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Generation of the Schrodinger-cat state by continuous photodetection
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Nonunitary time evolution of an initially highly squeezed state under continuous photon-
number measurement is investigated using the quasiprobability distribution. It is found that the
measured quantum state bifurcates into two macroscopically distinguishable states upon the
detection of a single photon, while preserving purity by feeding back real-time readout informa-

tion.

The Schrodinger-cat paradox is among the oldest puz-
zles in the interpretation issue of quantum mechanics.
This paradox has attracted a great deal of interest' be-
cause it poses a serious problem of whether quantum
mechanics —laws governing the microscopic world —can
be applied to the macroscopic world. Like the Einstein-
Podolsky-Rosen paradox, the Schrodinger-cat paradox
has long been regarded as untestable, partly because it
seems extremely diScult to experimentally produce a
quantum-mechanical superposition of macroscopically
distinguishable states, namely "the Schrodinger-cat
state. "

Yurke and Stoler have examined an anharmonic-
oscillator model, showing that an initially coherent state
evolves into a coherent superposition of quantum states
via amplitude dispersion. Mecozzi and Tombesi pro-
posed another scheme for generating a similar state via
nonlinear birefringence. Recently, Yurke, Schleich, and
Walls considered the generation of this type of state by
quantum nondemolition measurement in nonlinear optical
media. These schemes involve unitary evolution of a sys-
tem followed by conditional measurement, where the uni-

tary evolution is used to correlate two relevant modes,
while the nonunitary conditional measurement prepares
the quantum superposition state.

In this Rapid Communication, we propose an alterna-
tive scheme for generating a Schrodinger-cat state. Our
scheme does not utilize any optical nonlinearities, but is
based only on nonunitary state evolution of the measured
photon field under continuous photon numbe-r measure-
ment ' . The unique feature of our scheme is that it
does not use unitary evolution to correlate two photon
modes, but that the cat states can be generated from a
single mode -photon field by continuous measurement of
photon number. The temporal developments of the densi-
ty operator of the measured photon field and its Q repre-
sentation (quasiprobability distribution) are calculated
during the photon counting to illustrate the temporal for-
mation of a cat state. Furthermore, it is shown that the
pure-state character of the measured field is preserved
during the measurement process.

Suppose that the continuous photon-number measure-
ment '' of the photon field, p(0), starts at t =0 and that
m photons are registered at times z~ E [0,T] (j =1
2, . . . , m) with no further photons registered in the mea-
surement period (0( t (T). Such a process is referred
to as the quantum photodetection process of forward re-
currence times (QPF). ' The density operator of the
photon field, po (T), immediately after the QPF is given
b 6 —8

gpF ST—~ S~ —~ -1 ' ' ' ~iP( ) exp[ —(ito+X/2)a taT]a p(0) (a t) exp[(ito X/2)a taT]—
Tr[ST—,JS, —,„J. S„p(0)] Tr [p(0) (a t) exp( —Xa taT)a l

where X represents the coupling constant between the field
and the photodetector, and the superoperators J and S„
which stand for the one-count and no-count processes, re-
spectively, are defined as Jp(t) =Rap(t)a and—

D(a) =exp(aa —a*a), (2a)

=Ia, r)&a, r~, where D(a) is the displacement operator
and S(r) is the squeezing operator with a squeezing pa-
rameter r, i.e.,

S,p(t)—:exp[ —(i to+ A/2)a ta z]

x p(t)exp[(ito —A/2)a taz]
S(r)=—exp —(aa —a ta t)r

2
(2b)

(see Refs. 6-11).
The quadrature-amplitude squeezed state,

~I a, r &

—=S(r)D(a) IO), is chosen as an initial state, p(0)
I

Let us confine ourselves to the case where a is real and the
squeezing parameter is positive, r ~ 0. The photon densi-
ty operator (1) is then given as

(I +n)/2
gpF( ) 1 g 1 tanhr

N~(t) in=0 (k!n!), 't 2
exp ——(k+n)t Hi,+~,t2 H,+~,t2 Ik&(nI,

2 (sinh2r) 't (sinh2r) 't

(3)
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where

N (t)=—2
8 1 2y a

tly (I —y ) t2 I +y sinh2r
exp

y =e Xt tanhr

(4a)

H„(z) —= ( —1)"exp(z') exp( —z'),
Il

(4b)

for m, n =0, 1, 2, . . . . Here, the rapidly oscillating term e ' " "' is omitted because we are interested only in the en-
velope function.

In order to investigate the effects of the one-count and no-count processes on the photon field and to illustrate visually

the temporal formation of a quantum-mechanical superposition state of two macroscopically distinguishable states, the Q
representation of the field is used. The Q representation of the field at time t in the QPF is given, from Eq. (3), as

H„„,(z) g, 0,+ (z)
&Nm t p =0 p! „=0 v!

'll

e
—!P!' gm

exp(2yz —
y )

rcN„, (t) Qy

where P =Pi +iP2 is a complex variable
the field), ~P) is the coherent state, and

exp(2yz —y ') (s)
y

—
y By y=)

(Pi and P2 are real and correspond to the amplitudes of two quadrature phases of

y=P( —'e 'tanhr) 't, (6a)

z=
2

%0.
(sinh2r) ' '

This is a general expression of the time-developed Q representation for an initially squeezed state in the QPF.
While no photons are detected (m =0; no-count process), the Q representation evolves as

(6b)

QP"(P~,Pz, t) = exp — (P~ P2)e— 'tanhr —
P~

zNO(t) coshr

For larger r, the Q representation has a squeezed Gauss-
ian form situated along a line parallel to the P2 axis [see
Fig. 1(a)].' As time proceeds, this state approaches the
vacuum state whose Q representation is a symmetric
Gaussian distribution around zero,

~ -lpl2
lim QP'"(P, ,P,;t ) = '

I

representation abruptly changes into

No(t)
Q P

"
(ig~, Pz', t ) =2e '(tanhr )

Ni t

ar/2

sinhr
(10)

It is remarkable that the initially highly squeezed state,
which has a large average photon number, reduces to the
vacuum state in the QPF despite the fact that no photons
were actually detected in the measurement process. This
is a unique feature of continuous measurement. The phys-
ics underlying such an unexpected result is that the
readout information of no counts having been registered
during a time interval require us to modify the knowledge
about the original photon density operator according to
Eq. (1). ' In other words, we are renormalizing the
density operator of the field every moment, according to
the r'eal-time readout of the continuous measurement.

Throughout the no-count process, the Q representation
keeps a single-peak character, and is squeezed in a Gauss-
ian form, its cross section being an ellipse centered at

—tr/2

, 0
(coshr)(1+e 'tanhr) '

However, as soon as one photon is detected (m =1), the Q

Thus, we find from the Pz term in the right-hand side that
the quasiprobability distribution just after the one-count
process is suppressed around P2 =0 and enhanced around
a large value of ~Pz~ compared to the quasiprobability dis-
tribution before the one-count process [see Eq. (7)1, re-
sulting in a double-peak structure. This corresponds to
the fact that matrix elements p „with large m and n [i.e.,
(m+1)(n+1) ) (n(t)) ] are enhanced by the one-count
process. In the case of small a, large r, and small kt, re-
gions around a large circle centered at the origin in the
phase space (P&,Pz) are especially enhanced by the one-
count process, which leads to an increase in the photon-
number Auctuations. '

Figures 1(a) and 1(b) illustrate the Q representations
(a) just before and (b) just after a one-count process.
From these figures, we find that the single-peaked Q rep-
resentation changes instantaneously to a double-peaked
one when a single photon is detected. The double-peaked
structure indicates super-Poissonian statistics because the
variance of the distance from the origin becomes large.
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The subsequent one-count process further emphasizes the two-peaked character of the Q representation [see Fig. 1(c)].
In fact, the Q representation after two one-count processes is given by

Q2 (PliP2~t ) 4 Cjf 2(PIP2it )Qo (Pl~P2 t ) ~

N2 t

where q2(pl, p2, t) is an enhancement factor for the m =2 case and is given by

2a1—
sinh2r

(12)

Note
two p

Th
featu
two p Q p
quadrature phases. If we measure such a state using a
phase-sensitive detection scheme, the result will yield
values sharply distributed around the two peaks. There-
fore we can conclude that two macroscopically distin-
guishable states are generated from the single-mode pho-
ton field in a highly squeezed state by the continuous pho-
todetection. The larger the squeezing parameter r is, the
more distinguishable these two peaks become. However,
here we can conclude only that the obtained state is either
a superposition or a mixture of two macroscopically dis-

[p "(t)] =p "(t),
for arbitrary time t ~ 0 and for any number of photo-
counts m =0, 1, 2, . . . . Thus, we can conclude that the
obtained state is the Schrodinger-cat state. It is remark-
able that this idempotency holds generally, provided that
a pure state is initially prepared. The proof is as follows.
Any pure state can be written as p=~y&(y~. Then the
square of the density operator after the photodetection be-
comes

4a e ' 4a a
q2(pl, p2', t) 1+Ipse e "'tanh r+ Ipi + . . —1

cosh r sinh2r sinh2r

2a 2 2 4ae
—xt/2

+2 . —1 e "(tanhr)(pl2 —p22)+ —
~P ~

e 'tanhr P l .
sinh2r coshr

I.
that the fifth term of Eq. (12) is essential to yield tinguishable states. (ii) The obtained state is found to be
eaks of the Q function. a quantum superposition state; that is, the double-peaked
is double-peak distribution has two important photon state is a pure state. This is evident from the fact
res: (i) It is clear from Figs. 1(b) and 1(c) that the that the density operator of the measured photon state,
eaks shown in the re resentation have diAerent Eq. (3), satisfies the idempotency condition,

[p(&)]' =2 exp[ —(itll+k/2)ataT]a ~y&&yI(at) e ' ' a Ilia'&&@~(a ) exp[(tto —V2)a a'r]

[Tr[~ y)(y~ (a t) e ~ ~a ]]

where Eq. (1) is used. From Eq. (14) and

Tr[I +&(lit~ (a '1) me
—&a aTam] (+I (a t) me l a aTamI +&—

(1S)
weobtain [p(T)]'=p(T).

This result can be intuitively understood from the fol-
lowing consideration: Since we utilize all readout infor-
mation concerning the results of measurement to renor-
malize the initial density operator (such a measurement
process is referred to as the referring measurement pro-
cess ), there is no room for dissipation of information
in the measurement process. Hence, we have Eq. (13). In

I

other words, an initially squeezed state evolves nonunitari-
ly in the referring measurement process, but it remains a
pure state, even though photon counting is a second-kind
measurement. From the two features described above, we
can conclude that the double-peaked state is the
Schrodinger-cat state (i.e., the quantum-mechanical su-
perposition state of macroscopically distinguishable
states). Here we note that this state is not a quantum su-
perposition of two coherent states, but of two quadrature-
amplitude squeezed states, which can also be confirmed by
Figs. 1(b) or 1(c), where each peak is squeezed. This
marks another distinction from Refs. 3-5.

10 10 10

FIG. 1. The quasidistributions of the measured photon state (a) just before and (b) just after the one-count process and (c) just
after two photoelectrons are detected. The initial field is chosen to be the quadrature-amplitude squeezed state with a 10.0 and
r 1.5. The quasidistributions of (b) and (c) have two distinct peaks, indicating the Schr6dinger-cat state
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There are two important requirements in our scheme
for generating the cat state. One is the preparation of a
suitable initial state. To put this method into practice, we
must prepare a highly squeezed state whose statistical
properties are completely known. The other requirement
concerns the times at which photons are detected. Photo-
electrons should be counted at times long before the pho-
ton state approaches the vacuum state; that is, for
eA'ective formation of the double-peaked distribution, the
photons should be detected as soon as the measurement
starts. This varies with each experiment. If photons are
detected at suitable times, we should switch off the photo-
detector. Otherwise, the two peaks that are formed will
again become confluent, approaching the origin as time
passes.

We have proved the idempotency relation [Eq. (13)] to
distinguish theoretically a quantum superposition state
from a statistical mixture. It is also worth noticing an ex-
perimentally detectable signature of a pure superposition
state. To this end, the quadrature-phase measurement
proposed by Yurke and Stoler is applicable to our sys-
tern. That is, an interference between the two macroscop-
ically distinguishable states of the superposition can be
observed as fringes in the probability distribution for the
homodyne-detector output current. In this experiment,
~a~ should be small, the phase of the local-oscillator light
is chosen properly, and this measurement must be made
in a short time in comparison with A, which is a charac-
teristic time of the photon-state evolution. ' Then we can
distinguish experimentally the superposition from a mix-
ture to check whether a quantum superposition has in fact
been generated.

In practical experiments, the quantum efficiency of pho-
todetectors is much lower than 100/o. In this paper, how-

ever, we confine ourselves to the case of perfect quantum

efficiency (100%) in order to propose this phenomenon
and to avoid some complexities. Needless to say, we
should pay attention to eA'ects arising from the imperfect
quantum efficiency when our formalism is applied to prac-
tical problems. This is left for future study.

Finally, we mention the uncertainty relations of the
photon field. When no photon is detected (m =0), the un-
certainty product, that is, the variances of two quadra-
ture-phase components, always satisfies the minimum un-
certainty relation (&[Aai(t)l &&[Aa2(t)l ) =

—,', ). How-
ever, detecting at least one photoelectron destroys the
minimality, thus increasing the quantum fluctuations of
the measured field in spite of the ai variance being re-
duced. Therefore the obtained Schrodinger-cat state is
not the minimum uncertain state with respect to the
quadrature-phase amplitudes.

Quantum measurement modifies quantum Iluctuations
of the measured photon state because of the measurement
back action. Making appropriate use of this effect pro-
vides an alternative scheme for generating an additional
quantum state. If we can prepare a well-defined highly
squeezed state as an initial field, it changes according to
the experimental results, and thus we get another state
when the measurement is finished. The effect of the one-
count processes on the state characteristic is favorable for
generating a quantum superposition of two macroscopi-
cally distinguishable states (the Schrodinger-cat state).
As shown in Fig. 1, the Q representation becomes double
peaked after photoelectrons are detected. Our proposed
method generates a quantum superposition state generat-
ed from a single-mode photon field using only quantum
measurement without any optical nonlinearities.
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