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The stability of the solution of the hypernetted-chain (HNC) integral equation for the pair-
correlation function of the Auid, with respect to its defining diagrammatic iteration loop, is investi-
gated in one, two, and three dimensions for the inverse-power potentials characterized by a single
dimensionless coupling parameter I . The Onsager limit and the solution of the HNC equation be-
long to the same basin of attraction with respect to the diagrammatic iterative map. A connection
is established between (1) convergence properties of the diagrammatic low-density Mayer expansion,
(2) the asymptotic strong-coupling, r ~~ ("Onsager") limit of the HNC integral equation, and (3)
the freezing density of simple liquids.

I. INTRODUCTION

The exact diagrammatic description of the liquid pair
structure can be cast in the form of an iteration loop,
with the Mayer f bond as the initial seed. ' Provided that
the iteration procedure converges, then the correspond-
ing sum of an infinite number of diagrams is equivalent to
the solution of an integral equation, the so-called
hypernetted-chain (HNC) equation, for an effective poten-
tial. ' The HNC and other integral-equation methods,
originating from the diagrammatic low-density expansion
in terms of the Mayer f bond, have led to many advances
in the theory of liquids. ' The major, present day, ap-
proximate theories of the structure and thermodynamics
of simple liquids have been shown" to interpolate between
the "ideal gas" and the "ideal liquid" limits. The asymp-
totic limit of the hypernetted-chain integral equation
(denoted the "Onsager limit" ) plays the role of the ideal
liquid and has been proposed as the reference ideal state
for developing a systematic theory of liquid structure.

The present work provides a demonstration of the role
of the ideal liquid (Onsager state) in the diagrammatic
context; it is the starting point for a rapidly convergent
high-density expansion route to liquid structure. The sta-
bility of the solution of the HNC integral equation, with
respect to the original defining diagrammatic iteration
loop, is investigated in one, two, and three dimensions
(D = 1,2,3) for the inverse-power potentials,
PP(r)=I r ™,characterized by a single dimensionless
coupling parameter I . A connection is established be-
tween (1) convergence properties of the diagrammatic
low-density Mayer expansion, (2) the asymptotic strong-
coupling, I —+ ~ Onsager limit of the HNC integral
equation, and (3) the freezing density of simple liquids. It
is demonstrated that the Onsager limit and the solution
of the HNC equation belong to the same basin of attrac-
tion with respect to the diagrammatic iteration loop.
Specifically, it is found that for I & I"c staring with the
Onsager limit as the seed, the original diagrammatic
iteration loop converges to the solution of the HNC equa-

tion. The "instability" parameters I z represent an upper
bound for the radius of convergence of the diagrammatic,
small-I, Mayer expansion of the pair-correlation func-
tions. For I ) I z starting from the Onsager seed or
from (arbitrarily close to) the solution to the HNC equa-
tion, the diagrammatic iteration loop converges to a limit
cycle composed of several functions, the number of which
generally depends on the coupling parameter I", the
power m, and the dimensionality D. In the immediate vi-
cinity of I &, however, the limit cycle for I ) I & exhibits
univevsal characteristics. The instability parameters I c
correlate well with the freezing parameters I F for these
systems as obtained from computer simulations as well as
with one-phase Lindemann-type freezing criteria. Moni-
toring the potential energy integral or the HNC free ener-

gy functional at each iteration step, it is found that the
diagrammatic iteration loop for I (I, starting from the
Onsager seed follows an almost monotonic path towards
an energy extremum.

In Sec. II the diagrammatic expansion iteration loop is
outlined, while Sec. III complies relevant properties of
the ideal-liquid state. The computational setup is de-
scribed in Sec. IV. The results are summarized in Sec. V
and are discussed in Sec. VI. The Appendix provides the
Qnsager seeds used in the present study.

II. DIAGRAMMATIC EXPANSION ITERATION LOOP

The classical direct [P(r)~S(k)] and inverse
[S(k)~$(r)] problems for liquid pair structure, relating
the structure factor S(k) to the interaction pair potential
P(r), have been reduced by exact diagrammatic analysis'
to the solution of the HNC integral equation for an
effective potential P,ter)=P(r)+B(r)l/3, where /3 is the
inverse temperature /3=(kzT) '. The HNC equation is
composed of the Ornstein-Zernike relation between the
direct correlation function c(r) and the radial distribu-
tion function g(r)—:h (r) —1 and the HNC closure. The
HNC integral equation for a potential P(r) can be written
in the "series-parallel" diagrammatic iteration-loop
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c (r) =exp[ PP(r—)+H (r) ]
—1 H(r)—, (2)

represents parallel connections of graphs in H(r). p is
the number density, and tildas denote Fourier trans-
forms. The bridge function B (r) may be expanded in dia-
grams with the h (r) bond. ' The assumption B (r) =0,
i.e., P,tft r) =P(r), defines the HNC approximation.

The diagrammatic expansion corresponding to the
HNC approximation is obtained by the following itera-
tion loop: Starting with the Mayer f bond seed,
cM,„„(r)=f(r)—:exp[ PP(r)] —1—, in Eq. (1), the result-
ing H(r) is fed into Eq. (2), which yields the first iteration
for c (r), which is then fed again into Eq. (1), and so on.
The diagrammatic low-density expansion represents a
very slowly convergent route for obtaining meaningful re-
sults for a highly correlated system like a dense Quid.
Indeed, even the numerical methods for solving the HNC
integral equation, although involving iteration methods,
do not strictly adhere to the original diagrammatic ex-
pansion. Specifically, combined "relaxation" and
"Newton-Raphson" methods of solution are employed.
The original diagrammatic iteration loop, without em-
ploying relaxation methods that mix input and output at
each iteration step, is not considered to be a practical
method for solving the equation at high densities, even if
this iteration begins very close to the desired solution.
Yet almost by definition, the solution by any of the nu-
merical methods is considered complete only when two
consecutive iterations of the defining (i.e., diagrammatic)
interaction process are close enough.

In contract to the original diagrammatic iteration pro-
cess, the HNC approximation as embodied by the solu-
tions to the integral equation, provides an excellent point
of departure for describing liquid pair structure.
Along this route, a first-order improvement on the HNC
approximation, the ansatz of the universality of the
repulsive short-range structure of B (r) was found empiri-
cally to be very accurate. It provides the key to the
most successful currently available solutions of the
"scattering problem. " What then is the relation, for a
dense Quid, between the solution of the HNC integral
equation and the diagrammatic density expansion from
which this equation is derived?

III. THE ONSAGER (IDEAL LIQUID) LIMIT

Making the single assumption that the bridge function
is not singular, the high-density properties of the HNC
equation for P(r) and P,st, r) were recently investigated.
The asymptotic high-density properties of the HNC
equation are mapped on the Onsager lower bound to the
potential energy, which features pseudoatoms and pseu-

form. ' Recalling the screening potential
H(r) =h (r) —c (r), the Ornstein-Zernike relation
h(k)=c(k)+ph(k)c(k)—:S(k)c(k) has the following k-
space form:

H(k)=pc (k)/[1 —pc(k)],
representing the sum of all possible nodal diagrams ob-
tained from diagrams in c(r) by series connection. The
HNC closure for a potential P(r),

domolecules as mathematical constructs. The confined-
atom (adhoc ) Thomas-Fermi theory, which provides the
working hypothesis for treating very dense matter, thus
corresponds to a limit of the HNC equation for classical
plasmas. For a one-component plasma (OCP), i.e., posi-
tive ions in a uniform background of electrons, the On-
sager lower bound corresponds to the sum of the self-
energies of the neutral Onsager-Thomas-Fermi atoms
each composed of a point ion at the center of a sphere of
uniform negative charge density. The corresponding
asymptotic HNC direct correlation functions cHNc(r) are
given by the electrostatic interaction between the two
uniform spheres as a function of their separation r. The
Onsager lower bound for charge-cluster plasmas features
Onsager "molecules" that are direct generalizations of
the atoms. " This asymptotic HNC Onsager "state"
provides the starting point for analyzing the structure of
dense fiuids (an "ideal liquid" )—like the "ideal-gas" refer-
ence state for dilute Auids. This reference state involves
mathematical constructs (i.e., liquidlike basis functions)
that enable analytic connection to functions described by
low-order diagrams. The leading high-density form of
B(r) was derived and its universal characteristics were
determined.

For inverse-power potentials PP(r) = I r ™,the asymp-
totic (Onsager) direct correlation function has the form
cHNC(r)= —I %(r), where %(r)=r for r +2, with r
measured in units of the Wigner-Seitz radius a~s. In
these units [p(aws)] =3/4~, 1/~, —,', respectively, for
D =3, 2, 1, so that Eqs. (1) and (2) manifestly depend
only on the single parameter I . The Onsager-HNC func-
tion %(r) is available exactly for the Coulomb potential,
while for other inverse-power potentials it can be well ap-
proximated, for ~2, by a low-order polynomial whose
coefficients are fitted to known properties of these con-
tinuous functions. The present results were obtained
with the functions %(r) given in the Appendix. Alterna-
tively, given a numerical solution c (r) to the HNC equa-
tion by any standard method at a reasonably large I,
then one can employ (for that same power m) the func-
tion 4 obtained by c (r) /I .

The present investigation was initially focused on
demonstrating that the asymptotic Onsager HNC direct
correlation function should somehow play the role of the
Mayer f function in a high-density diagrammatic expan-
sion. The investigation ended up finding that these
asymptotic properties of the HNC equation govern its be-
havior in the entire Quid domain, and that at least com-
putationally the Onsager seed performs better than the
Mayer seed even in the low-density limit.

IV. COMPUTATIONAL SETUP

The computational setup, as governed by a numerical
fast-Fourier-transform (FFT) procedure, is completely
characterized by the mesh points for describing the corre-
lation functions [ h(r ); r; =i br ), i =1,. . . , N, N =2M],
[h(k, ); k,. =i'm@, Ak =n/Nhr ]. The two independent
parameters M and Ar were widely varied, and it was
found that all the reported results are very robust with
respect to the mesh of points, as long as enough features
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of the pair correlations can still be described. A good
rule of thumb is to choose hk =—~dr, which yields
br -=1/i/N. Most of the qualitative results can be still
exhibited for M=6 (i.e., N=64) with hr=0. 125 or
Dr=0. 2. This robustness enabled performance of the
present study on microcomputer. A good compromise
turned out to be N = 128 with b, r =0. 1 (at a rate of about
30 iterations per minute on a standard Macintosh Plus
computer). The mesh size N defines the dimensionality of
the iteration map. The analysis of the eigenvalues of the
N XXFloquet matrix, corresponding to the linear stabil-
ity analysis of the map, may be greatly facilitated by a
reasonably small N. A copy of the simple FORTRAN pro-
gram for performing the iterations can be obtained from
the author. This research was made possible by an
efficient, commercial, graphics routine which almost el-
iminated the need to look at numerical tables. The next
stage of this study requires, however, the use of a super-
computer and much work, both numerical and analytic,
is required in order to fully uncover the properties and
meaning of the multidimensional iterative maps as
represented by the diagrammatic expansion.

The study began for the D =3 Coulomb potential
(m =1), for which also the most extensive numerical re-
sults were obtained. Then other inverse powers,
m =4, 6, 9, 12, were extensively studied for D=3. The
calculations for D =2 and D = 1 were extensive enough to
establish qualitative results, but a supercomputer is need-
ed to obtain more accurate estimates of I C. Some of our
results for the Coulomb potential (OCP) were indepen-
dently reproduced upon our request to further eliminate
the possibility of a systematic error.

At any given iteration step, we found it useful to define
and monitor the following quantities: at the "series" part
of the loop, i.e., Eq. (1), define hs(r) as the inverse
Fourier transform of hs(k)—:c(k)/[1 —pc(k)], and in the
parallel part of the loop, i e., Eq. (2), define
hz(r)—=exp[ PP(r)+H(r)—]

—1. For physically allowed
c(k), we must have 1+phs(k) ~ 0, while for physically al-
lowed H (r) we must have 1+hp(r) & 0. A physically ac-
ceptable solution of the HNC equation must in addition
satisfy hp(r)=h&(r) (to within the prescribed numerical
accuracy). At any given iteration step define up and us,
the potential-energy integrals, as obtained from

u =(p/2) I [h(r)+1]PP(r)dr,

upon using hz(r) and hs(r), respectively. For the OCP
use h (r) instead of h (r)+1 in the integral. We similarly
monitored the corresponding expressions for the HNC
free energy integrals. Our computer program is con-
structed to perform the diagrammatic iteration loop.
Eqs. (1) and (2), as is, in addition, we have the option to
run the program with the standard mixing procedure (the
relaxation method) as a means to obtain a "brute-force"
solution to the integral equation to any desired numerical
accuracy.

V. RKSUX.TS

Given the power m and the dimensionality D the fol-
lowing two types of calculations were performed as a
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FIG. 1. The one-component plasma (m =1, D =3) potential
energy (u&, see the text) as a function of the iteration using a
mesh of 128 points with hr =0. 1 for I =203. Starting with the
Onsager seed, two diagrammatic iterations followed by 50 mix-
ing iterations and continuing with diagrammatic iterations. See
the text. Note how first the iterations converge to a single func-
tion and then they eventually reach the limit cycle (compare
with Fig. 2).

function of the coupling parameter I . (i) Starting with
the Onsager seed co(r) = —I V(r), generate a number of
iterations nd;, of the diagrammatic iteration loop. (ii)
Starting with the Onsager seed generate a mixing itera-
tion loop to obtain an accurate solution (accuracy de-
pending on the number n;„of such iterations), and then
starting with this solution to the HNC equation as the
seed, generate a number nd;, of the diagrammatic itera-
tion loop. Depending on the case for either type-(i) or
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FIG. 2. The one-component plasma (I =1, D=3) potential
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for the diagrammatic iteration loop with the Onsager seed using
a mesh of 128 points with Av =0. 1 for I =203. See the text and
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type-(ii) calculations, n;„could reach several hundred
iterations, while nd;, reached up to several thousand (in
which case a faster microcomputer, Macintosh SE/30,
was employed).

The general main result of the present extensive nu-
merical study is that provided nd;, ))n;„, the end re-
sults of these two types of calculations are essentially the
same. In other words, the Onsager limit and the solution
to the HNC equation belong to the same basin of attrac-
tion with respect to the diagrammatic iterative map. The
significance of the ideal-liquid state in the diagrammatic
context can be also appreciated as follows: The Onsager
ideal-liquid limit provides a very e%cient and sensitive
probe for the stability of the HNC solution with respect
to the diagrammatic iterations. In Fig. 1 we see directly
how long it takes for a nearly convergent solution to
"unwind" in a type-(ii) calculation, while the end pattern
of the iterations is immediately seen in the corresponding
type-(i) calculation (Fig. 2). In general, the larger the
n;„(i.e., the closer one gets to the solution), the larger
the nd;, s required in the type-(ii) calculation in order to
see the pattern which, in turn, was almost immediately
seen (with a rather small nd;, s) in the corresponding
type-(i) calculation.

Subject to this general observation, the following gen-
eral results were obtained from the type-(i) calculation,
namely with the Onsager seed in the diagrammatic itera-
tion loop.

(i) For all I (1 c the calculations always converge to
the solution of the HNC integral equation. A list of esti-
mates of I c is given in Table I where they are compared
with the freezing parameters. The instability parameters
I c were estimated as follows. For relatively small I the
diagrarnrnatic iteration loop quickly converges to the
solution of the HNC equation. Increasing the value of I
and repeating the type-(i) calculation, the iterations begin
to feature a three-function cycle which slowly converges
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FIG. 3. The one-component plasma (m =1, D=3) potential
energy (up, see the text) as a function of the iteration number
for the diagrammatic iteration loop with the Onsager seed using
a mesh of 128 points with Ar =0. 1 for I = 180.
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to the solution. For a slightly larger value of I the am-
plitude of the three-function cycle pattern persists (see
below) indefinitely, i.e., the iteration process quickly
reaches a limit cycle. For example, the three-function
limit cycle results for I = 180,197,198 for the OCP
(m =1) in three dimensions are presented in Figs. 3—5.
For the D=3 OCP we find that for both %=128 and
%=256, I c is located between 197 and 198, while for
%=64, I & is between 196 and 197. As one comes closer
to I ~ the sensitivity of the iteration loop to perturbations
increases. Figure 6 represents the results for the case of
Fig. 5 but with five mixing iterations before the diagram-
matic loop begins. The possible accuracy for determining
I c depends on the Liapunov exponent for the type of
convergence exhibited in Fig. 4(b). The error bars in
Table I essentially reAect the limitations of a microcom-
puter. It is to be noted, however, that meaningful im-
provement requires a supercomputer.

(ii) As the iteration number increases for j. (I c the
energy integral uz is generally monotonically decreasing
while the energy integral u~ is monotonically increasing,
and eventually they become equal for the HNC solution
(Fig. 7). This behavior of the diagrammatic iteration
loop, featuring the solution as both a minimum and a
maximum depending on boundary conditions for the
structure functions, has already been encountered for
the Onsager limit. The Onsager limit can be obtained as
a "best lower bound problem, " i.e., seeking a maximum,
and as a "lowest self-energy problem, " i.e., seeking a
minimum. ' It is remarkable that the Onsager best-
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FIG. 8. The HNC free energy for the one-component plasma
(m = 1, D = 3) as a function of the iteration number, displaying a
ten function limit cycle for I =280. See the text and the cap-
tion to Fig. 7.

lower-bound problem represents the asymptotic limit of
the HNC variational problem constrained by positive
definite S(k), while the Onsager lowest-self-energy prob-
lem represents the asymptotic limit of the HNC varia-
tional problem constrained by positive definite g(r).

(iii) For I ) I c starting from the Onsager seed the di-
agrammatic iteration loop rapidly converges to a limit
cycle composed of several functions, the number of which
may depend on the coupling parameter I, the power rn,
and the dimensionality D. An example of a ten-function
limit cycle is presented in Fig. 8. (3ther and more com-
plex patterns occur also, as expected from a multidimen-
sional nonlinear iterative map.

In the vicinity of I c, however, and for I ) I c, the
iterations always begin to exhibit a three-function cycle
pattern. These three-function patterns gradually change
(for example, Fig. 4) as the iterations continue. Consider-
ing the time series E(t), i.e., the energy versus iteration
number, as displayed in the figures, then E (t) seems to
converge for 1 ) I c to a pattern E~ '(t) that can be ex-
pressed by the following uniuersa/ form:

E=E' '(t)=F(t L(t mod3)) for—t ))1 .
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vs iterations of Fig. 8. See the text. FIG. 12. Same as Fig. 1 but for m =6, D =3, I =92.

The function F (r) is periodic with period V'. The num-
ber of functions in the limit cycle XE, i.e., the number of
distinct energy levels in the pattern E' l(t), satisfies
Nz ~L. For example, Figs. 1 and 2 correspond to T=3,
L =3, Xz =3, with the function F( r ) given in Fig. 9,
while Fig. 8 corresponds to V'=30, L =X@= 10, with the
function f(t) given in Fig. 10. The cases m=1 in two
and three dimensions (D =2, 3) are the only cases we
studied to feature L, = 3 in the immediate vicinity of I c.
An example of the three-function limit cycle is presented
in Fig. 11. It should be emphasized that none of the func-
tions in a multifunction limit cycle corresponds to a soluss

tion of the HNC equation. Specifically, none of these
functions satisfies hs(r)=h~(r), and in most cases hs(r)
has an unphysical region. Since, in particular, the three-
function limit cycles does not correspond to a trifurcation
of the ordinary solution, its relation (if any) to the
Hammerstein-type integral equation analysis" remains to
be clarified. Other inverse power potentials in general as
well as the one-component plasma (m = —1) in one di-
mension exhibit Xz ))1, with V'=3L as given, for exam-
ple, by Figs. 12 and 13, which should be compared with
Figs. 1 and 2. The three-function limit cycle for the OCP
(m =1) persists in D =3 up to about I =230, where it
gives room to a multifunction limit cycle. Compare Figs.
14 and 15, both describable by Eq. (3). The value of L at
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FIG. 14. Same as Fig. 3 but for I =230.
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I c is a decreasing function of the power m for fixed D.
Except for the initial increase of I. for the cases featuring
L, =3, in general L, is then a decreasing function of I, in
the immediate vicinity of I c, for fixed m and D.

VI. DISCUSSION

The relevant scale for evaluating the correlations be-
tween the instability parameters I c and freezing is the
density change upon freezing. On this scale, the instabili-
ty parameters I c correlate well with the freezing param-
eters I F for the corresponding systems as obtained from
computer simulations in D =3, as well as with one-phase
Lindemann-type structural freezing criteria (for example,
I G) in D=1,2,3. Note that the structural criterion for
freezing I G is expected to be at least as accurate in D =2
as in D =3. Being a structural Lindemann-type and not a
thermodynamic freezing criterion, I z can be meaningful-
ly evaluated also in D =1. Since the diagrammatic itera-
tion proceed without input about characteristics of the
solid, I c cannot be equal to I ~ and thus represents a
structural freezing indicator.

The type-(i) calculation starts with the Onsager seed,
co(r) = —I %(r), which is inserted into an "unmixed" di-
agrammatic iteration loop. Thus, for a given power po-
tential it depends only on the physical coupling parameterI. The instability parameters I c represent an upper
bound for the radius of convergence of the diagrammatic,
small-I, Mayer expansion of the pair-correlation func-
tions. The strong correlation between I c and freezing,
which should be judged on the scale of typical differences
between I F, I ~, and I 6, demonstrates that the di-
agrammatic iteration process, which eventually builds up
the Auid correlation functions, also contains information
regarding the stability of this structure. Specifically, the
type-(i) calculation yields the HNC solution, which is a
nontrivial reasonably accurate description of the OCP
Auid pair structure, and without any outside intervention
it "rings a bell" at I c, which is close to I z. It is interest-
ing to note in Table I for D =3 that I c & I ~ for m ~ 6,
while I c &I I for m )6. A remote possibility is that
this feature might be related to the simulation results, in
which, for m 7, the inverse-power potential liquid
freezes into a fcc crystal structure, while for m &7, the
bcc structure becomes the equilibrium freezing solid
structure. Further analysis of the diagrammatic iteration
process, using new methods recently developed for study-
ing iterative maps, can reveal characteristics of the
liquid structure that are relevant for its relative stability.
Even the linear-stability analysis of the map may lead to
an alternative quantitative structural definition for
effective packing. Finally, the present results indicate
that the recent attempts' to characterize supercooled
liquids and glasses by the solution of the HNC equation

for semiempirical bridge function 8(r) must proceed
with caution.
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APPENDIX: ASYMPTOTIC DIRECT
CORRELATION FUNCTIONS

W(m)= J f(t)t 'dt .
0

In addition to other properties, f (t) must satisfy

f (t &1)=0,

f (t) &0,
DS'(m =D) =2

(A2)

(A38)

(A3b)

(A3c)

Only the hard-sphere and Coulomb-Ewald functions are
known exactly. The D =1 and D =3 hard-sphere func-
tions are

1 —1.5 t +0.5t for D = 3 .(t &1)= (A48)

(A4b)

The D = 1 and D =3 Coulomb functions are

1 —3t +2t for D =1
1 —5t +St —t for D =3 .

f(t&1)= ' (ASa)
(Asb)

In the present study we used for D=2 the following
Ewald function for all powers of m:

f (t)=x(1—3t2+2t3)

+(1—x)(1—St'+ St' —t'), (A6)

where x =
—,', is obtained from (A3c). For D =1 and 3 we

use an interpolation between the hard-sphere and
Coulomb functions:

For inverse-power potentials PP(r) = I r™the asymp-
totic (Onsager) direct correlation function has the form
cHNO(r)= —I'l(r), where +(r)=r™for r &2, with r
measured in units of the Wigner-Seitz radius, ass. The
asymptotic function %(r) is conveniently described by the
corresponding Onsager-Ewald function f (t), as follows:

%(r)=r ™[1/8'(m)]J f (t)t 'dt, (Al)
0

where

for D =3,
x(1—t)+(1—x)(1 3t +2t ) for D=l-(t)= .
x(1—1.5t+0. 5t )+(1—x)(1—5t +St —t )

(A7)

(A8)
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a(m) =D2™/[2m(m—D) JI'(m) j . (A9)

For D= 1 we have a(m)=2 g(m), where g is
Riemann's zeta function. For D=3, using the table in

where for each power of nz, x is obtained from the known
HNC Madelung constant (a=u /I for large I ), related
to the Onsager-Ewald f ( t ) by

Ref. 4(b) we find x =0.109415, 0.164891, 0.234345, and
0.285 826, respectively, for m =4, 6, 9, and 12. Finally, it
should be emphasized that the global basin of attraction
for the HNC solution is reasonably wide, and the results
are not sensitive to reasonably wide variations in f (t)
For example, using f (t) =exp( —t ) for the Coulomb po-
tential leads to the same result as using the exact HNC
Ewald function (A5b).
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