( t—
—V„. In contrast, Eq. (1) does not possess this exact
symmetry. For staggered solutio, q.symm . '

ns E . (27) has to be
changed to

3.0—

2.0 —==

1.0

t/I„( t ) = ( —1)"sinh/3 sech I P[ ~
n

~
+ sgn( V)g ] ] e '"' . (29)

I 'ties acting repulsively on the unstaggered solutionmpuri
(27) act attractively on the staggered solution
vice versa.

nd N. IfThe second remark concerns the integrals E an
we denote i/„—( t) the solution (27) for V = +

~ V~, an

E+,X+ their corresponding integrals, we find

0.0

-1.0
-25.0

~ ~
I
I y
1

~ ~
~ ~
1 ~
I ~

0.0
n

I

25.0

N+ +N =2No =4P,

E+ +E =2Eo = —4 sinh/3,
(30)

4.0—

3.0—
where the potential energy terms in the last line have can-

energies and norms may be expressed in closed form.
What really happens dynamically in the vicinity o t e

t be determined by investigating trapped
oscillator solutions alone [as given by Eq. (27) or ]:
There may be scattering and emission of phonon

'f hononlike exci-
tations as we a11 s multisoliton processes. To simplify

on to oftt choose a soliton at rest (a=O or vr on top o
the impurity and assume that the main decay c anne is
th h generation of two solitons. As the initial condi-1oug
tion is symme ric~ ~ tric with respect to spatial inversion, w

ect the two solitons to have the same shape but oppositepec e w
velocity. Initially, we have for the norm 1V—
the energy E = + 4 sinhp+2V ln(coshp) for a =0 or vr.

11 f th decay into two traveling solitons and
hopefully negligible radiation) with exponentia y sma

1 with the impurity, we find for the norm N'=4p'
and for the energy E'= —8sinh/3cosa. If we a
that the amount of radiation emitted during the decay is

2.0—
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I y
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I y
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FICx. 6. Soliton trapping on an attractive imp
'

y:i urit: Solution
for l =314; periodic boundary conditions,of Eq. (6), or chain

V„=V5„0; initial soliton parameters: /3= 0.4, a=; a
V= —0.3 and (b) V = —2.0; integration time T=30;
magnification 2 X.
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If initially o:=~, then the two-soliton decay is possible
for

4 sinh(P/2) [cosh(P/2)+ 1]
ln(coshP)

4 sinh(P/2)[cosh(P/2) —1]
ln(coshP)

(33)

In the continuum limit the bounds in Eq. (32) go to p/2
and + oo, and in the "staggered" continuum limit the
bounds in Eq. (33) go to —oo and —p/2.

Trapping on an arbitrarily large repulsive impurity as
given by Eqs. (27) and (29) is a static nonlinear effect. It
turns out that dynamically these trapped states are stable

only up to a given threshold approximately given by Eqs.
(32) and (33), beyond which they break up into two soli-
tons and radiation.

For an unstaggered initial soliton (a=0) the following
picture emerges. If V&0, no two-soliton decay is possi-
ble. The soliton adjusts to the exact solution (27) with
one maximum by emitting radiation. If

~ Vj ~ 2 sinhp, the
amount of radiation will be relatively small (the matching
condition at the impurity can be fulfilled by a solution
with unchanged p). In the opposite case the soliton has
to adjust to a state with p') p and more radiation will be
emitted. If V) 0, but less than the first threshold in Eq.
(32), it oscillates around the exact solution (27) with two
maxima. If V lies well between the two thresholds in Eq.
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FIG. 7. Soliton trapping on a repulsive impurity: Solution of
Eq. (6), for l,h„„=314; periodic boundary conditions;
V„=V5„0, V=0.67; initial soliton parameters: (a) P=1.0,
a=O; (h) superposition of two solitons with P=0.5, a=O,
xp +4; integration time T=90.

FIG. 8. Soliton on a strong, repulsive impurity: Solution of
Eq. (6), for l,h„„=314; periodic boundary conditions;
V„=V5„0; initial soliton parameters: P= 1.0, cz =0; (a)
V=0.70 and (b) V=2.0; integration time T=90.
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(32), two-soliton decay is possible. The upper threshold is
usually too large to be of practical importance because
the radiation effects are no longer negligible if Vbecomes
too large.

Figure 6 illustrates trapping and adjustment for V &0
(i.e., an attractiue impurity). For

~
V~ 2 sinhP, adjust-

ment with a negligible amount of radiation occurs [Fig.
6(a)], whereas Fig. 6(b) shows the opposite case. Figure 7
shows the case 0& V& V„where V, =0.7 denotes the
lower bound in Eq. (32), leading to a trapped oscillating
two-soliton state. Initial conditions are a one-soliton
state in Fig. 7(a) and the superposition of two one-soliton
states with P'=P/2 and xo =+4 in Fig. 7(b) for compar-
ison. Figure 8 illustrates the case V& V„ leading to two
unbound solitons [Fig. 8(a)] and, in addition to that, to a
trapped staggered state for larger values of V [Fig. 8(b)].
(Staggered states can be trapped on impurities with arbi-
trarily large positive V.) Numerical evidence shows that
the value for V, as determined by Eqs. (32) and (33) is
typically 10% too small, indicating the influence of radia-
tive losses.

It is interesting to compare V, here with the crossover
suggested in disordered "polaron" problems (with
electron-phonon, exciton-phonon, ' magnon-phonon cou-
pling) discussed by Anderson' and others. ' These au-
thors have considered the competition of disorder and
nonlinearity localization within a stationary approxima-
tion [f„(t)=exp( irot)y„], —whereas here we have ex-
plored the full time dependence.

VII. SUMMARY

In this article we have shown that the nonlinear
Schrodinger equation on a lattice with on-site potential
has many interesting features lying beyond the reach of
perturbation theory. Nevertheless, they can largely be
understood in simple soliton collective-coordinate terms.
Some of the features are novel and might give rise to in-
teresting effects in physical systems with nonlinear in-
teractions and when tight-binding approximations are
applicable. Finite maximum soliton velocities and trap-
ping of solitons on potential maxima were explained as
novel discreteness effects and described in a collective

variable approximation. The complete integrability for
the discrete NLS equation with linear potential was
demonstrated and proven. In this case the single soliton
collective variable approximation turned out to be exact.
We also described the trapping of a soliton on a repulsive
6-function impurity and its breakup for sufficiently large
strength of the impurity. An approximation for the criti-
cal strength was calculated in the collective variable ap-
proximation. In the case of an attractive impurity, we
observed a transition from a soliton state to a localized
impurity mode upon increasing the strength of the im-
purity. We stress again that we considered here the full
time-dependent behavior of the system and not only the
stationary solutions.

The model we investigated is also a good starting point
for clarifying the influence of periodic, quasiperiodic, and
random' on-site potentials on the localization and
transmission properties, as we will describe elsewhere.
Preliminary results show that for small, random poten-
tials there exists a critical velocity for traveling solitons
below which they desintegrate rapidly and beyond which
they travel long distances with negligible change of
shape, leaving behind radiation that will finally be
trapped in a (linear) Anderson sense.

The model is also currently under investigation for a
time-dependent, kicked potential. This leads to chaotic
or regular motion of a single soliton (depending on the in-
itial conditions), which, in a single soliton collective vari-
able approximation, can be described by a nonintegrable
symplectic map (similar to the standard map). Sensitive
dependence on initial conditions and existence of soliton-
like solutions together give rise to new and interesting
effects ' (see also Refs. 22 and 23).

Finally, the properties of this dynamics illustrate the
fact that complete integrability of a system with infinitely
many degrees of freedom is not necessary to support sim-

ple, stable, and localized solutions in space and time.
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