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Noise quenching in lasers and masers by strong coherent pumping
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An intense single-mode correlated-spontaneous-emission laser or maser can be realized by driv-

ing the active atoms coherently with an injected external field. The scheme involves single-photon
transitions unlike the two-photon or quantum-beat correlated-emission lasers that utilize correla-
tions between successive photon-cascade emissions or between simultaneous emissions into two
modes of the field. Quenching of both the amplitude and phase noise and, in certain cases,
squeezing of the amplitude fluctuations are found.

The reduction of quantum noise and the enhancement
of coherence in lasers and masers has been a long-
standing goal in quantum optics. One method of accom-
plishing this involves the introduction of correlations be-
tween pairs of photons emitted simultaneously in certain
devices. We have proposed several schemes for achieving
correlated-spontaneous-emission laser (CEL) operation in
two-mode systems, ' and in single-mode two-photon sys-
tems. The correlation arises from the initial coherent
preparation of the active atoms. Atomic coherence leads
to amplitude noise quenching even in an ordinary single-
mode, single-photon-transition laser (polarization CEL)
where, far above threshold, this is accompanied with a
significant reduction of the linewidth.

Reduced pump fluctuations also improve the noise per-
formance in, e.g. , semiconductor lasers and micro-
masers, but their impact on ordinary laser operation was
unclear. Recent efforts to incorporate the effect of pump
fluctuations' "into the quantum theory of the laser have
indicated that it is significant in the far-above-threshold
regime of operation. This conclusion changes drastically
when atomic coherence is involved. We have found that
sub-Poissonian pump fluctuations lead to squeezing of the
amplitude fluctuations already around threshold in this
case. '

Here we report on a scheme which is perhaps the sim-
plest one from the point of view of experimental feasibili-
ty. We consider lasers and masers in which the active
atoms, in addition to being pumped into the upper level of
the lasing transition by the usual incoherent pump mecha-
nism, are also driven by an external field which is injected
into the resonator from the side. The external field
changes the gain of the lasing mode and gives rise to
phase-sensitive noise. This, in turn, leads to various
noise-quenching effects.

Consider an optical or microwave transition between
two levels. The excited level Ia) is coupled to the ground
level lb) by the laser transition and by the mode into
which the coherent field is injected. This latter mode
differs from the lasing mode, e.g. , in the direction of its k
vector (the external field is injected from the side into the
cavity). Assuming an intense classical injected field, we
obtain the following effective Hamiltonian in the interac-

8p = (r/p) ln [1+p(1M' —1)]p+ L„„p. (2)

The last term on the right-hand side accounts for the cavi-
ty losses, its explicit form is given below, in Eq. (4). r is
the injection rate for the atoms. p is a parameter,
0 & p & 1, describing the effect of pump statistics (i.e., ar-
rival times statistics of the atoms). Namely, p =0 corre-
sponds to Poissonian pump statistics, i.e., the number of
excited atoms at any time t is random with Poissonian
fluctuations around its mean [notice that for this case Eq.
(2) reduces to the usual master equation'3 for the quan-
tum theory of the laser]. p=l corresponds to regular
pumping, i.e., the number of excited atoms at time t is
fixed. M is an operator describing the effect of a single ac-

tion picture:

Hi = Ag(ala)(bi+a I&)«I)
—

pj, [(fl/2) Ia)($ I+ (f1*/2) Ig)(al] .

It is assumed that the laser is resonant with the atomic
transition, v=co, —cot„where @co, (Acob) is the energy of
the upper (lower) level and v is the frequency of the laser
field and the injected field. a and a t are annihilation and
creation operators for the laser mode, g is the coupling
constant between the atom and the lasing mode, and 0 is
the complex Rabi frequency of the injected field, 0
=

I 0 I exp(iso). We shall discuss the following cases: (a)
maser models, where the excited atoms are injected into
the cavity and interact with the fields for a time equal to
the transit time zo, assumed shorter than the lifetime z of
the atoms (zo & z) so that atomic decay can be neglected;
and (b) laser models, where atoms are injected into the
cavity in their upper states or are inside the cavity and are
being pumped into the excited state by incoherent pump
mechanism. The interaction time is longer than the life-
time of the atoms, which is assumed to be the same for
both levels, z, =zb =z=I ' where I is the atomic-decay
constant.

The reduced density matrix p for the laser field, includ-
ing the arrival times statistics of the active atoms, satisfies
the following master equation '
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TABLE I. The parameters a; (i 1, . . . , 4) and s of Eq. (4) for masers (left column) and lasers
(right column). a r(gro) 2 is the maser gain expression and aq =2r(g/I ) is the corresponding ex-
pression for laser gain, without injected signal. x -

I A I ro is a dimensionless intensity parameter for the
external field for the maser case, xi I Ql/I is a similar parameter for the laser case. In the expressions
below p 0 corresponds to Poissonian-pump statistics, p =1 to regular pumping.

a]

Masers

a 1 sinx sin2(x /2) sin4(x /4)
2 4 2xm

P

Lasers

ag 1+3xP/4+ x(~/4 —pxP/8
2 (1+x')'

r

a 1 sinx sin2(x /2) sin4(x /4)
2 4 2xm xm xm

P
ai 3xI'/4+ xi'/4 —pxP/8

(1+xi')'

a 1 sinx sin2(x /2) sin (x /4)
2 4 2xm xm xm

+p ai 3xP/4+ xg /4+ pxP/8
2 (1+xi') '

la41
am f sinxm

2 4 2x
3sin'(x /2) sin'(x /4)+p

xm xm

ai x& /4 —xP/4+ pxP/8
2 (1+xI )

sin'(x /2)
/gap

xm

—r~
2r 1+x(

tive atom on the field. For the maser models the equation

p(r) -Tr, , [U(r)p i +y g(0)U (r)] =M(r)p(0)

(3a)

defines the operator M =M(r), where U is the evolution
operator of the Hamiltonian (1). For the laser models
M =M(I '), where

M(I ') =I ~ dr M(r)e (3b)

and the averaging with respect to the distribution P(z)
=I exp( —I"r) represents the effect of atomic decay. '3

To study noise quenching it suffices to work out a
linearized theory in terms of the cavity mode operators a
and at [terms up to O(g ) in Eq. (2)l. However, the
external field is treated to all orders. This is most easily
accomplished if we introduce a second interaction picture
where the external field (terms proportional to 0) is elim-
inated from Eq. (1).2 Thus, starting from Eq. (2), we ob-
tain the master equation for the reduced density matrix
for the cavity mode in the form:

8p = —a~ (aa tp —a tpa) —(a2+ y) (a tap —apa )
'r

standard methods of the quantum theory of the laser. ' In
particular, a3=~a3~exp(2ipo), a4=~a4~exp(2ipo), and s
=(slexp(inc). The resulting expressions are summarized
in Table I.

In order to see the physical meaning of the various a
parameters, it is convenient to transform master Eq. (4)
into a Fokker-Planck equation for the Glauber-Sudar-
shan P representation. ' The result is

aP
8r

lb+ (a )
—a2 —y) a+ (a3 —a4) a*]PI

a
a

ti2 |12+,(a3P)+, (a(P)+c.c.
8a Ba8a

(S)

Clearly, a~ (a3) and a2 (a4) correspond respectively to
phase-insensitive (phase-sensitive) gain and loss. Besides
the usual phase-insensitive diffusion, a~P, we also have a
phase-sensitive diffusion term, a3P, in Eq. (S). ' On writ-
ing a=rexp(ip), Eq. (S) can be converted to a differ-
ential equation for the phase and amplitude variables
from which it is easy to obtain the phase-locking condi-
tion. ' It turns out that stable locking occurs for p=pu
+n/2. Under the phase-locking conditions the diffusion
coefficients for the phase and amplitude are given by

D&&
= (au/4n ) (2a~/ao) [I + (I a3I/a~ )]+ a3(a ta tp —a tpa t) + a4(pa ta t —a tpa t)

+s[a t,p]+H.c. ( )
and

Dii =(ap/4)(2a~/ao) [1 —(Ia3I/at)] . (7)

where ao=a for masers and ao =ai for lasers. n denotes
the mean number of photons. Its actual value, which also
depends on the strength of the injected field, can only be
determined from a nonlinear theory. Obviously, ac/4n
(ac/4) is of the same form as the phase (amplitude)
diffusion coefficient without the injected external field.
Thus, the main modification brought about by the injected
field can be characterized by two parameters: 2a~/ac and

Ia3I/a~. In Figs. 1-4 we show these quantities versus the

This master equation will be valid to second order in g and
to all orders in A. In Eq. (4) the losses through the cavity
mirrors are represented by the coefficient y, and H.c.
stands for Hermitian conjugate terms. The parameters a;
(i =1, . . . , 4) and s are related to the properties of the
atoms in Eq. (1) and the particular decay and pump
mechanism. In general, they are given in terms of the
two-time correlation functions of the atomic-dipole mo-
ment operators. ' For our simple models of the maser and
laser they can be brought to an explicit form by using
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dimensionless intensity parameter of the injected field x
(xI) for the case of a maser (laser), respectively. Here x
(xI) is the Rabi frequency of the injected field times the
interaction time ro for the maser (lifetime I ' for the
laser).

These figures also exhibit the eH'ect of pump statistics
on the noise properties of masers and lasers. Figure 1

s ows the case of a maser with regular pump (p =1). The
oscillatory character is associated with a finite number of

a i oscillations during the transit time of th t
hrough the maser cavity. Figure 2 shows the case of a

laser with a regular pump (p 1). We obtain a smooth
e avior, since the Rabi oscillations are averaged out.

Note that for the regular pump both the maser and laser
models exhibit )a3)/ai & 1, i.e., squeezing of the ampli-
tude fiuctuations, for certain values of the external field.

( =0) wh
igure 3 shows thecaseof amaser with a t h tp=, w ereas Fig. 4 corresponds to a laser with a sto-

chastic pump. Note the decrease of ~a3~/a~. For the
maser there is still a small part of the full intensity range
w ere this quantity is larger than one and hence squeezing

less t an
is possible. For the laser, however this q t t

'
i

ess t an one and, hence, the stochastically pumped laser
does not exhibit squeezing.

From the table the explicit expressions of the phase and
amplitude diA'usion coefficients for th hr e various schemes
can be obtained. In particular
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FIG. 2. Same parameters as in Fig. 1 as a function of the di-
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here is t e atomic-decay
constant for simplicity assumed to be the same for both I I )

t the scale in the laser case is the same for both curves
r o eve s .

D&& =(a~/4n) [Y'+2sin (x~/2)/x~]

a /4n ifx 0,

,am/8n ifx »1, (8)

and

Dr'I" =(tel/4)(1 —px'/4)/(1+xI')'

and

D (rn) = (a~/4) [si nx~ /x~ —2p sin'(x~/2)/x~ ]

am/4 if x~ 0,
0 ifx »1,

1.00

al/4 if xI 0,
0 if

for the laser.ser. These expressions summarize our findings.
For vanishing intensity of the injected field they reduce to
the correspon ing expressions for lasers andan masers

i out an irected field. For very high intensities they
reproduce the very far-above-threshold behavior of lasers
an masers (asymptotical vanishing of the amplitude
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FIG. 1. The parameters 2a~/ap (solid line) and
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in ensi y param-

( -I . Here
m

— to for the case of a maser with regul
' tregu ar inject~on

p- ). Here
~
ri

~
is the Rabi frequency of the injected field and

ro is the transit time. The scale on the left-hand side (right-
hand side) is for the solid line (dashed line).
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FIG. 3. Same as Fi . 1 f'g. or the case of a maser with stochastic
pump (p =0).
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FIG. 4. Same as Fig. 2 for the case of a laser with stochastic
pump (p =0).

noise and a significant reduction of the phase noise).
These expressions also indicate that pump statistics only
inhuence the amplitude noise, since the phase diffusion is
independent of p both for the laser and the maser.

It is interesting to compare our results to previous
works. Recently, we have found amplitude squeezing in

the injection model of a maser and quenching of the am-
plitude noise, but no squeezing in the injection model of
the laser when initial atomic coherence was present.
The present scheme appears to be more efficient since it
predicts amplitude squeezing in the laser. The injected
atomic coherence decays with time and has only a reduced
effect on the noise performance. The coherence due to the
driving field, however, is always restored to its steady-
state value and, thus, its effect is enhanced.

In addition to antibunching (amplitude squeezing) the
injected field provides phase locking and the reduction of
the phase-diffusion noise by 50%. These effects, with the
exception of locking, remained unnoticed in previous
treatments of lasers with injected signal' because they
were restricted to a linearized theory in the external field,
whereas here we keep the external field to all orders. Fi-
nally we note that recently what is believed to be the first
experimental observation of CEL operation was report-
ed, ' in agreement with the predictions of Refs. 1-5 and
adding further to the feasibility of the present scheme.
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