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Energy sharing among the globally coupled cavity modes of a chaotic laser is characterized by
probability distributions of the output intensity. While the distribution for an individual mode in-

tensity is highly non-Gaussian, the distribution for the total intensity is determined to be approxi-
mately Gaussian. Numerical integration of the nonlinear coupled differential equations that de-
scribe the laser dynamics yields results that agree very well with experimental observations.

Many complex physical, chemical, and biological sys-
tems can be accurately modeled as a collection of globally
coupled nonlinear oscillators. Essential dynamical aspects
of Josephson-junction arrays, ' chemical turbulence, and
heartbeat rhythms, for example, have been explained us-
ing such models. One particularly crucial feature of these
coupled oscillator systems is the dynamics of energy shar-
ing among the oscillators.

When a driven, dissipative, globally coupled oscillator
system is in a chaotic state, a complex energy-sharing pro-
cess may occur among the oscillators. Probability distri-
butions can be used to characterize the fluctuations of the
total energy of the system as well as the energy of an indi-
vidual oscillator. Kaneko has recently used probability
distributions to study N globally coupled logistic maps as
a mean-field-type extension of coupled-map lattices. He
has shown the interesting result that mean-field fluctua-
tions for these logistic maps are approximately Gaussian
distributed despite the fact that they are coupled; pa-
rameter-dependent deviations from a Gaussian distribu-
tion were observed in computations even for large N.
Kaneko also showed that for large N the two-point mutual
information is extremely small but remains finite and is
responsible for the breakdown of the law of large num-
bers. This implies that any two individual maps are not
statistically independent in their fluctuations.

In this paper we use probability distributions to analyze
the energy sharing among the globally coupled axial
modes of a chaotic neodymium-doped yttrium aluminum
garnet (Nd: YAG) laser system. However, unlike the
mean-field approximation, global coupling is a natural
description for a multimode laser, and not a computation-
ally expedient approximation. A characterization of the
energy sharing is provided by the probability distributions
of the total and individual mode intensities as well as by
an examination of their time evolution. Integration of a
numerical model describing the laser dynamics yields pre-
dictions for the probability distributions and time traces
that are remarkably similar to the experimental results.
We find that even though the probability distribution of
an individual mode intensity is highly non-Gaussian, the
distribution of the total intensity is approximately Gauss-
ian. This result is reminiscent of Kaneko s study of glo-
bally coupled maps; it is, however, observed for the case of
a few globally coupled laser modes which are strongly sta-
tistically dependent, as will be shown.
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where r, (=0.2 nsec) and rf ( 240 @sec) are the cavity
round trip tiine and fluorescence time, respectively; Ik and
GI, are, respectively, the intensity and gain associated with
the kth longitudinal mode; at, is the cavity loss parameter,
y ( 0.05) is the gain parameter, P (=0.7) is the cross-
saturation parameter, e (=5.0X 10 ) is a parameter
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FIG. 1. Schematic of diode pumped Nd:YAG laser with in-

tracavity KTP doubling crystal. The laser cavity is highly re-
Aecting for the fundamental 1064-nm wavelength, but transmits
the doubled green light at 532 nm. The relative angular orienta-
tion of the Nd: YAG and KTP crystals is adjusted to obtain a
given combination of orthogonally polarized modes.

A schematic of the laser experiment is shown in Fig. l.
When the laser is pumped several times above threshold,
many longitudinal modes can be active simultaneously.
Chaotic fluctuations in the output intensity are induced by
the potassium titanyl phosphate (KTP) crystal, which
nonlinearly couples the modes through sum-frequency
generation. Each cavity mode has one of two independent
linear polarizations, which we label as x and y. We sup-
pose that there are N modes in all, with m having x polar-
ization, and n =N —m having y polarization. We can
vary N from 1 to —10, with a number of accompanying
polarization combinations, by varying the pump excitation
above threshold and by careful rotational alignment of the
Nd:YAG and KTP crystals. Chaos is observed only for
N ~ 3. ' The.experiments described here were performed
on a laser with five modes (N-n+m =5) in all, one
(rrt =1) x-polarized mode and four (n =4) y-polarized
modes. The differential equations used to describe this
system are
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that depends on the nature of the second-harmonic-
generating crystal, and g ( 0.1) is a geometrical factor
whose value depends on the orientation of the YAG crys-
tal relative to the KTP doubling crystal as well as the
phase delays due to their birefringence. Here, pj =g for
modes having the same polarization as the kth mode,
while p J

= 1 —g for modes having the opposite polariza-
tion. We have made the simplifying approximation that
the gain y and cross-saturation parameter P are the same
for all modes. Cross-saturation of the active medium
[represented by the PIJGI, terms in Eq. (1)] and sum-
frequency generation in the intracavity nonlinear crystal
[represented by the 2epJIJIk terms in Eq. (1)] introduce
global coupling among the laser modes. The individual
mode losses are assumed to differ only slightly, with
ak -0.01. The exact values of these parameters affect de-
tailed aspects of the probability distributions. The param-
eter values given above represent typical experimental
operating conditions.

A theoretical analysis of these equations has success-
fully predicted conditions for stable operation. The
equations also accurately describe periodic phenomena,
such as antiphase states. "Here we use these equations to
examine the chaotic dynamics of the laser.

The diode pumped Nd: YAG laser was carefully aligned
to support a total of five axial modes, composed of one x-
polarized and four y-polarized modes. The second har-
monic was filtered from the laser output, and only the
1064-nm fundamental wavelength was incident upon a
photodiode. The axial mode structure was monitored dur-
ing the experiment with a confocal Fabry-Perot inter-
ferometer. The photodiode signal was observed and
stored on a digital oscilloscope interfaced to a microcom-

puter. The digitized signal was transferred to the comput-
er and the total intensity probability distribution was cal-
culated. Repeating this procedure allowed us to obtain a
probability distribution accumulated from many time
traces. A polarizing prism was then inserted before the
photodiode, allowing us to obtain time traces and proba-
bility distributions of either the x- or the y-polarized in-
tensity.

Time traces for the single x-polarized mode intensity,
the y-polarized intensity and the total intensity are shown
in Figs. 2(a)-2(c), respectively. The 1-msec time interval
for measurement of these time traces is much longer than
the typical time scale of chaotic fluctuations, as is clear
from Fig. 2. Note that the experimental data was not ob-
tained simultaneously. Figures 2(d)-2(f) show the corre-
sponding results from an integration of the nonlinear Eq.
(1) over 1 msec with a 10-nsec time step. The similarity
in overall character of these time traces is quite remark-
able. The numerical data has been scaled in order to ac-
count for the transmission of the prism. The International
Mathematics and Scientific Library subroutine DGEAR
was used to perform these computations. The largest
Liapunov exponent calculated from this integration is
1.6 x 10 sec ', indicative of strongly chaotic behavior for
this system. The time for separation of trajectories (= 60
psec) is thus very short compared with the total time of
measurement (fifteen trajectories of I msec) for accumu-
lation of the probability distributions.

Figures 3(a)-3(c) show the experimental probability
distributions accumulated from fifteen time traces of
length 1 ms with 4000 samples each. The distribution for
the total intensity is found to be approximately Gaussian.
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FIG. 2. (a)-(c) Experimental time traces for the x polarized,
y polarized, and total intensities. (d)-(f) Corresponding time
traces from numerical integration of Eq. (1).
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FIG. 3. (a)-(c) Experimental probability distributions for
the x polarized, y polarized, and total intensities. (d)-(f) Cor-
responding probability distributions from numerical integration
of Eq. (1).
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To facilitate this comparison, a Gaussian calculated from
the mean and variance of the total intensity Auctuations is
included in Fig. 3(c). Figures 3(a) and 3(b) are the dis-
tributions for the single x-polarized mode intensity and
the y-polarized intensity, respectively. Note that both
these distributions are highly non-Gaussian in character.

Corresponding probability distributions calculated from
the differential Eq. (1) integrated over 4.5 msec are shown
in Figs. 3(d)-3(f). To enable direct comparison between
the theoretical and experimental results, the bin widths
relative to the mean have been set equal for corresponding
distributions. The resemblance of the distributions is
striking. To our knowledge, such close correspondence be-
tween experiment and theory for the statistical measures
that characterize chaotic dynamics is very difficult to
achieve. It can be seen that the experimental and theoret-
ical probability distributions for the total intensity, though
approximately Gaussian, show very similar deviations
from the Gaussian fits.

The distributions for the x and y polarizations (Fig. 3)
are seen to be double peaked. A polarizing beam splitter
was used to separate the two polarization components and
obtain simultaneous measurements of their intensities.
Figure 4 shows a strong anticorrelation between the ex-
perimentally observed x- and y-polarized intensities. The
sum of the anticorrelated intensities has a distribution
which is single peaked and approximately Gaussian [Figs.
3(c) and 3(f)l.

The central limit theorem does not usually apply to
strongly dependent random variables. ' The modes in the
laser described here are coupled, and are strongly depen-
dent random variables. Yet, the total intensity of the laser
is approximately Gaussian distributed. The results
presented in this paper are not unique to the laser operat-
ing with five modes. We have made similar observations
when the laser is operated in a chaotic state with three to
ten lasing modes over a large range of pump excitation
and mode polarizations. We cannot, of course, rule out
the possibility of a non-Gaussian distribution of the total
intensity for some other laser configuration.
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FIG. 4. Experimental time traces from simultaneously mea-
sured x-polarized and y-polarized intensities. Note the an-
ticorrelation between the orthogonally polarized intensities.

It is worthwhile to examine the statistics of chaotic
physical systems and identify general trends that are ex-
hibited by appropriate statistical measures, in order to de-
velop a physical intuition for such systems. The probabili-
ty distribution for the fluctuations of the system energy is
an extremely useful measure of the chaotic Auctuations in
many practical situations, such as the chaotic laser exam-
ined in this paper. Despite the extensive literature on ex-
perimental observations of chaos, it appears to us that
there have been few, if any, attempts to determine statisti-
cal measures of the Auctuations of a chaotic physical sys-
tem and compare these directly with theoretical predic-
tions. Here, we report the results of such a study; we hope
to stimulate further statistical investigations of Auctua-
tions in chaotic physical systems.
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