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The correlation-energy density functional is studied here through an exact solution of a two-
electron system bound by a harmonic-oscillator external potential. Since the correlation energy is a
universal functional of density in density-functional theory, the same functional form is valid for
two-electron atoms and ions as well. Using this fact we have proposed here density-functional
schemes, within a local-density approximation as well as nonlocal considerations, for the study of
correlation energies of two-electron atomic and ionic systems. The nonlocal scheme leads to
significant improvement over the local ones, yielding results that show good agreement with the
standard values.

Density-functional theory' provides a conceptually
simple and physically appealing approach to the calcula-
tion of electronic structure and properties of many-
electron systems. As proposed by Hohenberg and
Kohn, ' the energy of an X-electron system characterized
by an external potential v (r) is written in this theory as a
unique functional of the single-particle electron density
p(r}, viz. ,

E, [p]=f v(r)p(r)dr+E[p],

where F [p] is a universal functional

F [p]=T[p]+&„[p]
consisting of the kinetic-energy functional T fp] and the
electron-electron interaction energy functional &„[p].
The latter can be partitioned into the classical electro-
static interaction energy and the exchange-correlation en-
ergy density functionals as

I

V„[p]=—,
' f f dr dr', + U„,[p] .

Exact forms of the density functionals T[p] and U„,[p]
are, however, unknown, and therefore approximate
schemes are needed for practical calculations using the
density-functional formalism. The fact that these func-
tionals are universa1 implies that the corresponding func-
tional forms in terms of density are independent of the
external potential characterizing the system and can thus
provide a means for obtaining the forms of these energy
functionals. Thus, if one can obtain the functional forms
of T [p] and U„,[p] in terms of density for an X-electron
system bound by any suitable external potential, one can
evaluate these functionals for any atomic and molecular
system with the help of the same expressions but using
the actual densities of the concerned systems.

In this paper, we exploit this fact to calculate the
correlation energies of simple atomic systems. The exact
correlation energy density is first determined for a two-
electron system where the electrons are bound by a cen-
tral harmonic-oscillator potential, ' for which an exact

solution is possible. " By studying this exact correlation
energy density u, (r) we have attempted to obtain its
functional dependence on density, which is then em-
ployed to calculate the correlation energy of two-electron
atoms and ions, by evaluating this expression using the
densities of these systems.

The solvable mode1 system that we consider here con-
sists of two electrons attracted to a common center by
harmonic forces, for which the Hamiltonian is given by
(in atomic units)

H = —
—,'(V, +V~)+ —,'klr, +r22)+1/r, 2, (4)

where k is the force constant. Using the center-of-mass
coordinate R [=(r,+r2)/2] and the relative coordinate r
[=(r&—r2)], and separating the variables, one obtains
the pair of decoupled equations

(
—

—,
' V~ +kR }y(R)=E~y(R),

[ —V„+ ,' kr + 1/r]P(r—)=E,P(r ) . (6)

The total energy is given by the sum E =Ez +E, and the
ground-state wave function of the system is given by the
product

y(R)=(2a/~) exp( —aR ), (8)

with a = k ' and the energy Ez =
—,'a. The function P(r)

is, however, to be obtained from numerical solution of
Eq. (6). The density can then be calculated from

p(r& ) =2f q*(r„r,)q(r„r, )dr,

which gives, on using Eqs. (7) and (8), the result

p(r &
) = 8(2a/~)' (1/r

&
)exp( —2ar

&
)

X f dr rP (r)e p( —xar /2)si h(2nrr, a) . (10)

P(r„r2) =y(R)P(r),
where y(R) is the ground-state solution of the spherical
harmonic oscillator given by
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Substitution of the wave function of Eq. (7) in Eq. (11)
leads to the final expression

u, (r, ) =4(2a/m)' (1/r, )exp( —2ar, )

X f dr P (r)exp( —ar /2)sinh(2arr& )
0

'p(r& )f—dr2p(r2)/r&2 . (12)

Thus, both the density p(r) and the correlation energy
density u, (r) can be calculated for the system for any
value of the force constant k using Eqs. (10) and (12), re-
spectively. Although both these quantities are thus ex-
actly known as a function of the radial distance r, the
crux of the problem, however, lies in obtaining the corre-
lation energy density functional, i.e., expressing u, in
terms of the density.

If the correlation energy U, [p] (= f dr u, (r)) were a
local functional of density alone, the plot of u, versus p
would have been independent of the parameter a. The
plots of u, versus p for two different values of a shown in
Fig. 1 reveal clearly that this is not the case and hence
U, [p] is actually a nonlocal functional of density. Al-
though the knowledge of the exact analytic form of this
functional would be of much importance, it is diScult to
guess this form from only the numerical values of the ex-
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FIG. 1. Plot of the negative of the correlation-energy density
u, {r)against the density p{r) for the model two-electron system.

The correlation energy density u, (r, ) is obtained by
subtracting the classical electrostatic interaction energy
of the charge distribution and the exchange energy from
the total exact interaction energy, viz. ,

y'(r], r2)q(r„r2) 1
u, (r&) = f dr2 —4'p(r& )f dr2p(r2)

act correlation energy density as obtained here. Never-
theless, these results can still be useful for obtaining in-
formation about correlation in other systems since the
functional is a universal one. Our objective here is to use
these results for the calculation of the correlation ener-
gies of two-electron atomic and ionic systems, for which
we now propose approximate schemes.

If one could find a value of the parameter a for which
the resulting density distribution for the present model is
identical to that of an atom of interest, the correlation en-
ergy of the two systems would have been the same and
could thus easily be calculated by integrating the function
u, (r) obtained for the particular value of a. However,
the density distribution of the atomic system cannot be
identical to that of the model system since two different
potentials can never correspond to the same density as
has been proved by Hohenberg and Kohn. ' It may, how-
ever, be possible that for some value of u the resulting
density for the model system is close to that of the atom
concerned. In this regard, we propose to select a suitable
value of a which yields, for the model system, a density
whose value at the origin (r=0) is the same as that of the
actual density of the atom or ion at the nucleus. The
correlation energy for the model system corresponding to
this value of n would thus yield an approximate estimate
of the correlation energy of the atom. Although the two
densities are same at the origin and also have a crossing
at some intermediate value of r, they differ significantly in
most of the other regions. An improvement of this
scheme (scheme A) is possible if one uses the actual densi-
ty and employs a local-density approximation (LDA)
after setting the above-mentioned value of a, i.e., one uses
the values of u, versus p obtained for the model system
with this a for the calculation of u, (r) from p(r) of the
actual system (atom or ion) of interest. The integrated
value of u, (r) generated in this manner (scheme B) yields
an estimate of the correlation energy U, . While scheme
B is based on the LDA, although different values of the
parameter n are used for a different atom or ion, we pro-
pose a third scheme (scheme C) for further improvement
by incorporating partly the effects of nonlocality through
the kinetic-energy density t(r;p), which itself is a nonlo-
cal functional of density p(r), depending essentially on
density gradients.

Inspired by our recent observation' that. an approxi-
mate proportionality of the two-particle interaction ener-
gy density to the square root of the kinetic-energy density
holds, in scheme C, we propose the relation

u, (r)= —& p(r)t(r;p)' 'f (r), (13)

with A =u, (0)p(0) 't(0) ' . The function f (r),
determined from Eq. (13) using exact u, (r) of Eq. (12) for
the model system, is unity at r=O and is found to be a
slowly varying function of density except in the regions of
very low density far away from the center. Motivated by
this weak density dependence, we assume f (r) to be a
local-density functional. The correlation energy density
for the atomic and/or ionic system of interest is then cal-
culated from Eq. (13) with the actual density and kinetic-
energy density of the system but using the same value of
A and the same local-density dependence of f (r) as
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TABLE I. Calculated correlation energies for the two-electron atoms and ions.

Z

2
3
4
5
6
7
8
9

10

5.0092
11.892
21.706
34.440
50.100
68.684
90.212

114.64
142.00

corr

—0.0875
—0.0915
—0.0935
—0.0947
—0.0955
—0.0961
—0.0965
—0.0969
—0.0972

b
Ecorr

—0.0628
—0.0678
—0.0702
—0.0717
—0.0727
—0.0734
—0.0740
—0.0744
—0.0747

c
Ecorr

—0.0339
—0.0386
—0.0412
—0.0429
—0.0441
—0.0449
—0.0456
—0.0460
—0.0464

d
Ecorr

—0.0421
—0.0435
—0.0443
—0.0448
—0.0451
—0.0453
—0.0455

'Correlation energies calculated using scheme A.
"Correlation energies calculated using scheme B.
'Correlation energies calculated using scheme C.
Standard correlation energies reported in the literature (Ref. 13).

that of the model system corresponding to the chosen
value of a.

For the present calculation of correlation energies of
two-electron atoms and ions using schemes B and C, we
have employed the Hartree-Fock density of Clementi and
Roetti. ' The calculated values of U, for the He atom
and several two-electron ions corresponding to schemes
A, B, and C are reported in Table I, where the values of
the parameter a are also indicated. The results show an
overall good agreement with values reported in the litera-
ture which are also included in the table for comparison.
The better prediction from scheme C rejects the impor-
tance of corrections due to nonlocality. These results
also reAect the interesting trend of improved predictions
with an increase in Z. This might be a consequence of
the fact that a higher Z corresponds to a larger value of a

for the model system for which the function f (,r)l be-
comes very close to unity at all values of r where the
magnitude of density is significant.

While the new schemes proposed here for calculating
the correlation energies for atomic or ionic systems from
the knowledge of the correlation energy density of a mod-
el system are only illustrative, further attempts to obtain
an exact analytic expression for this energy-density func-
tional for the model system would be of much irnpor-
tance. Also the possibility of generalization of these re-
sults to the case of many-electron systems can be investi-
gated.
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