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Response of a two-level atom to a classical field and a quantized cavity field of difFerent frequencies
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We consider a two-level atom interacting simultaneously with a classically described cw laser field

and a quantized cavity field. The classical field is assumed strong, and the cavity field is regarded as
a quantum probe of its dressed states. The two fields have different frequencies and amplitudes, but
we show that an effective time-independent Hamiltonian can be obtained via two rotating-frame
transformations. There is a different effective Hamiltonian in each of an infinite sequence of "probe
resonance zones" associated with the subharmonic Rabi sidebands of the dressed states. In the mth
zone, the Hamiltonian has the same form as the m-photon Jaynes-Cummings Hamiltonian. We
consider both time-dependent and time-averaged atomic response and make comparisons with re-
cent findings in the case that both fields are fully classical.

I. INTRODUCTION

In this paper, we extend earlier studies' of the tran-
sient dynamics of a two-level atom interacting simultane-
ously with two laser fields with different amplitudes and
frequencies. Here we investigate the situation in which
one of the fields has a fixed amplitude and is described
classically but the other is taken to be a quantized cavity
field which is allowed to evolve dynamically. The cavity
field can be regarded as a quantum probe of the dressed
states defined by the classical laser field. Many interest-
ing effects associated with similar systems of fields and
two-level atoms have been predicted and observed recent-
ly, for example, two-photon gain, cavity-perturbed reso-
nance fluorescence spectra, and atomic squeezing in the
cavity.

In our previous studies' we concentrated on loss-less
evolution in the classical transient pump-probe domain.
We showed that the short-time response of the atom
averaged over many Rabi cycles exhibited new features.
The inversion line shape in the neighborhood of every
subharmonic resonance showed a sensitive dependence
on both the initial Bloch vector orientation and on the in-
itial phase difference between the two fields. In particu-
lar, the dependence on the initial phase difference sur-
vives time averaging and is not related in a simple way to
the transverse phase of the initial Bloch vector. Here, we
investigate how these results are changed by the quanti-
zation of the probe field.

The approach we use is closely parallel with that used
in Refs. 1 and 2. First we transform the system to a suit-
able rotated basis, and follow by making a second
rotating-wave approximation. An effective Hamiltonian
is then established in Sec. II. The time evolution of the
system may be found analytically as a sum over Fock
state occupation numbers. In the limit of small vacuum
Rabi frequency the evolution is identical with that ob-
tained from a multiphoton Jaynes-Cummings interaction.
In Sec. III we derive an expression for the time evo1ution
operator for the system. Both the time-dependent atomic
inversion and the atomic averaged inversion are obtained

in Secs. IV and V. Some of their features are discussed.
Section VI is devoted to a summary of the differences be-
tween the quantum and semiclassical predictions.

II. EFFECTIVE HAMILTONIAN

+ —,'S [re +(a ] (2.l)

where we have taken A= 1 for convenience, and a and a
are creation and annihilation operators for the cavity
(probe) field. The so-called vacuum Rabi frequency asso-
ciated with the cavity field is written ( and r is the Rabi
frequency associated with the classically described laser
field. Both are assumed real. The atomic transition fre-
quency is denoted coo, the frequencies of the cavity and
laser fields are denoted ~, and col, and the laser field is
assigned the phase PL. The S's are the coherence opera-
tors for the atom, satisfying angular momentum (not Pau-
li matrix) commutation relations among themselves. Fig-
ure 1 shows the atomic energy levels and the radiative in-
teractions schematically.

In order to eliminate the explicit time dependence of
the Hamiltonian we transform to a rotating frame of
reference via the unitary operator

—i (coLt+g~)(a a+s )U(t)=e (2.2)

The new Hamiltonian is defined by

H'= Ut(t)HU(t) iUt(t)—
dt

(2.3)

and it is easy to show that H' takes the usual time-
independent form:

H'=b. ,a a+At S,+ —,'(r +pat)S + —,'S+(r +pa),
(2.4)

The Hamiltonian of our system, in the usual rotating-
wave approximation, is given by

—i(coL t+ pL )H =cooS, +co, a a + —,
' S+ [re +ga ]
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where the detunings are defined to be 6, =~, —coL and
Ap —

COp COg .

Significant further simplification occurs if either the
atomic transition or the cavity field is exactly resonant
with the laser field. We are most interested in the cavity
field as a variable-frequency probe and retain co, &col but
consider the case of resonant pumping Ap=0. By rear-
ranging terms the Hamiltonian can then be written

H'=b, , ta+arS,'+~( +aa )S,'+~(a —a )(S'+ —S' ),

(2.5)

where we have relabeled the coherence operators for later
convenience as follows:

S,'=S

S+ =S,+iS

(2.6a)

(2.6b)

FIG. 1. The two-level atom interacting with the driving and
the cavity field simultaneously.

The Hamiltonian H describes a two-level system with its
energy levels separated by r, coupled to a single quantized
mode of radiation of frequency A„and undergoing a
complicated multiphoton interaction of infinte order.

There is an infinite sequency of "probe resonance
zones" in the neighborhood of the Rabi subharmonic res-
onances at b, , =rim (m =+1,+2, . . . ), where H can be
further simplified by means of another rotating-wave ap-
proximation (RWA) as discussed in detail in Refs. 1 and
2. The conditions for the second RWA are (i),

~r
—mA,

~
&&r, m =+1,+2, . . .

and (ii),

~m~ga «r,
where a is the square root of the average cavity photon
number. Condition (i) restricts b,, within the neighbor-
hood of the mth subharmonic resonance, and condition
(ii) ensures that the cavity intensity is weak enough to be
considered a probe. In the spirit of the RWA, the slowly
varying terms are identified and retained. In the mth res-
onance zone S+ has the zeroth-order time dependence
exp(+ irt ) that is approximately canceled by the zeroth-
order time dependence exp[ i (D,, Im)t]—of all field
operators of the form a "a"+, for any n. Thus the
effective RWA Hamiltonian for the mth resonance zone
1s

ES (2.6c) H,s=b.,a a+rS,'+ (S'+8 +8 S' ),z 4
(2.12)

It is easy to check that the new set also obeys angular
momentum commutation relations among themselves.
The eigenvectors of S,' are the dressed states of the atom
in the laser field alone and the operators S'+ and S' are
the corresponding raising and lowering operators.

Next we make another unitary transformation

where we have dropped the constant term in (2.9) because
it plays no role in the dynamics of the system. The
operator B is given for m )0 by

2n +m —1

8&~ „o n!(n +m)! 2b, ,
H= T H'T, (2.7)

where T is an atomic-state-dependent displacement
operator of the cavity field state:

X 2n+m— a tnan+m
4A,

(2.13)

T =exp (a —a )S,'
2A,

(2.8) and the negative-m operators are obtained from the rela-
tion

Then the new Hamiltonian reads B =( —1) 8 (2.14)
2

H=6 a a+rS'+~(S' V —S' V )(a —a )+
4 + 166,

(2.9)

where the operator V is an ordinary field displacement
operator, defined by

Concerning the effective RWA mth-zone Hamiltonian
given in (2.12), two remarks may be made. First, the
physical picture is relatively simple, because the basic
role of B is to destroy m photons of frequency 6, . This
feature will enable us to find analytic expressions for the
time dependence of the dynamical variables of interest.
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Second, by combining conditions (i) and (ii) we obtain
ga((h„which suggests keeping only the lowest-order
term n=O in B . The effective mth-zone Hamiltonian
then takes its simplest form

m —1

H, fr=a, ,a a+rS,'+ 4m —I! 2b, ,

r/2

X (S '+ a +H. c.), (2.15)

which we recognize as the mth-order multiphoton
Jaynes-Cummings Hamiltonian.

III. TIME EVOLUTION OPERATOR

With the help of the effective Hamiltonian (see Fig. 2),
one can obtain an explicit expression for the time evolu-
tion operator, and the time dependence of any dynamical
variable may then be obtained. Here, we consider both
the time-dependent and time-averaged atomic inversion,
which are the simplest quantities to describe the response
of the atom.

The time evolution operator is given by

-r/2

—ih t(a a —m/2)
D, 2

= ice— ' [8 sin(d' t)/d' ]/4,
—iA t(a a —m/2) [cos(d' t)+i 5 sin(d' t)/d' ],

(3.5c)

FIG. 2. Schematic diagram showing the system described by
the effective Hamiltonian.

S (t)= U(t)T exp( iH ttt)T U (0) (3.1) (3.5d)

le(t) & =s (t)le(0) & . (3.2)

Any state vector l%(t) & at time t is related to its initial
state by

where we have used the abbreviations

d =(165 +g 8 8 )' /4

d' =(165'+g'Bt 8 )'~'/4,
(3.6)

It is well known that exp( iH, itt) is —expressible as a 2 X 2
matrix, ' using the two S, eigenvectors as basis. After
doing some lengthly algebra, S (t) reads

C11 ~21
S (t)=exp( —i9a a) C C exp(i/La a), (3.3)

21 22

where we have defined operators C;J by

and the quantity

5=(r —mb, , )/2 (3.7)

measures the detuning from the mth resonance. In this
representation, any initial state vector l%'(0) & of the sys-
tem takes the form

l~(0) &
=

pilaf &i
(3.8)

+ ( GD, 2+ G D22 )G] /2,

+ (GD, ~ GD22 )6]/2,—

(3.4a)

(3.4b)

where the p, 's (i =1,2) are the probability amplitudes for
the atom, and the l@f &, 's are the field states connected
with the level i.

Of special interest for study is the case in which the ini-
tial cavity field is in a coherent state la &:

—(GD,~+6 D2~)6]/2,

—(GDi2 —6 D22)6]/2,

(3.4c)

(3.4d)

(3.9)

incwhere a =
l
a

l
e '. The coherent state is well suited for

making comparison with semiclassical calculations. In
the coherent-state case we will consider both time-
dependent and time-averaged inversions.

D, 1=e

(3.5b)

with 9=coL t+$1, and G = V . The D; 's take the form.

[cos(d t) —i5sin(d t)ld ], (3.5a)

—id, t(a a+m/2)
D~, = i ge

' — [8 sin(d t) ld ]/4,

IV. TIME-DEPENDENT ATOMIC INVERSION

The atomic inversion is defined as w (t) = (S, &. In the
mth resonance zone we find

i(g a a)""(pi C2i+p2C22)(pic~i+p&C22)e' (4.1)
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By expanding ~a ) in the Fock basis and making use of
the fact that the operators D; 's are functions of operators
a and a, Eq. (4.1) may be rewritten as

F; (n) are given by the matrix elements of D, be"tween
Fock states and appropriate coherent states specified as
follows:

w(t)=1 —
—,
' g R, (t)~

s=0

where R, (t) is the sum of the series,

R, (t) = g I(p, +p~)[G, „F„(n) G, „—F~, (n)]
n=0

+(p, —p2)[G, „F,2(n)+ G„,F22(n) ]I,

(4.2) F»(n)=(n~D» a+), F2, (n)=(n~D2, a+),

F,2(n) = &nlD, 2la ), F22(n) = (n ID2~ la ),
with

a+= aie +
4A,

(4.4)

(4.5)

(4.3)

where 6, „are the matrix elements of the operator 6
represented in the Fock space, and the definitions of

I

In this way the dependence of the initial phase difference
between the classical field and the cavity field is included
through the variable a+. The explicit form of FJ(n) can
be easily evaluated:

Fii(n)=e + —e ' Icos[d (n)t] —i5sin[d (n)t]/d (n)I,n!

F2&(n)=e —e ' Icos[d' (n)t] +ifisi n[ d'(n)t]/d' (n)J,n!

n+m

F,2(n)= ice — e ' IB"" sin[d' (n +m)t]/d' (n +m)I /4,(n+m)

(4.6)

n —m

F2i(n) = i ge
+ — e '

I
B" '"sin[d (n —m)t]/d (n —m) I /4,

(n —m)!

where the following abbreviations have been used:

d (n)=(n~d ~n), d' (n)=(n d' ~n),
and

(4.7)

B. Strong cavity field plus atomic dressed state
(~a~ &&1,p, =p2=1/&2)

In this case, the expression for w (t) may be approxi-
mated as"

(4.8)
W (t) W~(t) + tUf(t), (4.10)

Equation (4.2) is quite complicated to analyze. We
have performed some numerical calculations on the sim-
plest situation where the cavity is at the principal reso-
nance (i.e., b,, =r). In this case, w (t) displays interesting
features for different initial conditions. They are dis-
cussed as follows.

0.5

s I a I I I I ~ I I ~ s I I s ~ I a I s ~ s s I ~ ~ I ~ f 1 t I ~ ~ ~ I

A. Vacuum cavity field plus atomic ground state
(lal=o, pi =1,p2=o)

w(t) 0

w ( t) = —cos( b, t)cos(gt /4) . (4.9)

The motion of the atomic inversion is just Rabi oscilla-
tions (at frequency r) but the amplitude is slowly modu-
lated by a much slower frequency g/4, where g' is the vac-
uum field Rabi frequency g. The result is illustrated in
Fig. 3. Analytically, an approximate expression for w (t)
may be derived from (4.2) for this initial condition. We
find, by keeping the leading order terms in the series (4.3),

-0.5

~ ~ ~ W i I ~ ~ ~
$ l ~ ~ ~ i ~ ~ ~ ~ i ~ ~ ~ I i ~ ~ ~ ~

~
~ ~ ~ T i ~ ~ ~

0 200 400 600 800

FIG. 3. Time-dependent atomic inversion for the principal
resonance. The values of the parameters are r= 1, /=0. 02 and
the initial conditions are vacuum field and atomic ground state.
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FIG. 4. The envelope curve for the atomic inversion as a
function of dimensionless time rt for the principal resonance. It
is obtained by connecting the w(t) at discrete times
t =(2n +

2 )~!5,. The values of the parameters are r=1,
(=0.02, !a! =10. The initial atomic state is one of the dressed
states with p &

=p ~
= 1/&2.

where w, (t) and w&(t) are slow and fast components, re-
spectively. They are defined by the following equations:

and

w, (t)= g e sin(b, , t)sin(Q'„t)
n=0 n! (4.11)

w&(t)= g e sin(h, t)sin(O„t),
n=0 n! (4.12)

where

fl/=~(&n+I+&n ), 0'„=+(&n+I V'n ), —

(4.13)

are the fast and slow frequencies, respectively.
Since the factor sin(b, , t) is a rapidly oscillating func-

FIG. 6. Time development of the envelope for the slow com-
ponent w, (t).

tion of time, the description of the time development of
w (t) is more transparent by looking at it stroboscopical-
ly. We take the values of the atomic inversion only when
t =(2n ,')~/b, , [i—.e.—, at the instant that sin(b, , t) reaches
its minimum]. The curve connecting these points is
identified as the envelope for w (t) because it simply de-
scribes the amplitude variation of the inversion. In Fig.
4, the envelope curve for w(t) is plotted. Similarly, we
plot the envelope curves for w&(t) and w, (t) in Figs. 5
and 6, respectively. The decomposition of w(t) into the
fast and slow components introduced in Eq. (4.10) is clear
now.

It is interesting to see that the envelope for w&(t)
displays collapses and revivals in the course of time. In
fact, the expressions (4.10)—(4.12) share similar structures
for the time-dependent solution of the dipole moment in
the coherent Jaynes-Cummings (JC) model' besides the
factor sin(h, t) which accounts for the rapid oscillation
driven by the laser field. The similarity may be under-
stood by the fact that the operator S, equals
(S'++S' )/2. Therefore the atomic inversion of the
original atom is equivalent to the dipole moment of the
dressed atom.

CD

O
CD
CL
O
CD)

UJ

0.5—

0

-0.5—

V. TIME-AVERAGED INVERSION

The time-averaged inversion in the transient regime'
is the simplest quantity to characterize the exchange of
the energy between the atom, the pump, and the probe.
We carry out the time averaging of w(t) over a period T

0 1000 2000 3000 4000 5000 6000

FICx. 5. Time development of the envelope for the fast com-
ponent w&(t).

where the subscript m denotes the mth resonance zone,
and the period T is taken to be much shorter than any re-
laxation time but much larger than the longest period
of the atomic oscillations, which is of order
(b, /g) '/(mg). The final result (m )0) is



6342 C. K. LAW AND J. H. EBERLY 43

2 2 /2 R (
n+m en)

1+x„

I+I li
IV =(wp/2) g V +„„

p
"'" n!(n +m)!

+(up/2) g V +„„e
n=0 n! (n +m)!

xn

1+x„
—(la+i +la

l
)/2

—(vp/2) g V +„„ Im(a"+ o.+")
n!(n +m )! 1+x„~

+—,'gV+„„e
n=0

and for negative 6„

'"+'
e

nt (n +m)!
xn

1+x„
(5.2)

2 2
R (e mr™rren)

1+x„

&l~+I +l~
W' =(wp/2) g V„„+ n!(n +m)!

+( —1) (up/2) g V„„+ e
n=0

—(lo.+ l
+ lo. l )/2

—(v, /2) g V„„+
„=p ' n!(n +m)!

2n +2m
& 0 2n

(n +m)! n!

Im(a" + ann) 1

1+x~

Xn

1+x„

++V„„+e( —1)
n=0

2' +2m

(n +m)!
—e

1+x.' ' (5.3)

and

V„„=(n+mi V~n)

=exp
2A,

m+2j

where the following abbreviations have been made:

46
P(n~S S.'i n))'" (5.4)

The approximation sign means that only the terms of
lowest order in (/~ad/b, , ) were kept. We notice that ex-
pression (5.2) is quite different from (5.7). The discrepan-
cy may be considered as the consequence of the quantum
nature of the cavity field. However, one can show that
expression (5.7) is just the large photon number limit
( a ))1) of (5.2). The key step for proving this is to
identify a+=a . Then the quantity exp( —iai )ia~ "/n!
appearing in the summation is just the Poisson distribu-
tion, which has a sharp peak at n = a~ . We then evalu-

X (
—1) +i&n!(n +m)!
j!(m +j )!(n —j)!

(5.5)

and uo, Uo, wo are the initial Bloch vector components:
0.04

up =2 Re(p~p, e '~),

vp =2 Im(p fp, e '~),

wp=lp~l' —ipse~'

(5.6)

0.03—

W 0.02—

Now we compare our result (5.2) with the previous re-
sult of semiclassical calculations' which reads

—vpsin(m f)+ w pcos(m g)+ upx8" =
m! 2A, 1+x

0.01

0.00
0.9 0.95 1.05

where

4(m —1)!5 —giai
2X,

(5.7)

(5.8)

FIG. 7. Time averaged inversion as a function of atom-cavity
deturning 6, for the m=1 resonance zone. The values of the
parameters are r=1, /=0. 02, ~ai =10, /=0, uo =vv =0, and
wo= —1. The solid line is for the quantum results and the
dashed line is for the semiclassical result.
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$FIG. 8. Same as in Fig. 3 but now for ~a~ =1.

2=FIG. 9. Same as in Fig. 4 but now for a =0.

Xp
(5.9)W =—,'(1+up)

C

where only the lowest-order term in g/m, is kept. Ex-
pression (5.9) shows no dependence upon the relative
phase between the pump and the cavity field. This is ex-
pectable because the phase of the vacuum field may be
considered to be completely random. Interestingly, the
inversion is always zero at the exact resonance and
reaches its extremum at

r=—+
m 2v'm! 2b, ,

m —1

(5.10)

5.7&ate the summations around the peak, and formula ( . )
follows quite easily.

The features of the average inversion (5.2) change
dramatically when a is small. In Fig. 7—9, we present
some graphical illustrations of W as a function of 6, for
various values of ~a~. In order to compare the semiclassi-
cal result, we draw W' on the same graph with a dashed
line. The initial atomic state for these graphs is taken to
be the ground state and the Rabi frequency r is normal-
ized to unity.

In Fig. 7, where the value of ~a ~
is comparatively large,

the curves of W and W' are almost the same. Both of
them show a Lorentizian-like peak at the resonance.
Their slight difference is reAected in the width of the
peak. The width for 8" is larger than that of W'. This
fact may be interpreted as the influence of quantum Auc-
tuations. The same feature appears in Fig. , 8, but now
8' and W' have a larger difference.

~ ~

When the atom starts in a vacuum cavity field &a-
the atomic inversion is very small. We obtained a
"dis ersive" shape for 8' in Fig. 9. In this case, it is
easy to show that W takes the approximate form

into the vacuum, and the emitted photons then interact
with the atom again. In this aspect, the fact is related to
the vacuum field splitting. However, the dynamics is
more complicated because of the presence of the strong
driven field. Further investigation on how the vacuum
field modifies the atomic dynamics as well as the spectral
properoperties of the cavity field would be necessary.

VI. SUMMARY

In summary, we have established an effective rotating-
frame Hamiltonian for a two-level atom interacting
simu anelt eously with a variable-frequency quantize cavi-
ty field mode and with a classically described laser e
The two fields have different frequencies and amplitudes,
and the cavity field is regarded as a quantum-mechanica
probe.

There is a different Hamiltonian for each probe reso-
nance zone, and for sufFiciently large pump intensity the
mth-zone Hamiltonian was shown to be the rn-photon
Jaynes-Cummings Hamiltonian.

We obtained explicit analytic expressions for the sys-
tem evolution operator, and evaluated the atomic inver-
sion and its time average. The time-dependent inversion
at the principal resonance was discussed for both strong
field and vacuum cavity field cases in which the atom is
specially prepared in the dressed state and the ground
state, respectively. We found that besides the rapid oscil-
lation of frequency 6„ the atom-cavity interaction
modifies the dynamics of the inversion quite significantly.
In particular, the occurrence of the collapse and revival
behavior marks the quantum signature of the cavity field.
The time average, as a function of cavity frequency, could
be compared numerically with previous expressions ob-
tained fully semiclassically. The greatest deviations were
found for near-vacuum probe states, as could be expect-
ed.

This equation reduces to 6, =r+g/2 for the principal
resonance zone. We see that the separation g is exactly
the vacuum Rabi frequency for the system.

The detailed mechanism of how the "dispersive" shape
comes out is still not well understood. One may regard
the result (5.9) as a consequence of spontaneous emission
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