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This paper examines the general percolation problem of cutting randomly centered insulating
holes in a two-dimensional conducting sheet, and explores how the electrical conductivity o. de-
creases with the remaining area fraction. This problem has been studied in the past for circular,
square, and needlelike holes, using both computer simulations and analog experiments. In this pa-
per, we extend these studies by examining cases where the insulating hole is of arbitrary shape, us-

ing digital-image-based numerical techniques in conjunction with the Y-V algorithm. We find that,
within computational uncertainty, the scaled percolation threshold, x, =n, (L, )e=5.9+0.4, is a
universal quantity for all the cases studied, where n, is the critical value at percolation of the num-

ber of holes per unit area n, and (L,tt) is a measure of nt ', the initial slope of the o (n) curve, cal-
culated in the few-hole limit and averaged over the different shapes and sizes of the holes used. For
elliptical holes, I.,fr=2(a +b), where a and b are the semimajor and semiminor axes, respectively.
All results are well described by the universal conductivity curve:
o/era=[(1 —x/5. 90)(1+x/5. 90—x2/24. 97)(1+x/3. 31) ']",where x=nL2ft, and oo is the con-
ductivity of the sheet before any holes are introduced.

I. INTRODUCTION

The problem studied in this paper is that of the con-
ductivity of a random continuum. We start with a uni-
form two-dimensional sheet of host-conducting material
with conductivity oo, and randomly introduce extended
defects having conductivity O.

d and some given shape.
These defects are allowed to freely overlap. When crd is
nonzero, we have a composite material. When o.

d is zero,
the defect is thought of as a hole, resulting in a continu-
um percolation problem. In this case, p denotes the area
fraction of o.

o material remaining after a given number of
defects have been introduced, or holes punched out.

In recent years, much attention has been given to the
value of critical exponents at the percolation threshold.
For the conductance case, the exponent of interest, usual-
ly denoted by t, determines how the conductance goes to
zero at p =p„ the critical threshold. In this paper, we
concentrate on two subjects that are arguably of more
importance in the kind of continuum percolation prob-
lems that arise in real materials: (l) the overall behavior
of the conductance as a function ofp, and (2) the relation-

ship between the effect of one defect on the overall con-
ductivity and the many-defect critical threshold.

Previous work on which this present effort builds in-
cludes a joint experimental and computer simulation
study of the continuum percolation problem of needle-
shaped insulating defects, ' hereafter referred to as I, and
a study of the dependence of the percolation threshold on
the aspect ratio of the elliptical holes introduced, denot-
ed hereafter as II.

In Sec. II we briefly review previous efforts to relate
one-defect properties with percolation thresholds, which
have been mainly cast as attempts to formulate a dimen-
sionless, invariant percolation threshold using lengths or
areas that are definable by one-defect properties only. In
Sec. III, we present new computer simulations for the
needle problem, using both continuum and lattice tech-
niques. We define the initial slope and critical threshold
of the needle problem in terms of the number of defects
per unit area and use this to define a generalized dimen-
sionless variable that is natural for this problem and that
suggests the invariant defined in this paper. Ellipse per-
colation threshold data from II is used as a erst test of
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the new invariant in Sec. IV. Section V presents digital-
image simulations of percolation problems with arbitrari-
ly shaped defects. We show that the critical concentra-
tion of defects can be predicted from knowledge of the
conductivity in the few-defect limit without even know-
ing the shape of the defects. In Sec. VI we define a
universal conductivity curve for the class of percolation
problems described in this paper. It is shown that all pre-
vious conductivity data, both from simulations and ex-
periments, falls on this universal conductivity curve. In
the summary, we discuss how the universal conductivity
curve should be used.

II. DIMENSIONAL INVARIANTS
FOR PERCOLATION THRKSHOLDS

Looking at the percolation literature as a whole, there
are two main bodies of work. The first is produced by
those researchers who are interested in the percolation
phase transition as a model second-order phase transi-
tion. The focus of their work is on the various critical ex-
ponents displayed as p approaches its critical value p, ei-
ther from above or below, and the interrelations between
these critical exponents.

The second body of work is produced by those who are
more interested in applications of percolation geometry
to real materials problems. These researchers tend to
focus on the value of p, as a function of material micros-
tructure, as the mere existence of a percolation threshold
is what tends to dominate material properties, rather
than the exact values of the critical exponents.

Most theoretical progress seems to have been made in
the first area above, that of critical exponents and their
interrelationships. Good reviews of percolation critical
properties exist. Our work, however, deals with the
latter category, that of relating p, to microstructure via
invariants constructed out of p, and properties of micro-
structural constituents.

The first work in this area was done by Scher and Zal-
len ' in 1970. They proposed, for site percolation prob-
lems on a lattice, that p„ the critical fraction of sites
present, would be an invariant 'vhen expressed as a
volume fraction, depending only on dimensionality.
Their construction was to center a sphere, with radius
equal to half the nearest-neighbor lattice spacing d, at
each site. The critical volume fraction occupied,
a, =—p, m.d /(4a „)=0.45 in two dimensions, and
U, =p, ~d /(6U~„)=0. 16 in three dimensions, was then
found to be invariant, within 10% or less, for regular and
irregular lattices, where a„„and U „. are the primitive
site volumes for the lattices considered. This invariant
seems to hold only for percolation clusters built up of
nonoverlapping particles, since, for example, in two di-
mensions, overlapping circles with random centers re-
quire a higher area coverage of 0.68 in order to per-
colate. Recently, in a lattice-based growth model for the
reactive growth during curing of cement-based materials,
percolation thresholds for solid and pore phases were
found to roughly agree, in two and three dimensions,
with the Scher and Zallen invariants. ' Thus there are

some complex percolation problems to which the Scher
and Zallen conjecture is relevant, although the precise
conditions necessary for this conjecture to hold are not
yet clear.

For continuum percolation problems, with overlapping
defects, for which the Scher and Zallen conjecture is
definitely not applicable, the main work on predicting p,
has been by Balberg and co-workers. The focus of their
work has been on using the excluded volume or area to
construct invariants with which to predict p„ in prob-
lems where randomly centered defects like circles and
rods are introduced into a host material, gradually cul-
minating in a percolation transition.

The excluded volume of an object is that volume of
space around the object in which the center of another
such object can be placed so as to guarantee an overlap.
For example, for a circle in two dimensions, the excluded
area a,„ is 4mr, since two circles with radius r whose
centers are less than 2r apart must overlap. In general, if
the objects have a size or orientation distribution, one
defines ( a,„)or ( U,„),the local excluded area or volume
averaged over these distributions, so that the total ex-
cluded area or volume at percolation is ( A,„)=n, ( a,„)
or ( V,„)=n, ( U,„),where n, is the percolation threshold
defined in terms of a critical number of objects per unit
area.

References 9 and 10 summarize in more detail what is
known about the proposed invariants ( V,„) and ( A,„).
The following two results are known: (1) the critical ex-
cluded volume is a dimensional invariant for continuum
systems where the defects are all of the same shape and
orientation (circles or parallel squares with various size
distributions), and (2) when random orientations of the
defects are allowed, then the critical excluded volume is
much more variable. Even though the critical excluded
volume is not the same for cases (1) and (2), it can be ap-
proximately bounded' by 3.2& ( A,„)&4.5, and
0.7&( V,„)&2.8.

In Sec. IV, a better invariant is described that is the
same for both cases (1) and (2) above.

III. NKKDLK SIMULATION RESULTS

In I, the continuum percolation-conduction problem of
a conducting sheet with random insulating needle-shaped
holes was studied, both experimentally and using com-
puter simulation. The applied voltage is always in the
horizontal direction. The needles were equal length,
zero-width cuts through which no electrical current
could Aow.

The experimental study was carried out using needles
that were aligned horizontally or vertically with equal
probability, and placed with random centers throughout
the conducting sheet. Because of the experimental
method used, the needles were actually very thin rectan-
gles, with a width to length ratio of about 50. Periodic
boundary conditions were not employed. A needle whose
center would fall outside the sheet boundary was not al-
lowed to be placed. However, there were many needles,
with centers near the boundary, which when placed over-
lapped the boundary. More experimental details are



43 UNIVERSAL CONDUCTIVITY CURVE FOR A PLANE. . . 6475

given in I.
Computer simulations for the electrical conductivity

were carried out using the "blind-ant*' algorithm. " A
random array of horizontal and vertical needles was
created, using periodic boundary conditions, and then
many random walkers, called ants, were "parachuted"
down onto the sheet at random positions, and made to
carry out random walks in the open areas, with the re-
striction that the ants could not cross a needle. The
blind-ant results presented in this paper represent im-
provements on the work described in I. The algorithm
used incorporated the first passage method of To-
bochnik, ' whenever the walker was farther away than a
predetermined distance from the nearest needle. We also
used a variable step length in the random walk to allow
for the possibility of passing through arbitrarily small
"necks" between needles. The correlations length g was
computed from the mean-squared radius of gyration of
the needle clusters, and was found to be a good fit to the
formula g /L =(1 n/n—, ) /12. For each ant, the
number of steps was chosen so that the mean-squared dis-
tance covered was (5$) from the starting point.

A lattice computation was also carried out for this
problem. A square lattice with X—1 rows and
columns of conductors was set up, with the first and last
column of conductors set to infinite conductivity to serve
as the electrodes. This is the arrangement needed to en-
sure a unit conductivity for the entire lattice, and is con-
venient for the implementation of the Y-V conductivity
algorithm. ' To place a needle, the appropriate bonds are
simply removed. A horizontal needle is represented by
removing a line of vertical bonds and vice versa for a
vertical needle. When the desired number of needles
were placed, the Y-V' algorithm was used to compute the
new effective conductivity. The well-documented speed
of this algorithm' enabled large (N =1000) lattices to be
used, which gave an acceptable degree of resolution in
the lattice representation of the continuum needle prob-
lem. The needle length used was L =20 lattice spacings.

Since needles have zero width and thus zero area, the
usual remaining area fraction variable p cannot be used,
and so we switch to the variable n, which is the number
of needles per unit area. The percolation threshold is
then denoted n„and the initial slope of the conductivity
versus n curve, which is defined for a single needle, is
conveniently quantified as nr, where nl is the point on the
n axis at which the conductivity curve would extrapolate
to zero, if the conductivity continued to follow the initial
slope.

Again taking the applied voltage to be in the horizon-
tal direction, then the conductivities u and o. for a few
horizontal or vertical elliptical holes in a sheet with con-
ductivity O.

o are

o /cr 0
= 1 —nm ( a +b ) /2:—1 —n /nI,

which requires nI to be defined by

nl [2( a +b ) ] = g /m,

xl =nIL =8/~, (4)

where I =2a is the length of the needle. For a few
vertical-only needles, Eq. (4) changes to

x~=nIL =4/m .2 (5)

The results in Eqs. (1)—(5) are exact. In the lattice ap-
proach to the needle problem, however, since the end of a
needle is not well defined, one must examine the comput-
ed initial slope to see how the nominal length L of a nee-
dle, in terms of how many bonds are removed, compares
to the length that is defined by the computed slope. We
simulated a single vertical needle in a 1000X999 lattice
by removing a column of L horizontal bonds, and corn-
puting the new conductivity via the Y-V algorithm (ap-
proximately two hours of CPU time on a Cyber 205). It
turns out that for any L, the conductivity is reduced
slightly more by a lattice needle than the continuum re-
sult predicts. This difference is due to the finite resolu-
tion of the lattice, and can be interpreted in one of two
ways. We can either say that the lattice imparts a finite
thickness to the needle, and so think of the lattice needle
as an effective ellipse, or we can assume the lattice needle
is a true zero-width needle, but with an effective length
L,z slightly longer than L. The former interpretation is
inconsistent with the fact that a single horizontal needle
on the lattice does not change the conductivity, and so
does act like a true zero-width needle. The latter inter-
pretation, however, will only be useful if the difference
between L,z and L is independent of L, for reasonable
values of L. Figure 1 shows 6L =—L,z —L plotted against
L, with 1 (L (40. L,z is defined using Eq. (5) by equat-
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0.62— 5L= Leg -L

where a and b are the semimajor and semiminor axes of
the elliptical hole. When b goes to zero, we have the nee-
dle result that

o /cro=1 n~b(a+b)— 0.58
0 10 20 30 40

o /oo= 1 nba(a+b)—,

where a horizontal ellipse means that the semimajor axis
a is aligned in the horizontal direction. Averaging the
pair of equations shown in Eq. (1) gives the result

FIG. 1. Showing 6L =L,&
—L for insulating needles on a lat-

tice. L is the nominal length, and L,~ is the e6'ective length
determined electrically. After L =6, the graph asymptotes to
5L =0.68.
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TABLE I. This table lists the aspect ratios b/a, xl =n&L, ff,
x n L ff ni (a,„), and n, ( a,„) for randomly centered el-
lipses, oriented in the horizontal and vertical directions, using
data taken from II.

0.6
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0.2

0
0 3 4 5 6 7

FIG. 2. Showing the conductivity vs x =nL, ft- data for nee-
dles. The squares are improved blind-ant data, and the circles
are the lattice simulation data points. The appropriate L,& for
each method is discussed in the text. The solid line is the
universal conductivity curve I,

'1 5).

ing the computed lattice result for ni to 4/~L, ff. It is
clear that for all L ~ 6, 6L is approximately equal to the
constant value of 0.68. The data point at L = 1 is just the
exact single-bond-defect result, ' 5L =&8j~=0.596. It
is therefore valid to think of the lattice needle electrically
as a true continuum needle, but with an efFective length
L,ff=L +0.68 (in units of lattice spacings) for L ~ 6.

Figure 2 displays the blind-ant and lattice results plot-
ted against the variable x=nL, ~, with L,~=L for the
blind-ant simulation, and L,ff=L+0.68 for the lattice
simulation. This variable makes the initial slopes of the
two sets of data the same. The solid line is the universal
conductivity curve to be discussed in Sec. VI.

It was not possible to extend the blind-ant algorithm
beyond n In, =0.8, as the CPU time required to trans-
verse 5g became too long. For this reason, the results for
the blind-ant algorithm for n/n, ~0.8 are omitted from
Fig. 2.

The value of x, =n, L,ff, where the appropriate L,ff was
used, difFers somewhat for difFerent methods. The lattice
result, for 40 configurations of L =20 needles on a
1000X999 lattice, was 5.7+0.2. Other results from the
literature include 5.7 (for randomly oriented needles' ),
6.3 (horizontal and vertical needles' ), 5.8 (randomly
oriented needles' ), and 6.56 (horizontal and vertical nee-
dles' ). The fairly small differences between these values
can be attributed to statistics (in all cases), finite resolu-
tion (for the lattice model), and to the expected small
difFerences in percolation thresholds between completely
randomly oriented objects and objects randomly oriented
in two orthogonal directions. ' It should be kept in
mind that the results in Refs. 10, 15, and 16 were for
small systems (unit cell length to needle length was 20 or
less), so that finite-size effects must also be taken into ac-
count. Also, periodic boundary conditions were not used
in Refs. 15 and 16.

For the horizontal and vertical needle problem, we
have made a much higher accuracy determination of
n L ff using the same method as Yonezawa, Sakamoto,

b/a

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3333
0.25
0.20
0.15
0.10
0.0667
0.05
0.04
0.0333
0.025
0.0125
0.005

L,2

2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55

2ncL eft-

5.6
5.6
5.7
5.6
5.7
5.6
5.6
5.5
5.6
5.7
5.5
5.9
5.6
5.6
5.7
5.9
5.9
6.0
6.2

nl a ex

2.00
2.00
2.00
1.98
1.97
1.93
1.90
1.85
1.78
1.72
1.65
1.55
1.47
1.43
1.40
1.38
1.35
1.31
1.29

4.4
4.4
4.4
4.3
4.3
4.3
4.2
4.0
3.9
3.9
3.5
3.6
3.2
3.2
3.1

3.2
3.1

3.1

3.1

TABLE II. Same as Table I, except for ellipses that were ran-
domly oriented in all directions. The data is taken from II.

b/a

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3333
0.25
0.20
0.15
0.10
0.0667
0.05
0.04
0.0333
0.025
0.0125
0.005

2

2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55
2.55

nc L eff

5.6
5.6
5.7
5.8
5.8
5.6
5.6
5.6
5.5
5.7
5.4
5.5
5.3
5.4
5.4
5.5
5.5
5.5
5.5

nra„

2.00
2.00
2.00
1.98
1.97
1.94
1.91
1.88
1.83
1.80
1.76
1.71
1.68
1.67
1.66
1.65
1.64
1.63
1.63

4.4
44
4.4
4.5
4.5
4.3
4.2
4.1

4.0
4.0
4.0
3.7
3.7
3.5
3.5
3.5
3.5
3.5
3.5

and Hori. ' This involves an examination of the percola-
tion probabilities for increasing system sizes and average,
intersection, and union probabilities. The percolation
concentration is plotted against L ' in the usual finite-
size scaling manner, where v= —', . For averages over 1000
samples, of up to 80 000 needles, we found that
x, =n, L =6.205+0.006. Note from Table I that n, L,ff

does approach 6.2 from below for horizontal and vertical
needles, even in the less accurate data from II. The ran-
domly oriented ellipse data in Table II do not show a
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similar rise in the needle limit. This higher value of x,
may then be an artifact due to having only two orienta-
tions.

IV. REANALYSIS OF ELLIPSE RESULTS
AND NEW INVARIANT

The success of the normalized variable' ' x =nL, ff, in
unifying the two sets of data shown in Fig. 2 led us to
reanalyze the data in II on the percolation thresholds of
sheets with random elliptical holes. The value of L,ff- for
an ellipse with semimajor and semiminor axes a and b, re-
spectively, is defined by combining Eqs. (3) and (4):

L,s.=2(a+b) . (6)

Table I shows the results for ellipses that were only al-
lowed to lie in the horizontal and vertical directions, and
Table II shows the results for randomly oriented ellipses.
The numbers in the column marked xl=nlL, ff are the
same, because the exact value of the initial slope for this
problem was used to define L,ff. Within error bars of
+0.2, the value of x, seems to be invariant with respect
to the ellipse aspect ratio. The third and fourth columns
show nI and n„made dimensionless by multiplying with
the excluded area, ' a,„. In these columns there is
clearly a monotonic decrease in the values as the aspect
ratio of the ellipses decreases, while in the x, column
there seems to be only random scatter about an average
value of about 5.7 in Table I, and about 5.5 in Table II,
with the aforementioned small but significant rise in the
needle limit in Table I.

It therefore appears that the area defined by L,ff leads
to a better invariant than does the excluded area a,„. The
quantity L,ff is designed to lead to an invariant initial
slope xl. However, the constancy of x, was not expected
a priori, but is dramatically demonstrated in Tables I and
II.

Figure 3 shows simulation' and experimental' ' con-
ductivity data for randomly centered circles, replotted us-
ing the variable x =n, L,ff, where L,ff for a circle is given

where y=b/a+a/b. However, we find that p, can be
equally well fitted to the relation

—
(

] )4/(2+y)
c 3

as shown in Fig. 4. This is important to the present dis-
cussion, because using p, =exp( ~abn—, ) together with
(8) implies that

x, =n, L, t=r161 (n3)/~=5. 60 (9)

is a universal value for a11 aspect ratios b/a. Using the
initial slope variable xI =nIL, s, along with Eqs. (6) and
(9), leads to x, /xI=21n3=2. 20 for all ellipses. The only
exception is for horizontal and vertical needles where x,
rises to 6.2 from 5.6 as was noted earlier.

V. DEFECTS WITH ARBITRARY SHAPES

A. Digital-image method

The success of the new invariant for ellipses of arbi-
trary aspect ratio led us to speculate that this new invari-
ant might hold for randomly centered holes of completely
arbitrary shape. To be able to simulate percolation-
conduction problems involving such shapes, one is forced
to go to a lattice or digital-image approach.

We consider two kinds of shapes. The first are shapes
made up of combinations of needles, which are represent-
ed in the same way as were the single needles, by remov-
ing conducting bonds on a square lattice.

Objects with finite area, like squares or ellipses or more

by (6) to be twice the diameter. The solid line is the same
universal curve as that plotted in Fig. 2 for the needle
data, and agrees with the simulation data very well and
with the experimental data fairly well.

In II it was shown that p, for the data in Tables I and
II was a good fit to the formula

p, =(1+4y )/(19+4y ),

1.0

0.8

0.6
0
e 0.4

EF. 12
EF. 19
EF. 20

0.8

0.6

04

ses
rt. ellipses

0.2

0
0 1 2 3 4 5 6 ?

0.2—

0
0.2 04 0.6 0.8 1.0

FICi. 3. Showing the conductivity vs x =nl, ff data for cir-
cles. The circles are from the blind-ant algorithm, ' the squares
are the experimental results of Lobb and Forrester, ' and the
triangles are the experimental results of Sofo et al. The solid
line is the universal conductivity curve (15).

la

FIG. 4. Showing the percolation threshold p, vs aspect ratio
b/a for the problem of randomly centered elliptical holes. The
data points are from Table I, and the solid line is Eq. (8).
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FIG. 6. Showing an example of a digital image with random
conducting and insulating regions, along with one-pixel-wide
electrodes attached to the ends. The network of conductors
into which the image is mapped is also shown, superimposed
onto the image.

FIG. 5. Showing a series of circles represented by an increas-
ing number of square pixels arranged on a square lattice. The
accuracy of the representation increases with the number of pix-
els used.

pixel j represent insulating materials, then X, =0. The
last case of interest is if pixel i is on the electrode, and
pixel j has finite conductivity o. . The electrodes are con-
sidered to have infinite conductivity, which results in the
value of X; being 2o. .

B. Test cases

y y —1+@—1 (10)

where X; is the conductance of one-half of pixel i. This
means that X, =2o, . If pixels i and j are both conductors
with conductivity o.o, then X; . =o.o. If either pixel i or

unusual shapes, are represented using digital-image tech-
niques, ' using square lattices of square pixels. Figure 5
shows a series of circles represented by pixels. The cir-
cles were generated by centering a continuum circle, with
a diameter D (D =9, 15,21,41) set to an odd number of
pixels, on a given pixel. Other pixels were then included
in the digital-image representation if their centers fell in-
side the radius of the continuum circle. ' It is somewhat
surprising, but encouraging, to note that for diameters of
15 pixels or greater, the area of the digitized circle as
determined by the number of pixels included in the circle
by the above construction agrees with the area of the con-
tinuum circle ~D /4 to within less than 1%.

After a digital image is created, say of randomly cen-
tered insulating ellipses oriented in the horizontal and
vertical directions, one-pixel-wide electrodes are "glued"
on opposite sides, and a conductor network is created
with nodes at the center of each pixel. Figure 6 shows
the resulting conductor network superimposed on an ex-
ample of a random image. Conductors with conductance
X; connect nearest-neighbor pixels i and j, which them-
selves have conductivities o.; and o. .. The conductance
X,. is defined as the series combination of X; and X '

We wish to demonstrate, beyond the needle problem
discussed above, that this lattice approach to continuum
problems gives accurate results in cases where nI and n,
are known from a true continuum analysis. We give one
test case for nI, and three for n, .

The test case for nI that we consider involves elliptical
defects with sernirnajor axis a and semiminor axis b,
placed in a conducting matrix, as described in Sec. IV.
The exact solution for the effect on the conductivity of a
single defect was given in Eq. (1), but is rewritten here in
a slightly different form. The change in conductivity in
an %XX (all lengths in units of pixels or lattice spacing)
sheet with host conductivity ere is given, using Eq. (1), by

5o. /o. o =—1 o /ere= mb(a—+b )/N.
5cr /ere =1 o—/ere=fr—a(a. +b ) IX

when the defect is insulating, and H and V again stand
for horizontal and vertical orientation of the ellipse with
respect to the horizontally applied voltage.

For X=200, a =21, and b =9, the calculated values of
6o. /o. o and 6o. /o. o differ from the exact values by an
average 7.2%. The same percentage difference was ob-
tained for an %=400 pixel lattice, so that this disagree-
ment was not due to the ratio a /iV being too small, which
would be a finite-size effect, but rather must be caused by
the finite resolution of the conductor-insulator boundary.
To confirm this, another computation was done using
N=400, a =45, and 6 =19, which gives approximately
the same aspect ratio hole as in the previous case, but
with twice the resolution. This time the relative error for
6o /o. o and 5o. /o. o was cut in half, to 3.6%, denoting a
boundary effect. We expect that the percentage error in
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5o. and 5o. goes to zero linearly with the number of
pixels used per unit 1ength of the ellipse. We note that, as
in the case of the lattice needle, digitized ellipses always
cause a greater reduction in the conductivity than would
be expected from Eq. (11). The ellipses could be
represented reasonably well, electrically, by an effective
continuum ellipse, with a,&=a+0.5, and b,~=b+0.5.
Since no electrical connection is made between a bound-
ary defect pixel and a boundary host pixel, electrically
the defect appears slightly bigger than its geometric size.

Computing an accurate value of n, would seem to be
more problematical than computing ni, since the percola-
tion threshold is determined by tortuous, thin paths of
connected material. These paths will certainly be affected
by the finite resolution, in the sense that the minimum
path thickness is limited to be one pixel, or 1/N in terms

-o. &Jr ~zpdew ~i~a Pf. &m&earNe~~~, &~La -m &hem --',2
least) true continuum computations of critical thresholds
against which the digital-image techniques can be com-
pared.

The percolation threshold of randomly centered, over-
lapping circles has been much studied. ' ' Reference 6
lists a number of values for p, based on various indepen-
dent computations, which range from a high of 0.38 to a
low of 0.31, with the best estimate probably being about
0.32. Using a 1000X1000 lattice, our results for p, are
0.35+0.02 (21-pixel-diam circles) and 0.33+0.02 (41-
pixel-diam circles). For either size circle, the critical
threshold results are within 10% or less of the best esti-
rnate for p, . The value of p, was determined by using a
burning algorithm to check for continuity in both direc-
tions for 20 configurations, and taking the average of the
p, 's computed for left-right and up-down percolation
over 20 configurations. '

Dubson and Garland have experimentally measured
the critical threshold for randomly placed, overlapping
parallel squares, and found a rather high value of
p, =0.39+0.01. Pike and Seager' did a continuum
simulation of the same problem, and found p, =0.33.
Gawlinski and Redner also obtained p, =0.33. Our
value, obtained using 20 X 20 squares placed on a
1000X 1000 lattice, is p, =0.35+0.02.

The final comparison case is the dependence of p, on
the aspect ratio of randomly placed, overlapping ellipses,
the problem discussed in Sec. III. The continuum
analysis carried out in II was for randomly oriented el-
lipses and for ellipses that were only oriented in the x and
y directions. The lattice results, obtained on 500X500
lattices with ellipses all having 2a =41 pixels and various
aspect ratios b/a, although not shown here, reproduce
the two-orientation ellipse continuum results shown in
Fig. 3 within the computational uncertainty.

Having demonstrated the kind of accuracy to be ex-
pected from our digital-image simulations, we proceed to
study the values of ni and n, for a collection of arbitrary
shapes.

C. Results

Figure 7 shows the 11 shapes studied, seven of which
are shapes defined by collections of needles, and four of

FIG. 7. Showing the various shapes that were used in this pa-
per to study the relationship between n, and nl. The numbering
scheme is the same as that used in Table III.

n, L,fr=(8/rr)x, /xi =5.9 (12)

is invariant to within 5% or less, for needle shapes and
for solid pixel shapes. The corresponding values for
shape Nos. 3 and 4 are still within 30% of this number,
however. Equation (12) should hold up under a true con-
tinuum analysis, as the lattice method would be expected
to underestimate both ni and n„as was discussed above,
and so the ratio might well be unaffected.

We have also checked the invariance of x, for corn-

TABLE III. This table lists the values of n„nl, and
x, =n, L,ff, for all shapes studied digitally. Here L,&=8!~nl.
The numbering scheme follows that given in Fig. 7.

Shape no.

1

2
3
4
5
6
7
8
9

10
11

n,

0.0133
0.0114
0.0098
0.0089
0.0079
0.0047
0.0029
0.0030
0.0026
0.0033
0.0048

n

0.0060
0.0047
0.0036
0.0030
0.0034
0.0020
0.0012
0.0014
0.0011
0.0015
0.0021

5.7+0.2
6.2+0.2
6.9+0.3
7.6+0.3
5.9+0.3
6.1+0.3
5.9+0.4
5.6+0.3
5.9+0.3
5.7+0.2
5.9+0.3

which are shapes defined by collections of pixe1s. Each
shape was studied on a 1000X1000 (1000X999 for the
needle shapes) lattice, and the longest dimension of each
shape was either 20 bonds long for the needle shapes, or
20 or 21 pixels long for the pixel shapes. The values of n;
(suitably averaged over orientation) and n, were comput-
ed for each shape. The quantity L,~ was defined via Eq.
(4), using the computed value of ni

Table III shows the results for ni, n„and n, L,ff. With
the exception of shape Nos. 3 and 4, the quantity
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TABLE IV. This table lists the values of n, (L,tt ) for mixtures of two circles, with varying diameter
and number ratios. Here L,ff

=8/(~nz ).

Diameter
ratio

Number ratios
21 3:1

41:31
41:21
41:13
41:9
61:11
81:11
81:9

5.8+0.5
6.0+0.4
6.0+0.4
6.1+0.4
5.9+0.5
5.8+0.6
5.8+0.7

5.8+0.4
6.0+0.3
5.9+0.3
6.1+0.4
6.0+0.5

5.9+0.6
5.8+0.6

5.9+0.4
6.0+0.3
5.9+0.2
6.1+0.4
6.1+0.5
6.0+0.6
5.9+0.6

binations of shapes. Table IV shows the results for
different proportions of two sizes of circles, and Table V
shows similar results for two sizes of needles. In this
case, the quantity (L,tr) is used to normalize n„where
(L,tt) is averaged over the relative number concentra-
tions of the two different size objects. The first column in
both tables is the ratio of large to small diameter or nee-
dle length, and the next three columns contain the results
for n, (L,tt) for 1:1,2:I, and 3:1 ratios of the number of
small objects to the number of large objects. In both
cases, it is clear that n, (L,tt ) is the same for these cases,
within 5 or 10%. There is some e6'ect of the ratio of unit
cell to needle length in Table V, as the results for the 20:4
needle length ratio are somewhat different from those for
the 40:8 needle length ratio. This could also be due to
statistics, as there are fewer of the larger needles used,
since the unit cell was always 1000X1000 lattice spac-
ings. -

We have obtained one final result, for a system where
41-pixel-diam circles and three times as many 40-lattice-
spacing-long needles were simultaneously mixed. The

value for x, ws 5.6+0.3, invariant within computational
uncertainty, so that this invariant also holds for mixtures
of different shapes, as well as for collections of the same
shape.

VI. DISCUSSION

1/t 1/t+( 1 )
1/t—AOA CK OB (13)

where 0&+ & 1 is an adjustable parameter. The result
(13) may be written as

From the results reported in the previous sections, it
appears that the quantity x, =n, L,ff is a constant, sug-
gesting that the conductivity rr(x) may be a universal
function of x=nL, ff. Given our larger data base, it
seems appropriate to improve on the two interpolation
formulas (A) and (B) given in I, in order to develop an
analytical form for this universal function. Denoting
these two formulas by o.

A and o.B, we form an improved
interpolation formula cr as

Op

n1—
n,

x

1+ +
n

x

an (tnl n,)—
t nin

ax (txI —x, )

txxI c
(14)

TABLE V. This table lists the values of n, (L,tr) for mixtures of two needles, with varying length
and number ratios. Here L,ff.

=8/(~nl ).

Length
ratio

Number ratios
21 3:1

20:4
20:6
20:8
20 10
20 14
40 10
406
404
40:2
40.8
30:2

5.7+0.2
5.7+0.2
5.6+0.2
5.7+0.2
5.6+0.2
6.0+0.4
6.0+0.4
6.0+0.4
6.0+0.4
6.0+0.5
5.8+0.3

5.7+0.2
5.7+0.2
5.6+0.2
5.6+0.2
5.7+0.2
5.9+0.4
5.9+0.4
6.0+0.4
6.0+0.5
6.0+0.4
5.9+0.3

5.7+0.2
5.7+0.2
5.6+0.2
5.6+0.2
5.6+0.2
6.0+0.4
5.9+0.4
5.9+0.4
6.0+0.5
5.9+0.3
5.9+0.3
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where the critical exponent t =1.30 for all geometries in
two dimensions. ' The quantity xl=n&L, a=8/vr and so
we must choose x, and a. In I, it was suggested on the
basis of Eq. (7) that x, =18/m =5.73. However, Eq. (8)
suggests that x, =5.60 is an equally good fit. Exarnina-
tion of Tables III and IV suggests a value of x, =5.9
would be most appropriate overall, and we adopt this
value. The value of a is adjusted to optimize the fits in
Figs. 2 and 8, to give a=0.7. This leads to a universal
conductivity curve for holes in two dimensions,

Op
1—

5.90

X 1+
5.90

x
24. 97

(15)

where x =nL,s For e.llipses, L,&=2(a +b), and so it is
straightforward to plot the data for needles and circles
against the universal conductivity curve as shown in Figs.
2 and 3. The agreement is clearly excellent. We have
held all the parameters fixed in (14) and varied x„ in or-
der to check the dependence on x, . The quality of the
overall fit is insensitive to small changes in x, for values
in the range 5.6 & x, & 6.2.

Figure 8 collects together the experimental data on
squares with random centers and rectangular slits' with
an aspect ratio of about 50:1, also with random centers
and oriented horizontally and vertically. Ellipses that are
oriented horizontally and vertically, or randomly,
represent the only defect shape for which L,~ is known in
closed form. There is therefore an unknown scale factor
for the abscissa in Fig. 8, since we do not analytically
know the scale factor between n, and x, .

For the slit data, we used careful measurements of the
initial slopes SH and S~ from I, where H denotes all hor-
izontal and V denotes all vertical slits, respectively, to
give L,z via

SH+Sy
2 n

(16)

1.0

0.

o 06

0.4

0.2

0
0 1 2 3 4 5 6 7

FIG. 8. Showing the experimental results for squares (Ref.
23) and slits (Ref. 1). The solid line is the universal conductivity
curve (15).

which is equivalent to fitting the measured initial slope to
that of the universal conductivity curve (15) as was done
in I. As was shown in I, the slits can be replaced by an
ellipse of the same area and same length, 2a =L. This
implies that the aspect ratio b /a of the equivalent ellipse
is larger than the aspect ratio m/L of the slit by a factor
rr/4, as found within the error bars in Eqs. (6) and (7) of
I.

For the square data, we adopted a slightly difFerent
procedure and chose the scaling parameter for the abscis-
sa so that the critical points exactly coincided. We fit the
critical point to give x, =5.9= (28 440)L,~, where
n, =28440. This leads to L,~' =69.4. Using the re-
sult' that the percolation number concentration is the
same for squares and circles of equal area, and the result
(6) that L,s =2D for a circle of diameter D, we find that
the size of the square L is given by
L '=4/VmL, s=157. This is rather smaller than the
(corrected) value of L '=172+2 given by Dubson and
Garland. ' We feel that the value of L '=157 is more
accurate than the value of 172, because it leads to a
p, =exp( —n, l )=0.31, in better agreement with other
authors' values' ' of 0.33.

The quality of the overall agreement in Fig. 8 is com-
parable to Figs. 2 and 3. In practice, it makes little
difference if L,z is chosen by adjusting the initial slope,
the critical point, or the overall fit.

VII. SUMMARY

We have presented an invariant quantity derived from
the percolation threshold in terms of the number of de-
fects per unit area n, and a length L,&, which is defined
by the change in electrical conductivity caused by a sin-
gle insulating defect when placed in a conducting host.
This invariant has been tested only in problems where the
defects are randomly centered and overlapping. It is very
important that the variable be the number of defects and
not the area fraction remaining p. These are related in a
nonlinear way by p =exp( nA ), wher—e A is the area of a
single defect.

Using values of xI =nlL, s. = 8/m. =2. SS and
x, =n, L,&

=5.9, and optimizing a shape parameter
a =0.7, leads to the universal conductivity curve given in
Eq. (15), with x =nL, s This applies wh. en the anisotrop-
ic holes are aligned horizontally and vertically, or iso-
tropically, to make the conductivity o. isotropic. In gen-
eral L,z is not known analytically and must be obtained
by aligning the horizontal axes of the experimental and
universal conductivity curves. This is a straightforward
procedure, as x is linearly proportional to the number of
inclusions n. In this case, L,z is treated as a fitting pa-
rameter. In a few cases, we have more information about
L,s from the dilute limit. For ellipses, L,~=2(a+b)
where a and b are the semimajor and semiminor axes, re-
spectively. This case has been fully discussed in I and
also in this paper. For all other shapes, no exact solu-
tions to the single inclusion problem exist. For squares, it
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appears as if there is an equivalence to circles of the same
area, ' so that L,tt=4s I&+, where s is the edge length of
the square. On the other hand, in I, it was shown that a
long thin w XI. rectangle behaved electrically as an el-
lipse with the same area, with major axis 2a =I., so that
L,tr=L+4to/~. We have found no simple way to gen-
eralize these rules to arbitrary shapes, despite some effort.
In general, the most we can say is that L,tt=PL, where L
is the maximum spanning diameter of the object, and P is
a constant of order I.
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