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A theory for the solubility of small particles in static structures has been developed. The distribu-
tion function of the solute in a frozen solid has been derived in analytical form for the quantum and
the quasiclassical cases. The solubility at infinitesimal gas pressure (Henry’s constant) as well as the
pressure dependence of the solute concentration at elevated pressures has been found from the sta-
tistical equilibrium between the solute in the static matrix and the ideal-gas phase. The distribution
function of a solute containing different particles has been evaluated in closed form. An application
of the theory to the sorption of methane in the computed structures of glassy polycarbonate has re-
sulted in a satisfactory agreement with experimental data.

INTRODUCTION

The solubility of small atoms or molecules in solids is
of interest both from a fundamental and a practical point
of view. Separation of gaseous mixtures (e.g., air separa-
tion, hydrogen isotope separation, etc.), the solubility of
boron and carbon in metallic alloys, or deuterium solubil-
ity in palladium are just some of the relevant examples.

The solubility of the smallest molecules can be treated
as a limiting case where one might conjecture that it is
tolerable to neglect a structural relaxation in the host ma-
trix. This makes it possible to describe the solubility as a
statistical equilibrium between solute particles and the
frozen static structure.

In general, a sorption process leads to some structural
relaxations in the solid matrix. Nevertheless, even here
the static approach can be useful as a first approximation
to estimate the behavior and properties of a solute.

It is the goal of this paper to establish the fundamental
relationships governing the statistical behavior of small
solute atoms and molecules in frozen matrices, i.e., to
evaluate the distribution function for the solute gas in a
static host matrix.

GAS DISSOLVED IN A MATRIX
AS SPATIAL FERMI GAS

Basic concepts

We consider here solids as sets of atoms, frozen in the
positions of detailed mechanical equilibrium (they may
constitute a metastable configuration), i.e., we will deal
with a static model that does not take into consideration
the thermal motion of atoms. From this point of view a
solid structure is specified by a list of coordinates of
atoms that constitute the body under consideration.

Let us consider the potential energy U (x,y,z) that de-
scribes the interaction between a structureless solute par-
ticle at position (x,y,z) and the atoms of a frozen struc-
ture. The real trajectories of solute particles in a frozen
structure are not trivial, but an important feature of this
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movement can be elucidated explicitly: a solute particle
should reside a large fraction of time in the vicinity of the
minima of the potential energy U(x,y,z). These minima
are expected to be spatially separated by a space in which
the probability of finding a solute particle is considerably
lower. Let us define here the sites for a solute particle in
a frozen structure as the vicinity of the local minima of
the potential energy U (x,y,2).

We assume that the solubility in static host matrices
obeys the following two principles: (i) the solid structure
remains ‘“frozen,” i.e., the static description of the solid
by a list of coordinates is not changed by the presence of
the solute particles; (ii) no more than one solute molecule
is able to occupy a site at one time.

Assumption (ii) has the effect of replacing the ‘“‘real”
potential of interaction between any solute particles by a
geometrical principle, which is analogous to the well-
known Pauli principle for electrons. This principle leads
to a system with statistics of the Fermi-Dirac type and we
define here an ensemble of particles of solute obeying this
principle as a “spatial Fermi gas.”

Statistics of the spatial Fermi gas

Let a unit volume of the medium consist of K sites.
Consider now the ensemble consisting of L ( >>1) images
of this unit volume. The macroscopic state of the spatial
Fermi gas in this ensemble may be described as follows.!
Let us distribute all sites in the ensemble among groups,
each containing one and the same site from every image.
Let the groups of sites be numbered by j (j =1,2,...,K)
and let N; denote the number of sites in group j that are
occupied by solute particles at a given time. The set of
numbers N; completely describes the macroscopic (in the
general case, nonequilibrium) state of the gas.

The free (Helmholtz) energy A of a given macroscopic
state of the gas is

A=(E)—TS, (1)

where T is the temperature and S and { E ) are the entro-
py and the mean energy of the macroscopic state, respec-
tively. To find the value of { E) we neglect any interac-
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tion between solute particles at different sites so that the
mean energy { E ) of a given macroscopic state of the gas
is just the sum of the mean energies of solute particles at
site j, (g; ), collected over all the sites that are occupied
by the solute particles at a given time. The free energy of
the macroscopic state of the gas can now be written as

K
A= Ni(g;)—TS . )
j=1

The total entropy of the gas, S, can be considered as
being made up of two independent parts. The first one,
S, is associated with the indeterminacy of the positions
of the solute particles at the sites and can be written as

K
S1= X N;s; , (3)
j=1
where s; is the entropy of a solute particle residing at site
J- The second term, the communal entropy S,, has its
origin in the indistinguishability of the different micro-
scopic realizations of a given macroscopic state. To cal-
culate the communal entropy we should determine the
number of microscopic ways in which a given macroscop-
ic state can be realized. For the spatial Fermi gas this
number is just the number of ways of selecting N; out of
L states, i.e., the number of combinations of L things, N [
at a time. Thus the communal entropy S, of the gas is

L!

K
S27k 2 VL =,

j=1

) 4)

where k is the Boltzmann constant. Since the numbers L
and N; are supposed to be large, we can use Stirling’s ap-
proximation, InN!= N In(N /e), and find

K
S,=3 [LInL —N;InN;—(L —=N)In(L —=N;)] . (5)
j=1

The free (Helmholtz) energy A of the macroscopic state
of the dissolved gas can be written as

K

A4 =3 N;((g;)—Ts;)—TS, . (6)
j=1

The term in the parentheses is just the free energy a; of a

solute particle occupying site j. Hence we can rewrite
Eq. (6) as

K
A=Y N;a;,—TS, . (7)
j=1
At equilibrium the free energy of the gas should be at a
minimum, subject to the subsidiary conditions

K
> N;=N, (8)
ji=1

where N is the total number of molecules of the gas. The

method of Lagrange multipliers gives the following set of

equations for N;:

o)
(4 + = i=1,2,..,K , 9
BNj( aN)=0, j=12,..,K ©)

6489

where a is a constant. By combining Egs. (5), (7), (8), and
(9), we find

a;+a+kT I[N, /(L —N;)]=0, j=1,2,...,K .
(10)

To find the undetermined multiplier a we write Eq. (9) as
a relation between differentials:

dA +adN =0 (11)

and compare this expression with the differential free en-
ergy at constant volume and temperature:

dA =pdN , (12)

where p is the chemical potential of the spatial Fermi
gas. By solving the set of equations (10), one finds that
the equilibrium mean number {n f )eq of solute molecules
at site j is given by

(N;)eq _ 1

(a;,—u)/kT ’
L e M 4

(1)) eq= (13)

where ( )., indicates the equilibrium values. Formula
(13) gives the equilibrium distribution function for a dis-
solved gas obeying Fermi statistics. When
exp((a;—u)/kT)>>1, the distribution function ap-
proaches the Boltzmann distribution function, as should
be expected.
The normalizing condition for the distribution function
(13) is
s ! (14
2R ¢ )

where ¢ is the concentration of the solute, i.e., the total
number of solute molecules per unit volume. Equation
(14) relates the concentration c, the temperature 7, and
the chemical potential p at constant volume ¥ [a conse-
quence of the “‘static” assumption (i)] and can be con-
sidered as the equation of state for the spatial Fermi gas.
The spectrum of a; values has its origin in the microscop-
ic details of the particular system under consideration
and can be determined when the energy levels of a solute
molecule at any site j are known:

—gW
a;=—kThZe =, (15)
s

where s numbers the energy levels Es(j) of a solute particle
being localized at site j.

In the limiting case of low temperature, only the levels
with the lowest energies are important and one can use
the harmonic approximation to determine values of q;.
In this case the potential energy U (x,y,z) of a solute par-
ticle localized in the vicinity of the bottom of site j is ap-
proximated by the form

U(Ax,Ax,,Ax3)=U{ +13 k[PAx;Ax, , (16)
il

where UY’ denotes the potential energy of a solute parti-
cle at the bottom of site j, Ax; (i =1,2,3) are the com-
ponents of the displacement vector with the origin at the
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bottom of site j, and k’ is the Hessian matrix evaluated
at the bottom of site j:
h_ U
kY =—. 17
i 0x,;0x; (a7

The free energy a; of a solute particle at site j is then

/T
"), (18)

a;=¢;+kT3 In(1—e
r
where ¢; is the energy of a solute particle executing
“zero-point” vibrations at site j, 4 is the Planck constant,
and v‘,f) (r =1,2,3) are the frequencies determining the
energy levels ES(J ) of a solute particle oscillating at site j,

EV=3hv(n,+1), (19)
r

where n, (r =1,2,3) are non-negative integers.

In the limiting case of high temperatures one can use
the quasiclassical approximation? to calculate the parti-
tion function Q; of a solute particle at site j:

0= # f fdp dq e /AT = Ulxp2)/kT
2mmkT
h2
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fV e *U(x,y,z)/deV , (20)

j

where p=(p,,p,,p,) is the momentum of a solute mole-
cule, dp dq denotes the volume element in phase space,
Vj denotes the volume of site j, U(x,y,z) is the potential
energy of a solute molecule at the position (x,y,z), and m
is the mass of a solute molecule. The spectrum of q;
values can be calculated then in accordance with

a;=—kTnQ; . 1)

It is a condition for the quasiclassical approximation to
be valid that the energy intervals in the vibrational struc-
ture of solute molecule oscillations at the sites should be
small compared with the thermal energy. To estimate
the validity of this condition for a specific system under
consideration one can compare the frequencies of the
normal vibrations, v(sj), calculated in the harmonic ap-
proximation and the thermal energy. If the relation
hv\/) << kT holds for the normal modes, then we can con-
sider this fact as an indication of applicability of the
quasiclassical approximation.

To calculate the spectrum of a; values by means of a
suitable approximation noted above, it is necessary to
specify the system of interest. For a symmetry of crystals
the spectrum of a; values has only a few components and,
in principle, it seems to be possible to evaluate this spec-
trum in analytical form. For disordered systems it is
atomistic computer modeling that provides a unique tool
to evaluate this spectrum and an example of this will be
presented in the last part of this paper.

PHASE EQUILIBRIUM BETWEEN THE IDEAL GAS
AND THE SPATIAL FERMI GAS

Consider the spatial Fermi gas as introduced above in
contact with the ideal gas of the same molecules, at tem-
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perature T and pressure P. At equilibrium the chemical
potentials of these two gases must have the same value, u.
The chemical potential of the ideal gas is!

L2 3/2

=kT1 S
K n 2amkT

kT > (22)

where m is the mass of a molecule and 4 is the Planck
constant. If we assume that the internal degrees of free-
dom of the ideal-gas molecules and those dissolved in the
solid matrix are the same, it suffices to substitute Egs.
(20), (21), and (22) into (13) to find (in the quasiclassical
case) the equilibrium number of solute molecules at site j
at temperature T and the ideal-gas pressure P:

Y
LIA

Z;

(1) eq= (23)

where Z; is the spatial (configurational) part of the parti-
tion function Q;:

Z;= [, e Viera/kigy (24)
j

The equilibrium concentration ¢ of the solute can be
obtained now as the sum over the equilibrium numbers of
solute molecules for every site j per unit volume,

K K P
CEz<nj>eq=2 kT » (25)
j=1 j=l—4p
Z;
where K is the total number of the sites in a unit volume,
as defined above. The corresponding relation for the
quantum case states

K P —EW kT
c=3 , Q=3e ) (26)
=1 QumkT)*kT 4P ;<
r3Q;

where the summation over s is made over all quantum
levels of a solute at site j. Equations (25) and (26) can be
written in a unique manner:

§ i 27)
c=y ——,

=i 1+b;P

where the constant b; characterizes the sorption ability of
site j.

THE SORPTION ISOTHERM

Equation (27) is a description of the sorption isotherm.
It provides the total dissolved concentration at any pres-
sure, subject of course to the assumptions noted above.
Its usefulness lies in the fact that for any temperature T
the local classical configuration partition function Z; or
the quantum energy levels E}S) can be evaluated for each
site j, once the structure under consideration is specified
in detail and the interaction energy U(x,y,z) is known for
a guest molecule as a function of its position (x,y,z) in the
host matrix. If this is done, the solute concentration ¢
can be evaluated for any particular pressure P.

Let us now consider the sorption isotherm in Eq. (27)
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in the limit of low pressures P. For small P we can
neglect the term b, P in the denominator of Eq. (27) and
find

K
c=P3 b;=HP, (28)
j=1

where H is a constant of the system. Expression (28) in-
dicates that in the limit of small pressure the spatial Fer-
mi gas obeys Henry’s law, i.e., the concentration of the
weak solution is proportional to the ideal-gas pressure.
In the quasiclassical case, Henry’s constant H is the
volume integral over the entire structure:

=L —Ul(x,p,2)/kT,
H=—" [ e av, (29)
where V is the volume of the solid body. In the quantum
case, the corresponding expression for Henry’s constant
is (¢ denotes the solute energy levels in a unit volume)

h3 —E, /kT

H=———"——-+Se¢
kT (2mmkT)*"? %

(30)

At elevated pressure the dependence of the solute con-
centration on the ideal-gas pressure [see Eq. (27)] can be
represented as a sum of linear terms, b; P (for sites j with
b;P <<1), and “Langmuir-like” terms, b;P/(1+b;P) (for
sites j where the term b; P is comparable to or larger than
unity). If a system consists only of ‘“linear’’ sites and a set
of identical “Langmuir” sites, the well-known “dual-
mode-sorption” model® is obtained:

by P
C=kDP+CH1_+_Hﬁ s (31)

where kj, Cy, and by are the constants. This form is
widely used in practical applications* as a convenient
functional form for fitting experimental data.

From the phenomenological point of view, the dual-
mode-sorption model just reflects the fact that the sorp-
tion isotherms cannot separately be fitted either by
Henry’s or a Langmuir isotherm. In this sense, the form
(31) contains three adjustable parameters (kp,Cy by) and
usually allows one to fit experimental data on the gas
solubility in solids in a quantitative manner.

It is fairly often implied that the dual-mode-sorption
model has a physical basis in two distinct mechanisms of
gas solubility in solids. The first one is assumed to be as-
sociated with a “liquidlike” solubility, while the second
one is due to gas solubility in some “preexisting holes” in
a solid structure.* Hardly any direct physical evidence
can be found for the validity of this way of thinking.

To check the microscopic basis of this approach for the
gas solubility in static structure, one can analyze the
spectrum of b; values [see Egs. (27) and (31)]. If the
dual-mode-sorption model is meaningful for this case,
then the value by should stand out as a part of the spec-
trum of b; values, bringing a substantial contribution to
the total solubility of a gas.

We shall numerically investigate a shape of this spec-
trum for the methane solubility in the computed struc-

tures of glassy bisphenol-A-polycarbonate in the last part
of this paper.

SPATIAL FERMI GAS CONTAINING
DIFFERENT PARTICLES; GAS MIXTURES

Let us consider again the ensemble consisting of L im-
ages of a unit system and containing L X K sites. Suppose
now that the spatial Fermi gas consists of particles of M
different kinds. Let N;” be the number of particles of
kind i in group j, N; be the total number of particles in
group j, and N be the total number of the particles of
kind i in the ensemble. We assume that no more than one
solute particle of any kind can simultaneously occupy any
site in a frozen structure of solids. The problem here is
that, generally speaking, the locations of local minima of
potential energy U (x,y,z) for different solute particles
might not coincide. But, in practice, there should be a
correlation between the minima for similar solute parti-
cles simply due to the fact that a frozen solid matrix has
to impose strong geometrical limitations on the location
of solute particles in solids. We shall suppose below that
there is an unambiguous correlation between the loca-
tions of the potential-energy minima for different solute
particles.

In calculating the communal entropy S, for the mix-
ture of solute particles, the essential feature is that the
number of combinations of L things N; at a time should
be divided not by N,! as for a gas containing identical

particles [see formula (4)], but by the product
N}”! s N}M)! of the factorials of the numbers of parti-
cles of all components of the gas in group j:
S, =k S 1 L (32)
2 EI "IN N Ny |

where K is the number of sites in a unit volume. By using
Stirling’s approximate formula for the factorials in (32),
we have

K
S,=k3 [LInL —N{"InN{V— -
j=1

—(L—N;)In(L —N,)] . (33)

— N (M)
Nj lan

The free energy A4 of the macroscopic state of the gas can
now be written as

K
- (a7 .. (M) AT(M)y_
A_'21(aj N;V+ +a;""N;"") =TS, , (34)
i=
where a|” is the free energy of a particle of kind i residing
at site j. From the condition for this expression to be a
minimum under the condition of a constant number of
particles N'” of every kind i, we have
o)
(i)
8N,

(A —‘u“)N()— e _H(M)N(M)):O ,

j=1,...,K, i=1,...,M, (35)

where p'? is the chemical potential of particles of kind i.
The corresponding set of equations for the equilibrium
distribution functions for the components of the gas is
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) (i) (D)
nO4 (14! =
j=1,...,K, i=1,...,M, (36)
where n!” is the mean occupancy of site j by the particles
of kind i. The solution of this set of K XM equations

gives the equilibrium occupancy (n”)
particles of kind i:

eq Of site j by the

(w—a'Dy/kT
(hy — e !
(nj")eq= M

I+ 3 e

m=1

i=1,...,K, i=1,...,M. 37

. b
(u~alm)/kT

The equilibrium concentrations ¢
kind i can now be calculated as

. K o
=3 (n}”)eq, i=1,...

j=

) of the particles of

M, (38)

where the values of (n["), are given by formula (37).
This set of equations implicitly determines the chemical
potentials u'? of the components of the spatial Fermi gas
asa function of temperature 7T and partial solute concen-
trations ¢'” and can be viewed as the “equation of state”
for a spatial Fermi gas containing different particles.

Let us consider now the phase equilibrium of a spatial
Fermi gas with a mixture of the ideal gases. We shall use
here the quasiclassical approximation [Egs. (20) and (21)]
to calculate the free energies a]‘-”. Collecting formulas
(20)-(22) and (37), we obtain the following final expres-
sions for the equilibrium distribution functions of the
components of the spatial Fermi gas in contact with the
mixture of the ideal gases:

Z;i)P(”
kT +ZVpM4 ... 4 ZzMpM)?®
J J
M, (39)

(1) q=
j=1,...,K, i=1,...

where Z}” is the configurational part of the partition
function of a particle of kind i at site j and P’ is the par-
tial pressure of component i. The equilibrium solute con-
centration ¢'? of the component i can now be found by
the formula
K {q)
(= p Z;
(Mp(Dp ...
1 kT +Z;VP 7+

c
(Lyp(L)
+zPp

i=1,...,M . (40)

Equation (40) states that at elevated pressures the solu-
bilities of the components of the spatial Fermi gas are not
independent and the partial pressure P'” does not deter-
mine in a unique manner the appropriate concentration

¢, This means that it is necessary to specify the partial
pressures of all components to predict the concentration
of a solute of interest.

In the limiting case of low partial pressures of all com-
ponents of a gas, we can neglect the terms Z/”P‘” in the
denominator of Eq. (40) and find
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cm: P(l)
kTV
where V is the volume of the solid body under considera-
tion and U'?(x,y,z) is the potential energy of the interac-
tion between a solute particle of kind i being at a point
with coordinates (x,y,z) and the atoms of a solid matrix.
In this case the solubilities of the components are in-
dependent and it becomes possible to use Henry’s law for
any kind of solute particle.

e U mnakgy @1)
4

AN APPLICATION: METHANE
IN BISPHENOL-A-POLYCARBONATE

Recently,>® the computed structures of glassy polycar-
bonate of 4,4'-isopropylidenediphenol (bisphenol-A-
polycarbonate, PC) have been produced at a density of
1.20 gcm 3 (corresponding to a well-relaxed glass at am-
bient temperature and a pressure of 1 bar) by minimiza-
tion of the total potential energy of the polymeric chain
in a cell with a spatially periodic continuation condition.
The microstructures consisted of a chain of seventeen re-
peat units (485 atoms) and occupied a cube with edges of
18.44-A length. Twelve such atomistically explicit mi-
crostructures of PC were the basis of the calculations re-
ported here.

Methane is traditionally considered as a polyatomic
molecule that could most reasonably be represented as a
spherically symmetric one.” If we suppose further that
the internal degrees of freedom of a methane molecule
can be considered as independent of the dissolution pro-
cess, then it becomes possible to use directly our current
theory to evaluate the sorption isotherm. Reliable exper-
imental data® are also available for the methane solubility
in the glassy polycarbonate in a pressure range of 0—60
bar and we choose the sorption of methane in the glassy
polycarbonate to illustrate a possible application of the
theory developed above.

The interaction potentials

We suppose that the Lenard-Jones 6-12 function can be
used to describe the potential energy of the interaction,
U, (R), between a methane molecule and the host atom of
type k at the separation R:

6
Tk

R

Ok

R

Uk(R):_46k

12
I ) (42)

where €, and o, are the parameters of the interaction.
The most traditional combining rules’ were used to esti-
mate these parameters:

O toum
2

where the parameters for the interaction of two like
atoms in the polymeric matrix, €, and o, were taken
as provided with the structures of PC (see Table I), the
methane-methane interaction parameters, €,,/k =144 K
and o ,,=3.80 A, were taken from Ref. 9, and the adjust-
able parameter k,, quantifies the deviations from the

O = ek:Vekka(l_kM), (43)
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TABLE 1. Interaction parameters between species of
bisphenol-A-polycarbonate.
Species o (A) e/k (K)
Carbon (in phenylene) 3.30 54.2
Carbon (in aliphatic structure) 3.03 59.2
Carbon (in C=0) 3.03 90.1
Oxygen (in C=0) 2.67 127.5
Oxygen (in C—0—C) 2.67 97.0
Hydrogen 2.14 61.6
Methyl—pseudospherical 3.39 94.4

pure geometric mean rule (k, =0), which is known’ to
tend to overestimate the strength of the interaction be-
tween unlike molecules.

Simulation procedure

As a calculation procedure we used an orthogonal
equispaced net of 107 points with 0.085-A intervals for
every static structure. At the grid points the potential
energy U(x,y,z) of the interaction between the methane
molecule and all atoms of the frozen PC structure was
calculated. The bottoms of the sites were found as points
on the grid at which the potential energy U (x,y,z) is less
than the one at the 26 surrounding grid points. These 26
points lie on the surface of the cube surrounding the test-
ed point, where the edge length of the cube equals the
double-grid interval. The frequencies of the normal vi-
brations, v\’ [see Eq. (19)] were calculated at the bottom
of sites j as
172

k ()
- , (44)

m

=1
r 21

where m is the mass of the methane molecule, k./’ are the
eigenvalues of the Hessian matrix, k}/), governing the
solute oscillations at site j in the harmonic approximation

€ o X; X
k=—243 -2 | | =% | [8°5L -5,
[1 %Ri Ra Ri il
2 | Ze : 14550 g 45)
Ra Ri il b

where R,=(x,x,,x3) is the distance between the bottom
of a site under consideration and atom a of the host
structure, 8;; is the Kronecker tensor, and the summation
is made over all atoms.

It was found that a condition Av\’ <0.3kT holds for
the sites that bring a contribution to the methane solubil-
ity and we conclude that the quasiclassical approximation
is here a suitable one. To compute the sorption isotherm
in the quasiclassical case, it is necessary [see Egs. (24) and
(25)] to perform the numerical integration in the limits of
sites j. To reveal the borders of sites j, the steepest-
descent path is chosen from every point of the net which,
by necessity, will terminate in one of the local potential-
energy minima. In this way a unique assignment of all
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points of the net to sites j has been accomplished. The
calculation of Z; values is then straightforward.

All computations were carried out at the temperature
T =300 K.

Deviations from the ideal state

At elevated pressures the deviations from the ideal
state can become important. This can result in the im-
possibility of using the ideal-gas expression for the chemi-
cal potential p [see Eq. (22)]. It is the fugacity of a gas
that quantifies these deviations.! The fugacity P* is the
pressure at which an actual gas has the same chemical
potential u as the ideal gas at pressure P. Since the ener-
gy of the interaction, Uy (R), of two methane molecules
at the distance R is assumed to be known, we can esti-
mate the deviations from the ideal state in a quantitative
manner:!

BP
kT

— Uy (R)/KT

P*=P |1+ , B=27rf0°°(1—e )RR ,

(46)

where B is the second virial coefficient.

We shall correct below the deviations from the ideal
state by using the fugacity P* instead of the actual gas
pressure P[(P —P*)/P =~0.08 at P =50 bar] for the eval-
uation of the sorption isotherms [see Eq. (25)].

The computed isotherm

Figure 1 presents the calculated solubility of methane
in the computed structures of PC together with experi-
mental results by Moll.® The considerable variation in
the individual isotherms reveals the heterogeneous nature

20 v —
156 — o “
- ==~
Z =7
~. 10 1
o
5t J
0 1 1 1 1 1
0 10 20 30 40 50 60
P (bar)
FIG. 1. Methane solubility in glassy polycarbonate. N,

denotes the number of molecules of the ideal gas in 1 cm® at
T =300 K and P =1 bar. The solid lines represent the sorption
isotherms computed with k,,=0.56 for twelve computed struc-
tures of PC. Solid circles represent the experimental data on
the methane sorption in glassy PC of Moll (Ref. 8). The dashed
line is the result of fitting (Ref. 8) with the “dual-mode-
sorption” model [see Eq. (31)] with k,/N;=0.18 bar .
Cy /N =5.56,and by =0.095 bar ™ ..
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0.20 ———— 1.00 sites with the values of 1/b;~ 10 bar are of special impor-

----------- tance for the methane solubility in glassy PC. By taking

015 | lows into account the simple phenomenological nature of the

= dual-mode-sorption model, one should admit here that

> s the agreement is rather satisfactory. In other words, the

o 10-50 dual-mode-sorption model might be considered as a

3 i reasonable model for the methane solubility in computed

0.05 | LA {0.25 structures of glassy PC although the distribution of sites

e is of a form that does not render it amenable to a quanti-

0.00 T ™ 0.00 tative reduction to the shape predicted by the dual-
o 100 200 300 400 500 mode-sorption model.

1/b (bar)

FIG. 2. The distribution functions p(P,1/b) for the methane
solubility in the computed structure of glassy PC. The corre-
sponding integral distribution functions are also shown (right
side of the plot). Solid lines represent the distribution functions
computed at a pressure of 1 bar; dotted lines represent the dis-
tribution functions computed at a pressure of 50 bar.

of the computed structures and can be put down to the
finite size of the simulated cell. The computed isotherms
are rather sensitive to the value of the adjustable parame-
ter k,, (the computed methane solubility drops by more
than one order of magnitude when k,, changes from zero
to 0.5). An agreement with experimental data can be
achieved with k,, lying in the range 0.5-0.6, which is in
acceptable agreement with the range 0.2-0.5, which was
experimentally determined for the interaction between
helium and the heavier noble gases.’

Figure 1 shows that the computed isotherms have the
proper functional form at elevated pressures. This fact
convinces us that the Fermi statistics for the solute is
indeed a physically correct approximation to quantify the
departure of the sorption isotherms from Henry’s law.

Let us consider the normalized distribution function

1 dc
= _ 4c 47
p(P,1/b) c(P) d(1/b) (47)

where dc denotes the contribution brought to the total
gas solubility, c (P), by the sites with a value of 1/b; lying
in infinitesimal intervals between 1/b and 1/b +d (1/Db).
The computed distribution functions (see Fig. 2) highlight
the components in the range of 50-500 bar, while the
dual-mode-sorption model predicts (see Fig. 1) that the

CONCLUSIONS

A theory for the solubility in static structures has been
presented. This theory is based on the statistics describ-
ing a gas dissolved in a matrix with sites that can be oc-
cupied by at most one solute molecule (a so-called spatial
Fermi gas). The general thermodynamic relations, such
as the equilibrium distribution function, the free energy,
the pressure dependence of the concentration of solute
being in contact with the ideal-gas phase, etc., have been
evaluated in closed form for a spatial Fermi gas contain-
ing identical particles as well as different ones. The
theory has been applied to the methane solubility in
atomistically described computed matrices of amorphous
polycarbonate.

The success of the theory in yielding the correct order
of magnitude and the proper functional form of the sorp-
tion isotherm with an acceptable value of the adjustable
interaction parameter is indeed somewhat surprising if
one realizes that the theory does not account for the
thermal vibrations in the solid matrix and swelling of the
matrix, which might become significant at the elevated
pressures. However, the apparent success of the present-
ed, simple model seems to indicate that such a refinement
is currently not called for.
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