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Strange attractor in the reAectivity of a phase-conjugate mirror
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Wave equations describing optical phase conjugation in photorefractive crystals are solved using
a technique that transforms a boundary-value problem into an initial-value problem. Boundary
conditions are satisfied using an iterative map constructed in the parameter space. Within the itera-
tive procedure unstable situations arise, leading to a chaotic response of the crystal. A strange at-
tractor is discovered in the reflectivity of the crystal, existing in the multiparameter space of the
single-interaction-region four-wave-mixing process.

Instabilities in optical phase conjugation (OPC) have
become a subject of considerable interest lately. This is
only natural in view of its potential applicability. How-
ever, no one can make a dependable device before under-
standing and eliminating eventual unstable modes of
operation. By the same token, any novel unstable or pos-
sibly chaotic system presents an interesting investigation
subject per se.

Initial reports on chaos and turbulence in OPC (Ref. 2)
were concerned primarily with resonator configurations,
in which one mirror is a phase-conjugating element. In
such geometries the presence of all necessary ingredients
for dissipative chaos is easily ensured: nonlinearity is
provided by the medium, driving is enabled by laser
pumps, and feedback comes from the normal mirror.
The situation is not so simple if one considers the phase-
conjugate mirror by itself, especially in the experimental-
ly interesting self-pumped geometry of multiple interact-
ing regions and multiple gratings in photorefractive crys-
tals. One should contrast the ease of obtaining phase-
conjugate beams in such geometries with the difficulties
in trying to explain their behavior.

We display in this report the emergence of determinis-
tic chaos in a single interaction region of a photorefrac-
tive crystal, assuming multigrating four-wave-mixing
(4MW) optical conjugation. No other feedback mecha-
nism is envisaged, such as internal corner rejections in
the crystal, or external mirrors. We show that even ordi-
nary 4WM, with optical feedback provided only by the
energy transfer between waves is sufficiently nonlinear to
produce unstable phase-conjugate output. The results re-
ported are obtained by an alternative integration pro-
cedure, in which a boundary-value problem is
transformed into an initial-value problem, that can be
treated in quadratures. The boundary-value nature of the
problem is retained in the two-point dependence of some
parameters, which are analyzed by an iterative mapping
procedure. Within the iteration procedure unstable situ-
ations arise, leading to chaotic outputs and a strange at-
tractor in the parameter plane.

Our starting point is the slowly varying envelope wave
equations describing steady-state multigrating phase con-
jugation in photorefractive media:
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where A; are the slowly varying amplitudes of the four
electric fields interacting inside the crystal, g and y are
the interaction coe(5cients (assumed to be real in this
case of photorefractives), A T

= A, A ~ + A 2 A 3 and A]]= A, A3+ A2 A4 are the amplitudes of the transmission
and the reAection gratings that have been established in
the crystal, and I=+,

l A;l is the total intensity. The
geometry assumed is the standard 4WM setup: counter-
propagating pumps A& and A2 impinge on the crystal
from the opposite sides, and a signal A4 enters from the
side of the pump A &, tilted for some small angle. Due to
photorefractive interaction of these waves, a fourth wave
A 3 is generated in the crystal, which is the counterpro-
pagating phase-conjugate replica of the signal A4. The
prime in Eqs. (1) denotes the derivative along the propa-
gation (z) direction through the crystal, and the asterisk
represents complex conjugation.

In arriving at Eqs. (1) from their most general form, as
given, for example, in Ref. 5, we assumed that the
transmission grating (built by the waves A ] and Az) and
the reAection grating (built by A 2 and A &) contribute
equally, and that the two-wave contribution, coming
from the mixing of the signal A4 with the phase conju-
gate A3, can be neglected. Both of these assumptions are
reasonable and frequently occurring in experiments.

The object of the analysis is to solve Eqs. (1) subject to
split boundary conditions: the fields A

&
and A4 are

given on the one side of the crystal, and A 2 and A 3

(which is zero) on the other. Many authors have tried to
solve these equations, using a variety of methods: from
analytic in special cases, to difterent numerical
schemes. ' ' A very systematic numerical study has been
performed by Ja, who tried almost all known methods
applicable to boundary-value problems: from the shoot-
ing method to the finite element method; from first-order
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algorithms all the way to the seventh order.
The main problem is that these equations allow for

multistable solutions, or even chaotic. Part of the insta-
bilities is real, since it is known that the generation of a
phase-conjugate beam can be very unstable. However,
part of the instabilities could be spurious, and arising
from the fact that one is solving steady-state equations.
The situation is analogous to computational Quid dynam-
ics, where solving a steady-state potential equation in-
stead of Euler or Naiver-Stokes equations may lead to
multiple solutions, which are unacceptable on physical
grounds. No systematic study of instabilities or chaotic
scenarios in OPC has been offered. Our method appears
to be advantageous compared to standard methods, such
as shooting or relaxation, based on the fact that it pro-
vides a rapid and accurate solution to the boundary-value
problem at hand, and that it deals readily with multi-
stable situations.

The solution procedure is as follows. Going over to in-
tensity equations, assuming exact phase conjugation, and
changing variables into u

&
=I2+I„vt =I2 —I&„

u2=I4+I3, u2=I4 —I3, leads to the following set of
equations:
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where I=u l + u 2, while f, =4I, I2 and f 2
=4I3 I4 obey

If', =yu, f, ,

If2
—2g(u, f2+f, u2) . (3b)

Equations (2b) and (3a) are easily integrated in terms of
U2,

Vl =V2+6, fl =fld (4)

iv'=2guv, iw'=2gf,
where now i =u+v coshw, u(v)=[(v+5) +a v ]'
f(v)=av ~ . Parameters 5=6/U2d and a=fldlv2d, as
will become apparent in a moment, are crucial in our
solution procedure. Here b =y/g.

The system of equations (6) presents an initial-value
problem. The values of both unknown variables are

where 4 =v» —
v2d is a constant evaluated at z =d, d be-

ing the thickness of the crystal. Explicit knowledge of u&

and fl allows evaluation of ul=(fl+Ul)' . It remains
to find u2 and f2 in terms of U2, and then to solve an
equation for u2. This is most easily accomplished by in-
troducing a new variable w:

u 2
—U2coshw, f2

—v2sinhw,

and by rescaling all variables with respect to v 2d ',

u =u, lv 2d, f=f, Iv 2d, v = v 2 lv 2d The equa. tions to be
solved become

known on the z=d face of the crystal: ud=1, wd=0. In
this manner the boundary-value nature of the problem is
transferred to the parameter space. In addition, this sys-
tem is integrable. The solution is given in terms of quad-
ratures:

lnv(z)+ f U coshw(x)
dx =2g(z —d ),

u (x)
(7a)

w(v)= f dx,
xu (x)

(7b)

but the integrals indicated cannot be evaluated in closed
form for arbitrary b. Their numerical evaluation or tabu-
lation, however, entails little difficulty. Even less trouble-
some numerically is to integrate Eqs. (6) directly on a
computer, as an initial-value problem. In any case there
remains the problem of boundary values.

Let us denote the given boundary values of intensities
by I&O=C& and I4o=C4 on the z=O face of the crystal,
and by I,„=C2 and I,„=O on the z =d face. Parameters
a and 5 are connected with these via

2(C2Ild )' C2 I—
6= 1

I4d I4

where I» and I4d = v2d are the missing boundary values
at z=d. The same parameters can also be connected
with the missing values I20 and I30 (or, equivalently, with
vo and wo) at z =0:

x(C, +C2)+vo —1

C, +C2uo

x(C2vt Cl ) Clvo C2vt

C, +C2vo

a'=4C, C,x

Here x denotes the inverse of U2d, which also equals
vo(coshwo+ 1)/2C~.

The problem of boundary values consists in that a and
5 are given in terms of vo and wo, and these can only be
evaluated after the correct values of a and 5 are supplied
to Eqs. (6) or (7). Such problems, however, are con-
veniently addressed by iteration procedures. Starting
with some arbitrary initial values a' ' and 6' ', these are
substituted into Eqs. (6) or (7), the equations are integrat-
ed, and the values of vo and wo found. From these the
new values of a'" and 5"' are calculated, and the pro-
cedure is repeated until the desired accuracy is achieved.
In this manner an iterative map in the plane is defined,
and the procedure actually presents an evaluation of the
fixed points of the map. An interesting question to be
asked is whether the map can become unstable, and what
happens when it becomes unstable. This question will be
addressed in the remainder.

There are four relevant control parameters in the prob-
lem: the wave-mixing coefficients g and y (actually gd
and yd, but we keep d = 1 throughout), and the boundary
values C2 and C4 (the other pump is used as the intensity
unit, and Cl is fixed at one). We report here only on the
case C2) C& )C4, but other combinations are also al-
lowed.

We find the procedure to be stable for g (0, and for ar-
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bitrary other parameters. For g &0 it is stable up to
about 2, and then it loses stability. The point where it ac-
tually becomes unstable, as well as the form of instabili-
ties and their dynamics, depends strongly on the other
parameters. An intriguing question is whether this unsta-
ble behavior is a true physical phenomenon, or a property
of the model only, or merely a numerical instability. We
checked by an alternative method (brute-force shooting
method) that these instabilities belong to equations, but
how real they are can only be resolved by experiment.

Figure 1 depicts the development of instabilities as g is
varied, for y =3. Boundary values are chosen as Cz =3
and C4=0.6. It is seen that roughly in between g=-2.38
and g =-3. 12 a quasiperiodic egg-shaped region is formed,
with many commensurate windows visible. The chaos,
however, is not reached through quasiperiodicity, and at
the end of the interval a unique, period 1 solution is
recovered. This fixed point starts to bifurcate at about
g —=3.22, and after a cascade of pitchfork bifurcations,
chaos is reached at g=-3.39. Thus, through a repeated
loss of stability of the fixed points of various powers of
the map, an aperiodic state is reached where no stable
reflectivity exists.

A different scenario is observed for y positive. In Fig.
2 the development of the reAectivity is followed for y =3.
Now no quasiperiodic region appears, and the system
proceeds to chaos via period doubling starting from
g-=3.56. A four-piece strange attractor is formed at
g -=3.572, and at g =—3.573, through an interior crisis, a
one-piece attractor emerges. The chaotic region ends
when the system enters an unphysical region of negative
a

Figure 3 presents the attractor in the a-6 phase plane,
for g=3.505, y= —1, C2=3, and C4=0.6. We measured
its correlation dimension using embedding techniques,
and found it to be D2 =—1.11. The development in the a-6
plane starts with a single fixed point, which bifurcates un-
til a four-piece attractor is reached. Due to the implicit
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FIG. 2. The same as Fig. 1, but for y =3.

and noninvertible nature of the map, it is diScult to draw
stable and unstable manifolds of different fixed points. It
should be noted that it makes little difference whether
one looks at the chaos in variables a and 6, or I» and

I4d, or I2O and I30. The same qualitative behavior is ob-
served.

Generally, the phase diagram of the system shows that
the system is becoming more unstable as g and y ~

are in-
creasing. Moreover, in the region of large g ("strong-
coupling limit" ) sooner or later a boundary is ap-
proached, where unphysical solutions appear (with nega-
tive intensities). Chaos is found in the band that
separates periodic from unphysical solutions.

However, there exists a special set of unique solutions
for y =0 and arbitrarily large g, which is submerged into
a sea of unstable solutions. They require a special set of
numbers for boundary values. Choosing, say, C2 to be a
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FIG. 1. Bifurcation diagram of the intensity reflectivity for
y= —3, C2=3, C4=0.6.

FIG. 3. Strange attractor in the plane of a-6 parameters. Its
correlation dimension is D2=—1.112, and the parameters are
g=3.505, y= —1, C4=0. 6, and C~=3. A very similar attrac-
tor is seen in the first return map (R„,R, +&) of the reflectivity.
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rational number n/m (n )m ), and if C~ is set equal to
(n —m )/(n+m ), then the attractor falls onto a rational
fixed point a =2nm /(n —m ), 5=0 in the phase plane.
If the prescribed boundary values are missed even slight-
ly, the system goes to chaos, or it becomes unphysical.
For these solutions I, +I4 =Iz+I3, i.e., power Aux to the
left is balanced by the fIux to the right. A more complete
account of these and other findings will be published else-
where.

In summary, we have presented an alternative integra-
tion scheme for treatment of two-point boundary-value
problems, in which the boundary-value problem is
transformed into an initial-value problem, and the fitting
of boundary conditions is transferred to the parameter
space. An iterative mapping is formed in the parameter
plane, and its fixed points, and the fixed points of its vari-
ous composition powers are analyzed. It is found that for

g negative there are no instabilities —the iterative pro-
cedure rapidly converges to stable fixed points. For g
positive and increasing, sooner or later, the instabilities
set in, and the system proceeds to chaos following the
Feigenbaum period-doubling scenario. A strange attrac-
tor is discovered in the intensity reAectivity of the crystal,
with the correlation dimension between 1 and 2.

In the end, it should be pointed out that instabilities
obtained in this manner do not imply with certainty the
existence of experimental instabilities. In the absence of
a dynamical picture of the process, it can only be estab-
lished that for a given set of control parameters, and a
given set of boundary values, the original wave equations
allow for multiple solutions, possibilly even infinitely
many such solutions. The reality of these solutions, how-
ever, can only be ascertained by experimental
verification.

For an overview, see Optical Phase Conjugation, edited by R.
A. Fisher (Academic, New York, 1983).
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