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Nonclassical fields in a linear directional coupler
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In the present paper, we discuss the photon statistics of nonclassical fields in a linear directional
coupler. We study the photon distributions at the output ports of the coupler for number-state in-

puts, as well as for arbitrary-state inputs. In particular, we show that when a number state enters
one port of the coupler and the vacuum enters the other port, an SU(2) coherent state is generated
at the output ports. If the same number state enters both ports of the coupler, the probability of
finding an odd number of photons at either of the output ports vanishes for a particular choice of
the coupler length. We show that if a number state enters port 1 and a strong coherent field enters
port 2, the coupler can serve as a generator of displaced number states (in fact, in this case the
coupler behaves essentially as a homodyne detector). We show that the coupler is equivalent to an
imperfect photon detector with efticiency governed by the coupler parameters. We study the effect
of dissipative losses within the coupler as well as the effect of scattering coupling in the coupler.
The latter leads to equalization of the energy in each guide. We show that in the presence of
scattering coupling, the coupler behaves neither like an imperfect photon detector nor a homodyne
detector.

I. INTRODUCTION

Optical communications networks frequently require
switching, modulation, and frequency selection of radia-
tion fields. These tasks are commonly carried out by a
linear directional coupler, a device consisting of two
closely spaced optical waveguides. The overlap between
the mode functions of the respective guides allows a con-
trolled transfer of power from one guide to the other.
Classical treatments of the coupler based on the coupled-
mode theory have been given by many authors. ' While
these treatments are sufficient for many purposes, a quan-
tum treatment becomes essential when the statistical
properties of the radiation field are important. With this
in mind, Janszky, Sibilia, and Bertolotti ' used a quan-
tum generalization of the classical field equations of
motion to investigate the photon statistics of nonclassical
light in a coupler. Using quasiprobability methods they
obtained relations between input and output quadrature
variances for fields with complex statistics (i.e., fields hav-
ing simultaneously coherent, chaotic, and squeezing
characteristics), and showed in particular that a squeezed
state may be switched from one guide to the other,
without destroying the nonclassical properties of the
state. In a later paper they then extended their analysis
to photon number-state inputs. They showed that bino-
mial photon distributions can be obtained by launching a
single photon-number state into one of the input ports of
the coupler. The lossless linear directional coupler is of
course related to a lossless beam splitter in the way it
couples quantized field modes. Camp os, Saleh, and
Teich have shown that states of light with a binomial
counting distribution can be generated by the action of
such a beam splitter on a nonclassical field, with the input
in one port prepared in a number state while the second
input is the vacuum state. The binomial partition of pho-
tons is of course well known (see, e.g. , the review by

Loudon, and the earlier papers by Brunner, Paul, and
Richter and Paul, Brunner, and Richter reviewed by
Paul' ). Nonclassical light fields with substantially sub-
Poissonian statistics have great potential in optical com-
munications, but to exploit this potential will require a
detailed understanding of the change in photon statistics
in switching and modulating.

In this paper we examine the photon statistics of light
in a linear four-port coupler including dissipation and
scattering using a straightforward Langevin quantum
noise approach. First, we have calculated the photon dis-
tributions at the exit ports of a linear coupler, allowing
both input ports to admit number-state or arbitrary-state
inputs. In the case of a photon number-state input in one
port and vacuum input into the second port, we show
that an SU(2) coherent state of the kind described by
Buzek and Quang" is produced. When a signal field
enters one port and the vacuum enters the other port, the
marginal photon distributions are shown to be equivalent
to the photocount distributions relevant for imperfect
photon detection of the signal field. The efficiency of the
"detector" in this case is determined by the parameters of
the coupler. On the other hand, when the vacuum is re-
placed by a strong coherent field, the output photon dis-
tributions are just those associated with homodyne detec-
tion of the signal field, ' for both squeezed' and
number-state signal inputs. Second, we have examined
the effect of scattering coupling in the coupler on the
squeezing and photon statistics of squeezed states.
Scattering coupling is a phenomenon which occurs when
imperfections in the coupler cause power to be scattered
from the guided modes of one guide into those of the ad-
jacent guide. ' We model this in terms of a coupling of
each mode to a common heat bath consisting of all the
scattering modes of the guide. It is shown that the effect
of scattering coupling equalizes the power in the two
guides when the decay constants of the two are equal,
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thus prohibiting the switching of the fields entirely from
one guide to the other. In consequence, any squeezing
will be degraded, though not completely eliminated.
Linear couplers can often be constructed with very low
losses (for example, fiber-optic couplers). However, much
attention has been paid to waveguides constructed from
semiconductor materials. ' Nonlinear multiple-
quantum-well guides may well generate nonclassical light
through their substantial nonlinearity but do possess
non-negligible dissipative and scattering losses; were in-
tegrated systems using linear coupling to be employed as
four-port devices in such semiconductors, the dissipative
influences discussed here would become important. Simi-
lar considerations apply to any dissipative material.

The plan of this paper is as follows. In Sec. II we
derive the coupled-mode equations for the coupler. In
Secs. III and IV we examine the evolution of the photon
statistical and squeezing properties of nonclassical fields
in the coupler, paying particular attention to squeezed
and number-state inputs. Finally, in Sec. V we turn our
attention to the consequences of scattering coupling on
the various properties of nonclassical state evolution in
the coupler.

treating the two guided modes of the coupler as a pair of
linearly coupled harmonic oscillators.

A. Classical coupled-mode equations

An optical waveguide consists in its simplest form of a
central core with a refractive index higher than the sur-
rounding cladding material. A typical parameter used to
characterize the waveguide is defined by"

V=ka(n n)—'~

where k =2irli, , a is the radius of the core, 1, is the
waveguide of the light, and n, &

and n„are the linear re-
fractive indices of the cladding and the core. The param-
eter V determines the number of modes which the
waveguide can support. For instance, if V ~ 2.405, then
only one mode may propagate and the waveguide is said
to be single moded. The modes which propagate unat-
tenuated along the fiber are guided modes, as opposed to
the radiation modes which radiate away. In a transla-
tionally invariant waveguide (here assumed to be along
the z direction), the guided modes are expressible in the
separable form

i(cot —p z)E(x,y, z, t ) =E (x,y )e (2)
II. COUPLING BETWEEN TWO DIFFERENT

WAVEGUIDES

The propagation of electromagnetic waves in a single
optical waveguide can be solved exactly by application of
the Maxwell equations. ' This is not the case, however,
in a two-guide structure, such as the linear directional
coupler, where one must resort to perturbation methods.
One such method is the so-called coupled-mode theory,
which was first developed by Pierce' to treat the cou-
pling between electron beam waves, and later extended to
optical waveguides by Marcuse' and many others (see,
e.g. , Ref. 1 for references). In this approach one assumes
that the presence of one guide introduces a small dielec-
tric perturbation in the other guide. The electric (or
magnetic) field of the composite structure may then be
taken as a linear superposition of the unperturbed fields
of each waveguide in isolation. If one then substitutes
this into the Maxwell equations, one obtains two first-
order differential equations in the slowly varying en-
velope approximation for the amplitudes of the fields in
each guide, and these may be readily solved. One of the
main predictions of the coupled-mode theory is the way
in which energy can be transferred from one guide to the
other in a controlled fashion, known as directional cou-
pling.

Nonclassical states of light have received much atten-
tion over the past few years' mainly because of their po-
tential application in high-performance communications
networks' and the possibility of their use in detection
of gravitational waves. ' One important example of a
nonclassical state of light is the squeezed state, character-
ized by a noise level in one quadrature phase that is less
than that associated with the coherent state or the vacu-
um state. ' In order to describe the propagation of non-
classical light in a coupler, we must quantize the relevant
fields. We do this here in a phenomenological way, by

where E (x,y ) is the transverse mode pattern, P is the
associated propagation constant, and co is the frequency.
We have assumed for simplicity that the fields are linear-
ly polarized. For the linear directional coupler, we do
not require explicit forms for the mode patterns. Each
guided mode is a solution of the wave equation

2 2

V + —P E =0,
C

(3)

where V, —=B /Bx +B /By is the transverse Laplacian
operator. For the step-index profile waveguide, Eq. (3)
must hold in each region of the guide and the fields
matched at the core-cladding interface. It is easy to show
from Eq. (3) the orthogonality of the guided modes to
each other:

2Q)ppI IE*(x,y )E„(x,y )dx dy
m

(4)

The second and third terms in this expression are clearly
zero outside the regions of guides 1 and 2. Each
waveguide in isolation is assumed to support one guided
mode E, (i =1,2) with propagation constant /3, satisfying
the wave equation

where we have assumed the modes are normalized such
that one unit of energy Aows through the cross section of
the waveguide.

A schematic arrangement of the coupler is shown in
Fig. 1. Denoting the refractive index profiles of guides 1

and 2 by n j and n 2, respectively, the square of the refrac-
tive index profile of the composite structure may be writ-
ten as'

n~( xy)=n„+(n, n, i)+(n~ —n„) . —
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FIG. 1. Schematic illustration of a linear directional coupler,
with two guides, shown with circular cross section for
definiteness merging within a surrounding cladding material.
The cross-sectional dependence of the refractive index n on po-
sition x is shown.

CX2 = —i'P,n, —iy2, n, .

When losses are present in the coupler, the propaga-
tion constants and coupling parameters are in general
complex. Writing them in the form

p; =p; i—y; y;J =y~~j. i—r,j
Eqs. (12) become

do!
pl a1 rial +12 2 r12a2

CO Il.
V, +

2
—p; E;=0, i=1,2.

C

dA' R-
dz

p2a2 r2 2 +21 1 r21 1

(14)

i (cot —p2z )+a,(z)E,(x,y )e (7)

where ai(z) and a2(z) are slowly varying functions of z.
When the waveguides are placed suKciently far apart,
a, (z) and az(z) are independent of z. Substituting Eq. (7)
into the wave equation

CO Pl

C

making the slowly varying amplitude approximation, and
projecting out each mode amplitude, we find, after using
the normalization condition (4),

dO,') i(p —p )z= —ig& &a &

—
ig&2CX2e

d CX2 —i(p, —p, )z

dz

where

If (n; —n, ~ )E~*EJdx dy, i Wj

COG'O
2(n; n,&)E;*Ezdx dy, iWj —.

(10)

The terms g; have the following meanings. The diagonal
elements y;; are small corrections to the propagation con-
stants p; and arise due to the presence of the field of one
guide in the other. The nondiagonal elements y;~ (i%j)
are terms representing the coupling between the modes of
the two guides and are much greater in magnitude than
the diagonal elements.

By making the transforrnations

p; p; =p;+x;;
lg. z

a,. ~a; =cz;e

Eqs. (9) can be written in the more familiar form

In the framework of coupled-mode theory, the electric
(or magnetic) field of the composite structure is assumed
to be a linear superposition of the unperturbed fields:

i (cot —
p&z )E„(x,y, z, t) =a, (z)E, (x,y )e

where y, and y2 are the amplitude extinction coefficients
of modes 1 and 2, respectively. The last terms in Eqs.
(14) represent the scattering of power from the guided
mode of one guide into the guided mode of the adjacent
guide. In the long-distance limit, they are responsible for
equalizing the energies in the two guides' for equal dissi-
pation in each mode. For purely dissipatioe losses rather
than scattering between guides, they may be neglected.

—i p&zI, (z) = i g g, „e —'
b, i(0), i =1,2 (16)

where b;& are the bath annihilation operators and g;& are
the coupling constants.

The solutions to Eq. (15) are best expressed by defining
the following quantities:

B. Operator coupled-mode equations

Having established the standard classical coupled-
mode equations incorporating dissipation and scattering,
we now turn to a quantum-mechanical description of the
same problem. We treat cz& and n2 as the amplitudes of
two linearly coupled harmonic oscillators. These may be
quantized in the standard way and dissipation incor-
porated by coupling each quantized oscillator to infinite
heat baths of reservoir oscillators. The resultant quan-
tum Langevin equations for the field mode annihilation
operators a; (i=1,2) are closely analogous to the classi-
cal equations for the mode amplitudes [Eqs. (14)] and are
given by

da& = —iP,a
&

—y ia i i pa 2+ I i—,
(15)

dQ2
a, —rza, —isa, +I, ,

where we have assumed for simplicity that the coupling
parameters are equal (y,2=pe, =y), and that purely dis-
sipative losses are considered. (We include mode cou-
pling through scattering later. ) The Langevin noise
operators I; (i =1,2) are introduced to ensure that the
correct cornrnutation relations among the mode operators
are maintained when losses are present; they arise natu-
rally due to the coupling of each mode to a heat bath,
and are given by
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P= ,'(P—(+Pz), ~P= ,'(P—& P—z),
)'= ,'(-)'i+7'z» ~r= ,'(-1'i —)'z»

x=&x'+(~P i~—l )'.
(17)

T(L)T '(L)=1 .

The matrix (23) acts in the space spanned by the opera-
tors [a;,a; ] and corresponds to the evolution operator

T(L)=exp[iP iP—Ia &a &
i—pzazaz

Then for a coupler of length L, we have

a, (L)=u, (L)a, (0)+v, (L )a, (0)

+ g [ui. (L)bi~+vz. (L»-(o)]

a, (L)=v, (L)a, (0)+u, (L)a, (0)

—ix(a, az +a zta, ) ]L .

Hence by similarity, we must also have that

Tt(L)a ~(0)T(L)=u(L)a 1(0)+v(L )az(0),

T (L )az(0) T(L)=v(L)a
&
(0)+u *(L)az(0) .

(25)

(26)

+ g [v,z(L)b, z(0)+uzi(L)bzz(0)],

where the coe%cients u;(L), v,.(L) are given by

i by-
u, (L, ) = cosgL i — singL e

x

(18) The transformations (26) are immediately identified as the
beam-splitter transformation. ' Therefore the Iossless
coupler behaves in essentially the same way as a beam
splitter, and results for the former should also apply for
the latter.

III. PHOTON STATISTICS OF NONCLASSICAL
LIGHT IN THE LINEAR DIRECTIONAL COUPLER

i by-
uz(L) = cosg *L+i sing *L ex*

v, (L ) = i sing—"Le
x*

(19)

u(L) =cosg L i sin—gL,
x

v z (L ) = i s—ing—Le
x

The bath variables u;&, etc. are given in the Appendix.
Losses in a coupler are quite often negligible. In that

case, Eqs. (18) reduce to the simpler forms

a(L)e'~ =u (L)a, (0)+v(L)az(0),
(20)

az(L)e'~ =v(L)a, (0)+u *(L)az(0),
where

This section presents calculations for the photon distri-
butions at the exit ports of a linear directional coupler for
number-state inputs and for arbitrary-state inputs. Relat-
ed calculations which cover some of these aspects have
been carried out by Janszky, Sibilia, and Bertolotti, and
from the point of view of a quantum beam splitter, by
Yurke, McCall, and Klauder, Campos, Saleh, and
Teich, Prasad, Scully, and Martienssen, Ou, Hong, and
Mandel, and Fearn and Loudon.

A. Number-state inputs

Let us for the moment ignore all losses in the coupler.
Then for an m

&

- and an m 2-photon number state entering
ports 1 and 2, respectively, the output state is given by

~out) = T(L) ~m, ), ~mz &,

v(L) = i singL—, —
x Qm, !mz!

T(L)a, '(0)a, '(0)~0&, ~0&, , (27)

g=&x'+~P'=g * (21) which can be written in the form

Alternatively, Eqs. (20) may be rewritten in the compact
form:

~out) = [ua, (0)+vaz(0)]
m )!m2!

a (L)e'~ = g T~k(. L)ak(0), j,k =1,2
k

(22) X[va, (0)+u "az(0)] '~0), ~0)z .

where the elements Tjk(L) are given by the unitary ma-
trix

The associated joint photon distribution is obtained from
a binomial expansion of Eq. (28) and using

u(L) v(L)
v(L) u*(L)

P ' ' (n&, nz)= [ &(n& ~
z(nz~out) [

The result is23
(29)

n
&
In2J

m1!m2

min(nz, nl
$

)

r =max(O, nz —mz )

( —1)" m&
s "(1—s )"

712 T

2

m& &m2 (30)
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where s=lu(L)l . For m] (m2, we use the symmetry
condition

(2) &u] 2 ] 2)
&(2](2] &&(22(22 &

(39)

(31) For the states (3), we find"
The marginal photon distributions are obtained by sum-
ming the joint photon distribution over n1 or n2..

g(2)—m —1 ~l,
m

n&

nl

%'e consider below two special cases:
m] =m, m2=0 and (2) m] =m2=m.

(32)

which is precisely the single-mode g' ' for a pure number
state. As g & 1, the two modes are clearly anticorrelat-(2)

ed.
Dissipation modifies the marginal photon statistics

from their values (32); the resultant Bernouilli sampling
formulas for the marginal distributions become (see, e.g.,
Milburn and Walls )

1. my=m, mal=0

The output state generated for this input configuration
is the SU(2) coherent state, with its bosonic (or
Schwinger) representation" given in the form described
by Campos, Saleh, and Teich,

I=n
1

P2 ' ' (n2;v)=
I=n~

v '(1 —v) 'P ' ' (I )

(41)

r=0

For the binomial distributions (35), we
have

where ~=u/U. The fields emerging from the individual
ports of the coupler are described by the reduced density
matrices

m

p(m, O)(n . )1 1~

l(1 )m
—l

(42)
p, = y s"(1—s) "lr&„&rl,

r=0

m r

s»= g
(34)

p(m 0)( . )—27

I m n I —
n&

v '(1—v)
I= n&

X(1 )lSm
—l

r=0

which are obtained by tracing Eq. (33) over the variables
n2 and n „respectively. From Eqs. (34) it is obvious that
the marginal photon distributions for the individual
modes are given by the binomial distributions

P, (n) = s "(1—s )

(35)
P (n)= (1—s)"s

n ]

with mean and variance given by

which can be summed in closed form to give

P', '(n, ;v)= (vs) '(1 —vs)
1

P2' ' '(n2', v)= „(1—vs) '(vs)"2

(43)

The photon distributions thus remain binomial in the
presence of dissipative losses. The above result agrees
with that derived by Janszky, Sibilia, and Bertolotti us-
ing quasiprobability methods.

(n, ) =sm, (n2) =(1—s)m,
(hn )=](ls—s)m, (bnz) =s(1—s)m .

(36)
rn

& =mz =m

A parameter used to characterize the deviation from
Poissonian statistics is Mandel's Q parameter defined by

(bn2) —(n )
&n&

For the states (34), we have

This corresponds to the situation in which the same
photon number state enters both ports of the coupler.
The lack of phase in the initial states and the symmetric
input means that the photon statistics of the fields emerg-
ing from both ports will be the same. The mean and vari-
ance of the photon number are given, respectively, by

Q] = —s, Q2= —(1—s) . (38)

As both quantities are negative, the photon statistics are
sub-Poissonian in both modes. The anticorrelation be-
tween the output modes is described by the cross-
correlation function, defined by

(n, &=&n, ) =m,
(An] ) =(An& ) =2m(m+1)s(1 —s),

from which we obtain the Q parameter as

Q] =Q2=2(m+1}(1—s}s—1 .

(44)

(45)
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The function (45) is plotted in Fig. 2. Sub-Poissonian
photon statistics are found in the regions where

s ) —,'+ —,'&(m —1)/(m+1),
s & —,

' —
—,'&(m —1)/(m+1) .

(46)

When m —+ ~, only super-Poissonian photon statistics
appear at the output ports. Similarly, for the cross-
correlation function, we obtain

g' '=1 —2s(1 —s)2 = m+I
m

As g' ' is less than unity in this case, the two modes are
anticorrelated.

The marginal photon distributions are obtained using
Eqs. (30) and (32). The results are plotted in Fig. 3. For
s= —,', the photons at either of the output ports appear
only in pairs; ' this feature is, however, extremely sensi-
tive to any dissipation which may be present in the
coupler, as demonstrated in Figs. 3(c) and 3(d).

0-

0.0 i.o

FICx. 2. Uariation of the Q parameter of the output field as a
function of the parameter s as given by Eq. (45) for the input
state I20), I20)z.

B. Arbitrary-state inputs

Consider now the case in which arbitrary states lg, ),
and lg2)2 enter ports 1 and 2 of the coupler, respectively.
Suppose that we can expand lg, ), I (~ ) z in terms of a pho-
ton number-state basis,

Then the output state will be given by

lout &
= T(L ) lg, &, Ig, &,

y a b T(L)lmi&ilm2&i,
m1, m2

(50)

& ~,b, lmi&ilm2&2, (4g) from which we obtain the joint photon distribution
m1, m2

where a and b are in general complex coefticients
1 2

and are assumed to satisfy the normalization conditions

P ' '(n„n2)=
n1+n2

~k n&+n k2 n~n2kn~ n +&k
k=O

(51)

m1 m2
& l~, I'= & Ib, l'=1. (49) where the matrix elements T„n are given by

1 2 1 2

Tn1n2m1m2

1/2
n &!n2!

m &!m2!
s ~ 2(1 s) 2 2 1 2 2 2

(1/2)(m1+n2) (1/2)(m —n ) i(m —n )p —i(m —n )m/2

min(n2, m
1 )

r =max(0, n2 —
m2 )

( —1)" m) m2
s "(1—s)", m, m2n2 r (52)

and the phase P by
r

P = —tan tangL
613

x
(53)

P""(n )=yP""'(. n )

n2

(54)

The marginal photon distributions are obtained as before
by summing the joint photon distribution over n, or n 2 ..

C. The coupler as a model for imperfect photon detection

When
I g~ )2 is taken to be the vacuum state, the joint

photon distribution (51) simplifies to
((1,0) ((1) (n1+ n2, 0)P ' (n„n2)=P, ' (n, +n2)P ' ' (n „n2), (56)

($1)where P, (n) is the photon distribution for the arbitrary
(n1+n2, 0)

state I/i)i and P ' (ni, n2) is given by the binomial
distnbution

(55)

(n&+nz, oj ni+n2 ni n2P ' ' n„n2)= s '(1 —s) '. (57)

n1 Tracing out the n2 variable from Eq. (56), we obtain the



43 NONCLASSICAL FIELDS IN A LINEAR DIRECTIONAL COUPLER 6329
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FIG. 3. Output marginal photon distributions P, (n) for the input state ~20) i ~20) z as a function of photon number n, given by Eq.
(32) for different values of the loss v and the partition parameter s. For s =0.5, the output marginal photon distributions exhibit pair-
wise oscillations [plot (b)]. This feature is, however, extremely sensitive to any loss which may be present in the coupler [see plots (c)
and (d) where the loss v= exp( —2yl. ) is increased].

marginal photon distribution for output port 1 as

l=n
1

(58)

tribution is recovered, however, when the coupler length
L is such that gL =~.

D. The coupler as a model for homodyne detection

/g, &, =/a&, =e ' "g, fn &, .
o &'nf

(59)

The marginal photon distribution at output port 1 is ob-
tained from Eq. (58) as

i [2n
p(a, O)

( )
—~a'~

1 n!
(60)

where o.'=uo. . The photon distribution remains Pois-
sonian but with a reduced mean. The initial photon dis-

Equation (58) is the photocount distribution for imperfect
photon detection of the state g, ), with efficiency s.
The coupler is essentially a beam splitter, and splitting a
field and mixing it with the vacuum entering from the
unused port is fully equivalent to imperfect photon detec-
tion. ' As an illustration, let ~gi)i be a coherent state
with Poissonian statistics

In homodyne detection, a signal field is mixed with a
strong local coherent field and the beating between them
measured by some photon detector. ' ' The coupler car-
ries out precisely this mixing process and may thus serve
as a model for homodyne detection. The coherent field in
this case would be launched into one guide and the much
weaker signal field launched into the other, with

(I —

s)iaido'

))s(n„,„„), (6l)

where (n„s„,i ) is the mean photon number in the signal
field. Two types of homodyne detection schemes exist:
ordinary homodyne detection (when s = 1) and balanced
homodyne detection (when s =

—,'). Both schemes are cap-
able of probing the quadrature phases of nonclassical
fields. In ordinary homodyne detection, one measures the
marginal photon distributions. In balanced homodyne
detection, on the other hand, one measures the difference
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photon distribution, given by

(62)

& tk(0)
I
in &

=
I
k &, I

a &
= ' —D (a ) IO &, I

O &, .&k! (65)

where P ' (n+I, n) is the joint photon distribution at
the output ports of the coupler.

Consider ordinary homodyne detection of a k-photon
number state. Using Eqs. (51), (54), and (55), we obtain,
at the output ports, the marginal photon distributions

(k, aL ) aLP, '
(n, )=QP2 (n, +n2 —k)

~out& =T(L)~in&, (66)

or

~out&=exp[a(ua, +u'az) —a*(u*a, +ua2)]

Using the evolution operator T(L) we obtain for the out-
put state of the coupler without making the strong field
homodyne approximation the following expression:

n2

'k nl+n2XP ' ' '
(n&, n2)8(n, +n2 —k),

X —(ua, +Uaz)"~0&, ~0&i,&k!
(67)

(63) where we have used the notation: a;(0)=a, ; v(L)=U and
u (L)=u. We can rewrite the expression for the output
state in the form

(k, nl +n2 kXP ' ' ' (n„nz)8(n, +nz —k),
1/2

~out& = g 1
U'u" '~ua;k —I &, ~u*a;I &, ,I l

(6g)

where P2 (n) is the photon distribution for the local os-(aL )

cillator field, P ' ' (n„n2) is given by Eq. (30), and
8(n) is the Heaviside step function. In ordinary homo-

dyne detection, only the photon distribution P&
' L (n)

will be measured. This function is plotted in Fig. 4 for
k =1 and 2. The photon distributions are seen to closely
resemble those for displaced number states. This obser-
vation is readily explained by noting the fact that the
coupler setup for ordinary

horn

odyne detection
efFectively transforms the input state ~k && ~al &2 into the
state ~uaL,'k &, ~uai &2, where ~a;n & is a displaced num-
ber state defined by

ja;n&=D(a)~n&, D(a)=e 'aa ~ —a*a
(64)

where D(a) is the Glauber displacement operator.
Let us now suppose that the k-photon number state

~k &, enters port 1 and the coherent state ~a&2 of arbi-
trary strength enters port 2 of the coupler, respectively.
In this case we can write the input state of the coupler as

(i.e., gL =ir), we obtain from Eq. (68) the relation for the
output state of the coupler

iout& = qua;k &, iu*a&, . (70)

In other words, we can say that under particular condi-
tions (see above) the linear directional coupler can serve
as a generator of displaced number states.

A squeezed coherent state is defined by'

la, g& =D(a)s(g)lo&,

where S(g) is the squeezing operator

S(g)=exp( —,'g at —
—,'g'a ) .

(71)

(72)

from which we see that the linear directional coupler
with the input state (65) can serve as a generator of mix-
tures of displaced number states in each of the output
ports. It is easy to show that for high enough intensity of
the coherent field and supposing that

(69)

0.)5

0.10- 0.10-

0.05- 0.05-

0.00
20 30

0.00
10 20 30

FIG. 4. Photon distribution Pl (n) as a function of photon number n resulting from ordinary homodyning of (a) a one-photon num-

ber state, and (b) a two-photon number state. The amplitude of the local oscillator field was set to 7 and s to 0.85.
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For the quadrature operators

IX=—,'(a+a ), Y=—(a —a ),
2l

the squeezed state variances are

&hX &= —,'[cos ( —,'8)e "+sin ( —,'8)e "],
&b, Y &= —,'[cos ( —,'8)e "+sin ( —,'8)e "],

(73)

(74)

parameter. The shot noise due to the local oscillator
[represented by the first term in Eq. (77)] may be elim-
inated by balance homodyning the signal. In that case
the difference current corresponding to the operator

d d =a ia& aza2 (79)

is measured. The mean and variance of the operator (79)
are easily shown to be given by

where /=re' . The squeezed state may be expanded in
terms of a photon number state basis as'

& n, & =2la~ le r &X,(g) &,

&And &=lal l
e r [1+e [4&AX](li)& —1]I,

(80)

where the expansion coefficients b„are given by

b„=( n!c oshr) '~
[—,'exp(i8)tanhr]" ~

X exp [
—

—,
' [ l

a
l

+a" exp( i 8)tanhr ] ]

a+ a"exp(i8)tanhr
(2 exp(i8)tanhr )'

(76)

where H„ is a Hermite polynomial of order n.
Squeezed states are detected by employing either the

ordinary or balanced homodyne detection schemes. In
the former, the photon noise emerging from one output
port is measured:

& b n t (L) & =e r sin XL

X [1+e r cos XL [4& AX, (g) &
—1]j ltzL l,

w~ere

X, (tj'j)= —,'[att(0)e'~+a, (0)e '&] . (81)

The corresponding difference photon distribution is ob-
tained using Eq. (62), the result of which is displayed in
the graphs of Fig. 5.

1~. QUADRATURE VARIANCES OF FIELDS
IN THE LINEAR DIRECTIONAL COUPLER

+v3;(L)&ba3, (0) &]

+ —,'[lu;(L)l &a,. (0),a, (0) &

The marginal quadrature variances at the output ports
of the coupler are given by

& hX (L ) &
=—'+. —,

' Re[u; (L)& ha, (0) &

where

(77) + lv, , (L) I'&a', , (0),a, , (0) &],

& ~Xt(f) & =-,'[cos'(l( —
—,'8)e "+sin (g —

—,'8)e "],
(78)

and li'=pl. —~/2. The efficiency of the detector here is
therefore governed by the dissipative loss in the coupler,
and the transmittivity and reflectivity, by the coupling

& & Y; (L ) &
=

—,
' —

—,
' Re[ u,~(L) & ga,~(0) &

+v, , (L)& ba', , (0) &]

+
~ [ u;(L)l &a; (o),a, (0) &

+
I v3;(L) I'& a 3;(0),a3;(o) & ],

(82)
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FICi. 5. Photon difference distribution P(n, —nz ) resulting from balanced homodyning of the squeezed state l 1,0.5) from Eq. (62).
The amplitude of the local oscillator field was set to 5, and the local oscillator phase chosen to be (a) PL =0 and (b) PL =rr/2.
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w ere i =1,2. When perfect phase matching is obtained
and no losses are present, these reduce, in the interaction

2picture, to the simpler forms

(~ (L)) =(bX (0))cos XL+(5Y, , (0))sin XL,
(83)

(b, Y (L)) =(b Y (0))cos XL+(~3 1(0))sin yL .

It is clear from these equations that fields can be switched
entirely from one guide to the other without altering
their quadrature variances.

In the presence of dissipation. Eqs. (83) are replaced
by

(b,X;(L))=—,'(1 —e r ) +(EX~(0))e r cos XL

+ ( b, Y~3;(0) )e 21'~sin2XL,

(84)

where we have again assumed perfect phase matching.
Figures 6(a) and 6(b) show the evolution of the variance
in the X& quadrature for a squeezed state entering port
and the vacuum entering port 2 of the coupler. Dissipa-
tive losses lead to a degradation of squeezing, as seen in
Fig. 6(b).

V. SCATTERING COUPLING IN THE LINEAR
DIRECTIONAL COUPLER

Inhomogeneities in the dielectric medium composing
the coupler can cause power to be scattcattered from the
guided modes of one guide into those of the adjacent
gui e, an'd ' and prevents complete transference of power
from one guide to the other. Scattering coupling may be
modeled quantum mechanically by coupling each mode
to a common set of scattering modes. The Hamiltonian
is then of the form

(hY (L)) =
—,'(1—e 'r )+(AY, (0))e r cos'XL

+(bX3,(0))e r sin XL,

H =Ho+HI +Hb„h,
where

(85)
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0.15-

0. '10-

~ 0.15-

0.10-

0.05-

0.00
0 1 2 4 5 6 V 8

(b)

0 1 2 S 4 5 6 7 8

)tL/ 7r

2.50 0.60

2.00
0.45

1.50-

1.00-
0.30-

CO ~

0.50- 0.15-

0.00
0

I

2 3 4 5 6 7 8
0.00

gL/ n

s a function of coupler length for a squeezed state input in the presen
~ ~

esence of (a) zero losses,
=01 ), d (d) b h di i i «n 1(b) purely dissipative osses yd-l (y =0.1y), (c) scattering losses (y, =0.1y), an

~y =2y, =0.2X).
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Ho =~~(a]a]+a 2a2)+~ y ~/bye,

Hl =A'U 'X(a,a2+a&a, ), (86)

H„„h=kv 'g [gg(a) —a2)bq+g~bg(a, —az)],sfc

(a, (L)a, (L) &
= lu'(L)l'(at(0)a, (0) &

+ l'(L) I'(", , (o).. .(o) &

+2 Reu' *(L)U'(L)(a, (0)a3, (0) &,
i=1,2. (93)

dai
i pa—, —iXa2 —y, (a, —a2)+I

da2
iPa2 —isa, ——y, (a2 —a, )+1

(87)

where we have replaced t by z/u. The scattering rate pa-
rameter y, is given by

y, =U vrlg(co)l p(co) (88)

and we have assumed for simplicity that the modes are
sufficiently close in frequency to see the bath in an identi-
cal way, and propagate with the same group velocity U.

Quantum Langevin equations for the field mode annihila-
tion operators are derived by assuming the bath is broad
band and allows the Born-Markov approximation to be
used. The result is given by

If the field is initially launched into guide 1 with a
vacuum input for guide 2, then from Eq. (93), we find

(a&(L)a&(L)&=—,'(1+e ' +2e ' cos2XL)

X (at, (0)a, (0) &,

(94)

(at&(L)a2(L) &= —,'(1+e ' —2e ' cos2XL)

X(a, (0)a, (0)& .

A plot of the mean mode energy in guide 1 as a function
of coupler length is shown in Fig. 7. Initially there is
some interchange of energy between the two guides of the
coupler. However, in the long-distance limit, the mean
mode energies in each guide equalize and approach the
asymptotic value

t(L) (L)&, „=( t(L) (L)&

[p(co) is the density of states for the bath oscillators], and
the Langevin noise operator r by

t(0)a, (0) & . (95)

—i p&zI (z) = i g g—zbz(0)e (89)

The solution to Eqs. (87) is as follows:

a, (L)=u'(L)a, (0)+U'(L)a2(0)+ g u&(L)b&(0),

(90)
a2(L) =u'(L)a2(0)+ u'(L)a, (0)+ g uz(L)b&(0),

Therefore, in the long-distance limit, half of the initial en-
ergy is radiated away and half redistributed in the guided
modes of the coupler.

As an illustration of the effect of scattering coupling on
the evolution of the quadrature variances, we consider a
squeezed coherent state la, g& input entering port 1 of the
coupler and vacuum input into port 2. Then for the out-
put quadrature variance, we obtain

where

u'(L)= —'e '~ (e ' +e '~ )

U'(L)= ——'e ' (e ' —e '
)

iXL —2y L

(AX, (L) &
= A(L)+ —,'[B(L)e "+C(L)e "],

where

(96)

i(Pg —@+X]L—2r, L—ipL 1 —e

p p+ (91)

We obtain, on tracing over the zero-temperature heat-
bath variables, the symmetric and antisymmetric com-
bination of mode "reduced" operators of the composite
two-guide structure:

a+(L) =—a, (L)+a2(L) =a+(0)e

a (L)=a &(L)—az(L) =a (0)e
(92) /4

Scattering coupling attenuates the antisymmetric mode,
whereas the symmetric mode propagates freely. This is
found indeed to be the case in fiber couplers with
sufficiently sma11 waveguide parameters.

The mean mode energy in each guide is given by

CoupLer Length
FIG. 7. Mean mode power as a function of coupler length

(both in arbitrary units) in the presence of scattering losses.
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—2y L —4y L
A (L)= —,', —

—,
' e * cos2XL —

—,', e

B(L)=—,
' [cos[(P+X)L—

—,
' g]

+e ' cos[(P—X)L —
—,
' 8]]

C(L)=
—,
'

{sin[(p+X)L —
—,
' g]

+e ' sin[(P —X)L —
—,'g]I2 .

(97)

where ( ), denotes an average over a squeezed state.
Sub-Poisson photon statistics will therefore be always ob-
tained if the initial squeezed field statistics is also sub-
Poissonian.

In the homodyne detection of a squeezed state, one re-
places the vacuum entering the unused port of the
coupler by a strong local oscillator field. The variance of
the photon number of the field emerging from guide 1

will then be given by

Clearly apparent in Eq. (97) is the decay of components
at the antisymmetric mode frequency due to scattering
coupling. It is precisely this decay which causes the de-
gradation of squeezing, as observed in Fig. 6(c).

In the long-distance limit, the quadrature variance (96)
approaches the value

where

F(L)=—'(1+e ' —2e ' cos2XL )
—4y, L —2y, L

(103)

( hn f (L ) ) =
l al l [F(L)+,' [G(L)—e "+H(L)e "]J,

(bX, (L))1 ~ —,', + —,', [cos [(P+X)L ,'8—]e—
—

—,', [(1+e '
)

—4e ' cos 2XL]

+sin [(P+X)L—,' g]e2"I

(98)

16

X sin2XL sin2(pl —
—,'8)sinh2r,

G(L)= —,'[cos (Pl —
—,'8)(1 —e '

)

Therefore, in the event of an infinitely squeezed input, the
maximum squeezing achievable in the long-distance limit
is just 25% below the shot noise level. In view of this,
one must be careful to avoid scattering coupling in com-
munications systems using squeezed states.

Dissipative losses are always present in the coupler,
and are modeled by coupling each mode to its own heat
bath. In that case Eq. (96) is replaced by

(bX&(L))= A'(L)+ —'[B'(L)e "+C'(L)e "], (99)

where

—4y L+4e ' sin 2XL sin (pl —
—,'8)], (104)

H(L) =
—,'[sin (Pl —

—,'8)(1 —e '
)

—4y, L+4e ' sin 2XL cos (QI —
—,'8)] .

In the presence of scattering coupling therefore no simple
relation exists between (bn, (L)) and (bX, (g)).
Therefore one cannot determine the squeezing in the in-
put field simply from the photon statistics of the output
field. However, in the long-distance limit, a simple rela-
tion does exist and is given by

& &~', (L) &
= la~ l'& ~X'(q) & (105)

B'(L)=e " B(L),
C'(L) =e " C(L),

(100)
&~X', (q)&, „=—,', + —,', [. "(q—

—,8).-'"

and yd is the amplitude extinction coefficient of each
mode. The function (99) is plotted in Fig. 6(d).

The mean and variance of the photon number of the
field emerging from guide 1 for the same input as before
and in the presence of scattering losses are given, respec-
tively, by

+sin ( g —
—,
' 8)e "], (106)

Q, (L) „=(&X',(g) &
—

—,
' . (107)

and P=aI —~/2. The corresponding Q parameter is

(., (L) ) = l'(L) l'(n, (0) )„,
(bn, (L))=lu'(L)l (bn, (0)),

+ lu (L)l'lU(L)l'(~, (0))„,

and hence for the Q parameter, we have

(101)

Therefore, in the presence of scattering coupling, squeez-
ing in the input field may still be detected provided the
coupler length is sufficiently large, and is revealed by
sub-Poissonian photon statistics in the output field.

In the presence of dissipative losses and scattering, Eq.
(103) is to be replaced by the more complicated expres-
sion

&~",(0) &„Q)(L) =
l
u'(L)l —1 —

—,'(1 —e
(n, (0))„

—4y LS
)

( hn, (L) ) = laI l
[F'(L)+—'[G'(L)e "+H'(L)e "]],

(108)

(102) where
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F'(L) =
—,'(1+e " —2e " cos2gL )

—4yd L —2yd L

G'(L) =e G(L),

H'(L)=e " H(L) .

VI. CONCLUSIONS

(109)

the phase sensitivity of the photon distribution to the lo-
cal oscillator phase.

Finally, we examined the effect of scattering coupling
in the coupler. We showed that scattering coupling tends
to equalize the energy in each guide. As a consequence,
the evolution of the quadrature variances and photon
statistics of squeezed states of light follow a very compli-
cated pattern. In the presence of scattering coupling, the
coupler does not behave either like an imperfect photon
detector or a homodyne detector.

We have studied the photon statistics of nonclassical
fields in a linear directional coupler. Using the solutions
to the operator equations of motion, we have calculated
the photon distributions at the output ports of the
coupler for number-state inputs and for arbitrary-state
inputs. We have demonstrated that when a number state
enters one port of the coupler and the vacuum enters the
other port, an SU(2) coherent state is generated at the
output ports. Each mode of this SU(2) coherent state was
shown to have a photon distribution given by the binorni-
al distribution. %'e then demonstrated that when the
same number state enters both ports of the coupler, the
probability of finding an odd number of photons at either
of the output ports vanishes for some choice of the
coupler length. Generalizing to the case in which an ar-
bitrary state enters one port and the vacuum enters the
other port, we then found that coupler essentially
behaves as an imperfect photon detector with emciency
governed by the coupler parameters. On the other hand,
we found, that by replacing the vacuum entering the
unused port with a strong local coherent Geld, the
coupler behaves essentially as a hornodyne detector. Dis-
sipative losses within the coupler determine the efficiency
of the detector. Calculations for the photon distribution
associated with ordinary homodyne detection of a num-
ber state and the difference photon distribution associat-
ed with balanced homodyne detection of a squeezed state
were presented. In the former we showed that displaced
photon number statistics are produced and in the latter
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APPENDIX: COUPLED OPERATOR SOLUTIONS

The solution to the coupled-mode operator equations
of motion

da)
iP(a—) —y)a) igaz+ —I (,

dQ2 = —iPza z
—y za z i pa ( + I —

z

is obtained using Laplace transforms. The result is given
by

a, (L)=u, (L)a, (0)+uz(L)az(0)

+ X [u„(L)b»(0)+~»(L)b»(O)],

az(L) =u, (L)a, (0)+ u z(L)a z(0)

+ g [u,z(L)b()„(0)+u»(L)b»(0)],

where

u, (L)= cosg L i —singL e 'P~ y~, uz(L) = cosg *L+i sing *L e
. bP iby . ;-r —-r „.b, —iby

x x

v, (L)= i sing *L—e 'P y, uz(L) = —i —singLex* x

1 g—bP+ i b.y i (P), P' ' i y )L— —

2 Sp p' ' y)— —
—i P~L pq pz+iyz-u„(L)=g„e

(/3z
—

/3
'+ ' i y )(P~—P—' ) i y)—

1 g+bp ib, y i(p, p( ' yv.— — —

2 g(p, -/3") —y)

—i P~L
uz~(L) =gz~e

p)+''V) 1 g*+b,/3 ib, y i(p~ p' '* iy)r- — . —
e

(p). p'+ —jy)(pz —p—' '*—i'y) 2 g *(pz p' '* i y)——

1 g * bP+i b y i(p, p(+)" iy—)r— — .
2 X*(p, p"'" iy)—-



6336 W. K. LAI, V. BUZEK, AND P. L. KNIGHT 43

—ip&L. xo 12.( ) =g 12,e
(p, —p'+'* —iy)(p, —p'-'* —1r )

1 x i(P~—P' '*- i.y )L+- e
x *(P2,—p ' '* i—y )

—i P&L

1 x i(P~ —P + *—iy)L
e

2 x*(P —P'+'* —y)

x + 1 i(P& —P —i@)L

(p~ p—'+' ir—)(p~ p—' ' tr—) 2 x(p. P—' ' tr—)

1 '(P —P'+ ' —y)L

2 x« P'+—' r)—

p (Pl+P2) ~p (pi P2» r = ,'(r 1-+ r2» ~r = ,'(r-1 r2)

p'+'=0+x, P' '=p xx—=&x'+(~p —t~r)'.
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