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Squeezed light from a laser with an internal y' '-nonlinear element
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We present a theoretical investigation of the potential for squeezing of a doubly resonant cavity
that contains a laser medium as well as a g'" nonlinearity. If the lasing mode is coupled to its
second harmonic, i.e., for a self-frequency-doubling laser, we find more than 60% squeezing in the
up-converted mode outside the cavity. In the opposite case of a "self-down-converting laser, " i.e.,
when the lasing mode is coupled to its subharmonic, a perfectly squeezed vacuum in the down-
converted mode develops into a less squeezed state with a nonvanishing coherent amplitude as the
pump rate is increased. Our analysis extends beyond the first stable regime of the classical dynamics
and compares results for different laser models.

I. INTRODUCTION

In spite of recent progress in the generation of nonclas-
sical states of light using semiconductor lasers, ' there
remain many good reasons for further investigating the
potential for squeezing in conventional three- and four-
wave-mixing experiments. ' First of all, there is still
no practical source of bright squeezed light, i.e., of
squeezed light with a large coherent amplitude. Second-
ly, semiconductor lasers have a large linewidth and are
not available for the whole range of wavelengths needed
in optical experiments. And, last but not least, the inves-
tigation of squeezing in the optical parametric process is
of considerable theoretical interest, since the definition of
the squeezed state is intimately connected with the pro-
cess of three-wave mixing. '

In a preceding letter, ' we examined a theoretical mod-
el for a self-frequency-doubling laser, i.e., a laser with an
intracavity y -nonlinear crystal. We found that such a
device could, in principle, produce more than 60%
squeezing in the second-harmonic mode outside the cavi-
ty. To describe the laser medium, we used the standard
laser model which was introduced independently by Hak-
en' and Lamb. ' In the meantime, we have become
aware of parallel work ' ' where a similar system is de-
scribed using the laser model of Lax and Louisell and
where a maximum of 50% squeezing is predicted.

It is interesting to compare our previous results with
those of Refs. 20 and 21. In these articles, the same gen-
eral approach as that used in our letter is used. The mod-
el is formulated in terms of a Fokker-Planck equation for
the diagonal I' representation. Squeezing spectra are
then obtained by a linearization around the stable fixed
points of the classical-dynamical equations. The struc-
ture of the classical dynamics is independent of the par-
ticular laser model on which the analysis is based, as is
shown in the present paper. The main diff'erence between
both laser models lies in the fluctuations. In the Haken-

Lamb model, the dift'usion coefficients in the Fokker-
Planck equation grow linearly with the pump rate,
whereas in the Lax-Louisell model, for a large pump rate,
they approach a limiting value. This explains why, in the
Haken-Lamb model, there is no squeezing in the first
stable regime of the classical dynamics, whereas the
analysis of Refs. 20 and 21—based on the Lax-Louisell
model —yields 50% squeezing in this regime. The
second stable regime of the classical dynamics, where our
model predicts more than 60% squeezing, is not con-
sidered in Refs. 20 and 21.

The physical origin of the gain process suggests that
the spontaneous-emission noise saturates far above
threshold. This feature, which is absent in the Haken-
Lamb model, is qualitatively contained in the Lax-
Louisell model. On the other hand, the Haken-Lamb
model is derived in a systematic expansion at the laser
threshold, whereas the Lax-Louisell model is
mathematically inconsistent. It contains nonlinearities of
arbitrary order, but only second-order derivatives. Close
to threshold, both models agree. Up to the present time,
there exists no experimental or theoretical investigation
that decides which of the two models is a more accurate
description of a laser far above threshold. Since squeez-
ing depends in a subtle way on the Auctuations, terms of
the order of the vacuum noise are important for the
present analysis. Therefore, both models will be con-
sidered and the results will be compared.

In this article, the full potential for bright squeezing is
evaluated by carrying out the analysis for all stable re-
gimes of the classical dynamics. It turns out that non-
classical eFects are enhanced if the cavity has a higher Q
value for the lasing mode than for the converted mode,
which corresponds to the condition of a low laser thresh-
old. Strong squeezing can then be obtained in the con-
verted mode outside the cavity. In Sec. II, this is shown
for the self-frequency-doubling laser. The self-down-
converting laser, which was also partially treated in Ref.
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20, is examined as a source of bright squeezed light in
Sec. III. In order to facilitate the comparison for both
laser models, the structure of the classical dynamics is
compiled in tables in a unified form. The potential for
squeezing is displayed in diagrams for various values of
the pump rate and the nonlinear coupling.

II. SELF-FREQUENCY-DOUBLING LASER

The model for the self-frequency-doubling laser intro-
duced in Ref. 17 is based on the laser theory of Haken
and Lamb. In the interaction picture, it is described by
the following quasi-Fokker-Planck equation:

dP
[Pi(g —yi —iS) —blP)l )+XPiP2]+c.c. P

dt cl

P2( y, —i 52—) —P—, +c.c. P+ 2g +— P2+c.c.X 2

&p,
' ' ' 2 '

ap, ap*, 2 ap',
'

Here, P(pi, p2) is the Glauber-Sudarshan P function, where p& and p2 are the complex amplitudes of the intracavity
fields in the fundamental and second-harmonic modes, respectively. We allow for detuning 6, =co, —~L and
62=co2 —2~L between the cavity modes and the lasing transition col . These detunings are supposed to be adjusted to
62=26, . The variables y, and y2 are the cavity damping rates, g is the pump parameter, b describes saturation of the
lasing medium, and y is the nonlinear coupling constant.

The corresponding equation based on the laser model of Lax and Louisell is

BP 8 gP, —y, i 5, +—gP*, P2 +c.c. P-
1+b P, '/g

a
Bp2

P2( —
yz

—
i 62) ——P, +c.c. P

bp', g2 2g+blp, l'
+ C

—
gpss +c.c. + -I' .

Bp', (1+blp, l'/g)' dp dp* (1+hip '/g)' (2)

As in Ref. 17, it is convenient to introduce scaled vari-
ables:

r=y2t, a, =Qb/y2p, (i =1,2)

y) ~ 5, 62
I =, g=

y2 y2 y2 2y2 V by

Equations (1) and (2) include phase diffusion. In this
respect, our model of a self-frequency-doubling laser is
more realistic than the usual model of second-harmonic
generation, where the external pump field is described
by a stable classical wave.

f (x ) = —21 ( Lax-Louise ll ) .2g
1+x /g

The dot denotes derivation with respect to the dimension-
less time r. The classical equations of motion (4) are in-
variant under the transformation (a„az)~(a&e', a2e '

)

for an arbitrary angle P. This phase symmetry suggests
the definition of a reduced set of variables:

ip)
(xi = x)e

i/2X2= 0'2, 0'2= X2e

A. Classical dynamics x, =Re(a, af ) =x, Qx~cos(2$, —P, ) .

Using the scaled variables Eq. (3), it is possible to write
the classical equations of motion derived from the deter-
ministic parts of Eqs. (1) and (2) in a unified form:

a, —[—,f ( f a, l ) —i b, ja, +)ca, ai,

For a complete description of the system, the angle P,
may be used in addition to the variables x &, x2, and x3.
The phase symmetry now translates into the property
that the equations of motion for x „x2, and x3 do not de-

pend on the phase P&.

a&= —(1+2ih)ai —a, ,
—

where the particular laser model enters through the func-
tion f:

f (x)=2(g —I —x) (Haken-Lamb)

or

xi =fg (x i )x i +2lcx3

X2 = 2X2 KX3

x3=[f (x, ) —1]X3+2~x,x~ ——x, .

The equation for P& reads

(8)
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x4
x I

where the abbreviation

x4 = Im(a, az ) =x,Qxzsin(2$, —Pz)

(9)

(10)

is used.
The dynamical structure of the original equations (4) is

hence determined by the reduced set of equations (8).
These equations have three fixed points, which, along
with their conditions of stability, are given in Table I in a
compact form independent of the particular laser model.
The fixed point (i), where the amplitudes in both modes
vanish, is stable for pump rates g &I, i.e., the laser
threshold is not changed by the presence of the nonlinear
medium. The fixed points (ii) and (iii) are stable for
I &g &g, and for g )g&, respectively, where g& is given
explicitly in Table I for both laser models.

However, a fixed point in the variables x „x2,and x 3 is
not necessarily a fixed point in the complex amplitudes u&

and az. As follows from Eq. (9), a rotation with constant
angular velocity P, = —b, —1~x~/x, can be present. In
the following, we will always assume that the detuning is
b, = —~x4/x„such that $, =0. Due to the phase sym-
metry, one of the phase angles P, and Pz can be chosen
arbitrarily. Here, we will choose Pz=~ at the fixed point
(ii) and Pz=0 at the fixed point (iii), which will simplify
the calculations. Once Pz is specified, there is, in general,
more than one possible value for P„because the sign of
the term 2P, —

Pz is not determined by the values of x, ,
xz, and x3. For the fixed point (ii), where 2P, —Pz=+~,
this leads to physically identical solutions. For fixed

I

point (iii), however, one obtains two physically distinct
solutions that rotate with different angular velocities. In
the following, we will consider only one of these solu-
tions, making a choice for P& and thus for the sign of xz.
With 6= —Kx4/x„ this solution is described by station-
ary complex amplitudes a, and a2.

Table I specifies the detuning 6 and the phase angles

P, and Pz at the three fixed points. For fixed point (iii),
this implies that a choice of which of the two possible
solutions is stationary has been made. Table I also con-
tains the fixed-point values of the complex amplitudes a&
and az, which can be calculated once the phase angles P&

and Pz are given, and which will be used in the next sec-
tion.

B. Noise spectrum

For the calculation of the noise spectra, the quasi-
Fokker-Planck equations (1) and (2) will be linearized
around the fixed points of the classical dynamics given in
Table I. We will use the notation a, =q& +iq2 and

a2=q3+&q4. In scaled variables, the linearized equations
for P =P(q&, q zq 3q4)=P(Iq, )) can be written as

as = —»,k(Iq; I )
k1 " '

BqJ

1 b+— & Dk( I q I )
2 p2 k i Bq Bqk

The matrices A(Iq;J) and D(Iq;I) are constant and
depend only on the fixed-point values q, given in Table I.
The drift matrix A is given by

A(Iq;I)=
Kql Kq2

—2A —1

f /2+q, f'+~q3 q, qzf'+6+~q4 aq, ~qz

qiqzf b'+Iraq& f l2+qzf ~q3 ~qz ~q
—1 26 (12)

For the diffusion matrix D, one obtains the block matrix

D~ 0
D( Iq, I

)=
q4

where D„=— +D (q&, qz),
2 q4

(13)

and where the particular laser model enters through the laser diffusion-matrix D,
'g 0

D (q„q )= (Haken-Lamb ) (14)

or

(q„qz)= 1+—(q, +qz)
1 g +q i qiq2

q&q2 g +q22 (Lax-Louisell) . (15)

In these matrices, fs =fg (q ~ +qz) and

fg =fg(qi+qz). The normalization of D is chosen such
that D depends only on scaled variables. Since Eq. (11)
describes an Ornstein-Uhlenbeck process, there are ana-
lytic expressions for the noise spectra outside the cavi-

S(A)=(A +ill) 'D(A —iAI) (16)

the noise spectrum of the lasing mode in a quadrature

ty. ' With the following definition of the spectral ma-
trix S(Q):
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component with phase angle 0 is

Sa(Q)=81 I(cos O)S»(Q)+(sin O)S2z(Q)

+2(sinO)(cosO)[S, z(Q)+Sz, (Q)]], (17)

whereas for the second-harmonic mode,

Sti(Q)=8[(cos O)S33(Q)+(sin O)S«(Q)

0.8

0.6
10

s s s s s s I

100 1000

+2(sinO)(cosO)[S3&(Q)+S43(Q)]I . (18)

The factor I is absent in the last formula, because the
damping rate for the second harmonic was scaled to 1.
The spectra are normalized such that S&(Q)=0 is the
shot-noise level and Sa(Q)= —1 corresponds to perfect
squeezing. Since q2=q4=0 at the fixed point (ii), the
spectral matrix can be easily calculated for I (g (g, .
For those matrix elements which appear in Eqs. (17) and
(18) one obtains

(D„—x. x, /4)(1+Q )

[x, (Ir fs) —Q—] +Q (x,f' —1)

(D2z+a. x, /4)(1+Q )

Q [Q +(a x, —1) ]

(D„Ir x, /4—)ic x,
S33(Q)=

2 s ~~ 2 s 2 s (
[x, (a fs) —Q ] +—Q (x, fg —1)

(D22+I~ x, /4)a. x,
Q [Q +(icx, —1) ]

S&2 =S2& =S34 S43 0

0 s s s s I

10

O. O

-0.5
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0 s s ~ s I
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Since for both laser models D» )0 and D22 )0, only S&&

and S33 can become negative. This means that, if there is
any squeezing in this parameter range, it is maximal for
0=0, i.e., it is amplitude squeezing. Due to the free
phase diffusion, S22 and S44 diverge for A —+0.

It is much harder to calculate the spectral matrix S(Q)
at the fixed point (iii), because q2 does not vanish there.
The calculation was done using the algebraic manipula-
tion program REDUCE and leads to unwieldy expressions
for S(Q,). They will be omitted as well as the results at
the trivial fixed point (i), where there is no coherent exci-
tation.

In the next two sections, a numerical analysis of the
spectra at the fixed points (ii) and (iii) is given, based on
the Haken-Lamb and Lax-Louisell laser models, respec-
tively. Since outside the cavity the strongest squeezing is
expected in the up-converted mode —which is confirmed
by the explicit calculation —results will be presented only
for this mode. In the lasing mode, less squeezing occurs
outside the cavity because the spectrum Eq. (17) is multi-
plied by the laser threshold I which has to be chosen
small in order to maximize the squeezing. ' ' This is17,20, 21

physically reasonable, since a low laser threshold means
low spontaneous-emission noise.

C. Haken-Lamb model

The self-frequency-doubling laser based on the Haken-
Lamb model has already been discussed in Ref. 17.
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FICx. 1. Self-frequency-double laser, based on the Haken-
Lamb laser theory, where squeezing occurs only at the fixed
point (iii). The laser threshold is I =10 . All variables are
given in scaled dimensionless units. (a) From top to bottom, the
following five variables are shown as a function of the nonlinear
coupling ~: the values of the pump rate g, the frequency offset
0, , and the phase angle 0, for which maximum squeezing occurs,
the resulting value of the spectrum S~(A); and the fixed-point
value ~az~ . The horizontal dotted lines indicate pure amplitude
(0=0) and pure phase squeezing (0=m. /2). (b) Noise spectra
for the coupling constants ~= 10 (solid line), x=25 (dashed
line), v=100 (dotted line), and ~=1000 (dashed-dotted line).
For g and 0, the optimized values of (a) are used.
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a )32(1+1) (20)

There it was found that squeezing is possible only for
g )g„ i.e. , at the fixed point (iii), and only if the condi-
tion

visaged in Ref. 17, where almost no squeezing was found
using the Haken-Lamb model, the analysis based on Lax
and Louisell predicts that 60% squeezing can easily be
obtained.

For larger ~, the picture does not change much. In

is fulfilled. Thus, a large nonlinear coupling K and a low
laser threshold I are required.

In Figs. 1(a) and 1(b), the largest possible squeezing in
the second-harmonic mode outside the cavity at fixed
point (iii) is shown for various values of ir, with the laser
threshold fixed at I = 10 . In order to find the max-
imum squeezing for a given z, Eq. (18) has been opti-
mized with respect to the pump parameter g, the offset
frequency Q, and the phase angle 8. Figure 1(a) displays
these optimized parameters along with the resulting max-
imum value of Se(Q) and the fixed-point value ~az~,
which is a measure of the (scaled) intracavity photon
number and thus of the brightness of the squeezed light
outside the cavity. The spectra for different values of ~
are shown in Fig. 1(b).

The ir value at the left edge of Fig. 1(a), where the
squeezing vanishes, is given by Eq. (20). The squeezing
increases with ~ but never exceeds 65%. The phase angle
0 decreases for large a, which means that amplitude
squeezing is approached. The divergence at 0~0 in Fig.
1(b) was already explained in the last section. The addi-
tional peaks in the spectra, which occur at offset frequen-
cies 0,„ that increase with w, have their origin in the dy-
namics around fixed point (iii), where the stability matrix
3 has a pair of complex-conjugate eigenvalues. One can
show that 0,„ is equal to the modulus of the imaginary
part of those eigenvalues. Analogous maxima can be
found in the case of externally pumped frequency dou-
bling.
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D. Lax-Louisell model

If the laser model of Lax and Louisell is used, basically
the same picture as before arises. The main difference be-
tween both approaches results from the different behavior
of the diffusion matrix D . Whereas in the Haken-Lamb
case the matrix elements of D increase linearly with the
pump strength g, here they tend to finite values of the or-
der of the laser threshold I if g~ ~. From this it fol-
lows that there exists no pump rate g „where the
squeezing is maximum. The squeezing increases mono-
tonically with g.

This is why in Fig. 2(a) the coupling a =5 is held fixed,
while g varies along the abscissa. The offset frequency 0
and the phase angle 0 are chosen to maximize the squeez-
ing. The vertical dashed line marks the threshold value

g =g„which separates the stability domains of the fixed
points (ii) and (iii). Again, squeezing occurs only at the
fixed point (iii). With increasing pump rate g, the noise
reduction rapidly approaches a limiting value of about
70&o. Three typical spectra are displayed in Fig. 2(b).
The situation closely resembles the Haken-Lamb case,
with the exception that the maximum squeezing is now
obtained for a smaller coupling parameter ~, and that it
occurs over a large range of the pump rate g. From this
it follows that in the particular experimental situation en-

0 .0 1
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s I I
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FIG. 2. Self-frequency doubling laser, based on the Lax-
Louisell laser theory. &=5, I =10 . (a) From top to bottom,
the following four variables are shown as a function of the
pump rate g: the values of A and 0 for which maximum squeez-
ing occurs, the resulting values of Sz(Q), and the fixed-point
value ~a2~ . The vertical dashed line indicates the boundary

g =g& between fixed points {ii) and (iii). In the shaded area no
squeezing occurs. (b) Noise spectra for the pump rates g =0.62
(solid line), g=0. 8, (dashed line), and g=5 (dotted line). For 0
the optimized value of (a) is used.
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particular, the maximum squeezing value of 70% is not
exceeded even for a very large v. This value can also be
obtained for sma11 ~, if higher pump rates g are allowed
for, as can be seen from Fig. 3, where ~=10 '. In this
case, squeezing is also found at the fixed point (ii), where
the optimized phase angle is 0=0, which means pure am-
plitude squeezing. At the critical point g =gi, a max-
imum of 50% noise reduction can be obtained in the limit
~—+0. However, the necessary pump strength diverges in
this limit, as follows from the explicit expressions Eqs.
(18) and (19). Inserting the fixed-point values from Table
I for g =g, , one obtains

s,=,(n=o)~, =, =gs„(n=o)~, , —o. s

(a~o or g, ~~) (21)

III. SELF-DOWN-CONVERTING LASER

In the self-down-converting laser, the high-frequency
mode with amplitude a2 is the lasing mode, which is then
down-converted to the subharmonic with amplitude a&.
Equations (1) and (2) are easily modified in order to de-
scribe this new model. One obtains in the Haken-Lamb
case

a
[Pi( —y i

—i 5, )+yP*, Pz]+ c.c. P—
T

P,(g —y, —i5,—b lPzlz) —+ P', +c.c. P
2

82+ 2g
ap, ap,*

+— pz+ c.c.X
Bp

P, (22)

and in the Lax-Louisell case

aP a
[P,( —y, —i5, )+yP*, Pz) +c.c. P

1

~3

pz z
—

yz
—5z ——pi +c.c. P+ — pz+c. c. PX z

1+b Pz Ig 2 2 gPzi

az bPz+
2

+c.c. +
2 (3pz (1+b ~pz~ lg )

2g+b iPz)z

ap, ap,* (1+b )p, [zygo)z
(23)

As above, it is assumed that 62=25, . The time t wi11

be scaled with the cavity damping rate y &
for the nonlas-

ing mode. The scaled variables are

r=y, t, a, =+b jy,p, (i =1,2),

X i
— 2x i +2KX3

xz=f (xz)xz —i~x, ,

JCx3=[—,'f (xz) —2]x, +2l~x, xz ——x, .

(26)

y — 6r= ', g=-g, z=
'V]

x
+by,

In the next section, the drift terms of Eqs. (23) and (24)
will be examined.

A. Classical dynamics

The classical equations of motion equivalent to the
drift parts of Eqs. (23) and (24) are

a, = —(1+i6)a, +ma*, az,

az= [—,
' f ( ~az~ ) —2ib, ]az ——a, ,

(25)

where f~ is defined in Eqs. (5) and (6). Since Eqs. (25) ex-
hibit the same phase symmetry as Eqs. (4) for the self-
frequency-doubling laser, they can be transformed using
the same reduced set of variables Eqs. (7). One obtains

The phase P, obeys Eq. (9). The system of Eqs. (26) has
four fixed points, which are displayed in Table II. As be-
fore, the laser threshold is g=l . The fixed point (iv) is
completely analogous to the fixed point (iii) for frequency
doubling, where the same condition fg =const holds.
Again, a rotation is present, which is treated in the same
way as before (see Table II). The main difference in the
dynamical structure of Eqs. (8) and (26) appears for
moderate pump rates g. The intermediate range now
splits into two fixed points. In the domain of stability of
fixed point (ii), there is lasing action in the high-frequency
mode (xz )0), but there is no conversion into the low-
frequency mode (xi =0). In this domain, the classical
dynamics behaves as if the nonlinear crystal were not
present. The fixed point (ii) is stable until, at the pump
rate g=g„ the threshold value x2=1 j~ is reached. If
the pump rate is increased further, the fixed point (iii) be-
comes stable. Now x2 remains constant and the addi-
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pulsing can be expected in the self-down-converting laser
if the pump rate is increased beyond g=g2. For pump
rates g &g3, the laser should become stable again. A
similar self-pulsing has been predicted for externally
pumped second-harmonic generation, but has not been
observed experimentally up to the present time.

tional pump power is entirely converted into mode 1.
The upper limit of stability g =g2 of the fixed point (iii) as
well as the lower limit of stability g =g3 of fixed point (iv)
depend on the details of the function fs(x2) and of its
derivative fg(x2) and thus on the details of the particular
laser model used.

For the Haken-Lamb laser model, g2 and g3 are given
explicitly in Table II. If the nonlinear coupling is ~& 1,
one finds g2 & g3, and thus a domain where no stable fixed
point exists, whereas for ~~ 1, one has gz=g3=2+1/~,
and no stability gap occurs. Numerical integration of the
equations of motion in the case K & j. shows that a stable
limit cycle exists for gz(g &g3. This means that self- 10
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FIG. 4. Self-down-converting laser, based on the Haken-

Lamb laser theory. ~=1, I =10 . (a) From top to bottom, the
following four variables are shown as a function of the pump
rate g: the values of 0 and 0 for which maximum squeezing
occurs, the resulting value of Sz(O), and the fixed-point value

~ a, ~'. The vertical dashed line indicates the boundary

g =gz =g3 between fixed points (iii) and (iv). (b) Noise spectra
for the pump rates g =gl =1.0001 (solid line), g =1.2 (dashed
line), and g =2 (dotted line), with optimized 0.

0 2

FICx. 3. As in Fig. 2, but ~=10 . (a) As in Fig. 2(a). (b)

g =7.4 (solid line), g =20 (dotted line), and g =100 (dashed
line), with optimized 0.

SQUEEZED LIGHT FROM A LASER WITH AN INTERNAL. . .
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ir f (x2)&1,

and the expression for the threshold g2 becomes

g2 =min[1/a. , 1++I+(2/a. )] (I ~0) .

(27)

(28)

In this limit, the upper threshold converges to g3 ——8 for
K) 5.

In the case of the Lax-Louisell laser model, the expres-
sions for g2 and g3 are too complicated to be shown ex-
plicitly. Numerically, one finds that g2 =g3 for K & 0.406.
In the limit I ~0, the condition of stability of fixed point
(iii) simplifies to

B. Noise spectrum

as ' a
A k([q;[) (qkP)

a'+ — g Dp([q[) P,
2 p . Bq Bqk

(29)

where the drift and difRsions matrices are given by

After linearization, Eqs. (22) and (23) can be written in
the unified form

A([q;J)= —
Kq&

Kq2

Kq2

Kqi

—1+Kq3 6+Kq4

—6+Kq4 —1 —
Kq3

Kq& Kq2

Kq2 Kqi

f l2+q3f' q3q4f'+26,

q3q4f' —2b, f /2+q4fs

(30)

and

D([q, J)=
D, 0 q

with D~ =—
0 D (q3, q4) 2 q4 q3

In these matrices, f =fs(q3+q4) and fs=fs(q3+q4).
As before, a low laser threshold I will be assumed, such that large noise reduction outside the resonator can occur in

the converted mode, which is the low-frequency mode here. Since there is no coherent excitation in this mode for
g &gi, the discussion will focus on the domain g g~, i.e., on the fixed points (iii) and (iv), where bright squeezing in
mode 1 is possible.

Whereas for fixed point (iv) the expressions for the spectral matrix are very unwieldy, they are easy to calculate at
fixed point (iii), where q2 =qd =0. For g, & g &g2, the matrix elements that appear in Eqs. (17) and (18) are

i 2 i 2

2

[0 [0 +(2 f l2) ]j, —

2i

(f —A)+0 +
2 2

(32)

[0 [0 +(2—f /2) ]],

5 q2(Q)=— 4
0, +4

(33)

This means 100% noise reduction at the center frequency
A=O. Since x, =0 at g=g„ the resulting state is a

Since for both laser models D» & 0 and D22 )0, only 522
and S44 can become negative. This means that if there is
any squeezing, it is maximal at the phase angle 0=~/2,
i.e., it is phase squeezing. For g =g&, at the lower stabili-
ty limit of fixed point (iii), one finds in the low-frequency
mode

squeezed vacuum state. For g )g„a coherent amplitude
develops (x, )0), but the maximum squeezing decreases.
The Haken-Lamb and the Lax-Louisell cases will be dis-
cussed separately in the following sections.

C. Haken-Lamb model

Results of the numerical analysis of tlute noise spectra in
the low-frequency mode are shown in Fig. 4 for a non-
linear coupling K=1. The data are displayed in a way
analogous to Figs. 2 and 3. The vertical dashed line in
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Fig. 3(a) indicates the threshold value g =g2 =g3, i.e., the
boundary between fixed points (iii) and (iv). For II=1
there is no stability gap. At the pump rate g =g„at the
left edge of Fig. 3(a), there is 100% noise reduction in the
vacuum state. This maximum value is obtained at
9=sr/2 and Q=O. If the pump rate is increased, a
coherent amplitude lcx,

~

)0 develops, but at the same
time the maximum squeezing decreases. However, for
moderate brightness, large noise reduction can still be
achieved. In contrast to the case of frequency doubling,

nothing is gained here by increasing the pump rate into
the domain of the last stable fixed point. Three typical
spectra are displayed in Fig. 4(b). For larger values of I~,

the situation remains essentially the same. Apart from
the stability gap, the main difference is that the same
amount of squeezing is now obtained at lower pump
rates.

D. Lax-Louisell model

In Fig. 5, the analysis of the case ~=1 of the last sec-
tion is repeated for the Lax-Louisell laser model. In this
case, g2 (g3,and a stability gap between fixed points (iii)
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FIG. 5. Self-down-converting laser, based on the Lax-

Louisell laser theory. re=1, I =10 . (a) As in Fig. 4(a). The
shaded area indicates the stability gap g2 (g (g3 between the
fixed points (iii) and (iv). (b) g =g& =0.0101 (solid line), g =Os 7
(dashed line), and g =30 (dotted line), with optimized 0.

FIG. 6. As in Fig. 5, but &&=10 '. (a) As in Fig. 4(a). (b)
g=g& =0.101 (solid line), g=8 (dashed line), g=25 (dotted
line), and g =400 (dashed-dotted line), with optimized 0.
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and (iv) exists. The unstable range g2 (g (g3 is indicat-
ed by the shaded area in Fig. 5(a). In the range
g, (g &g2, in the left part of Fig. 5(a), the situation is
similar to the Haken-Lamb case. Here, the maximum
squeezing is found at smaller offset frequencies 0 and de-
creases less rapidly with the pump rate. For g & g3 how-
ever, at the fixed point (iv), a new feature appears. There
is no squeezing at the right edge g =g3 of the stability
gap, but the maximum squeezing increases monotonically
with the pump rate g to reach a limiting vaue of about
35%%uo. The phase angle 9 decreases with g, which means
that amplitude squeezing is approached. Three typical
spectra are displayed in Fig. 5(b).

No changes occur in principle when a different cou-
pling constant a is used. It is found that a large ~ re-
quires smaller pumping rates to achieve the same amount
of noise reduction. The case K = 10 ', where no stability
gap appears, is shown in Fig. 6. There is a slight compli-
cation here due to the additional peak in the spectrum.
This peak was a1ready discussed in Sec. II C. For pump
rates close to the boundary g =g3, this peak occupies just
the place where otherwise the spectral-noise minimum
would be [see the dotted curve in Fig. 6(b)]. This means
that the offset frequency where the maximum squeezing
occurs is pushed to higher values. Figure 6(b) shows that,
with increasing pump rate, the additional peak moves to
the right, such that for a certain pump rate g, the loca-
tion of the maximum squeezing jumps to the left. This is
the reason for the discontinuities in Fig. 6(a). Apart
from this peculiarity, the behavior is similar to the case
K —1.

IV. CONCLUSION

Incoherently pumped lasers with an intracavity g' '-

nonlinear element can generate intense squeezed subhar-
monic or second-harmonic light. We have found that the
amount of squeezing is limited due to the laser phase
noise, which shows up as excess noise in a narrow band
around the central frequency, and which pushes the max-
imum spectral squeezing away from the center frequency
into the sidebands. In the limit of large pump rates, the
nonlinear dynamics leads to a bifurcation and to rotating
field vectors, which tilt the squeezing ellipse. For this
reason there exists no pure phase or amplitude squeezed

state in this limit.
For the self-down-converting laser, 1007o noise reduc-

tion is possible at the second threshold„where the conver-
sion to the subharmonic mode starts. Just at this thresh-
old, the subharmonic mode is still in the vacuum state.
In the limit of large pump rates, a maximum of about
30go squeezing can be achieved.

More than 60%%uo noise reduction at high pumping rates
seems to be possible in the self-frequency-doubling laser.
This limit is predicted irrespective of whether the
analysis is based on the Haken-Lamb or the Lax-Louisell
laser model. However, when the question of practical
realization of such a device is addressed, both laser mod-
els lead to different answers. The application of our pre-
vious analysis using the Haken-Lamb model to a self-
frequency-doubling laser made from Nd:MgO:LiNb03
suggested that no squeezing can be obtained from this
particular device. ' But if the Lax-Louisell model is used,
one finds that 60 Jo noise reduction can easily be achieved
with this material.

Self-frequency-doubling lasers have been developed and
are now commercially available. Research has focused
on diode-pumped devices using neodymium yttrium
aluminum borate (NYAB) self-frequency-doubling crys-
tals or the nonlinear crystal potassium titanyl phosphate
(KTP) with lithium neodymium tetraphosphate (LNP) as
lasing medium. In order to increase the conversion
e%ciency, the second-harmonic mode has been resonantly
enhanced in the latter system. Resonance for the
second-harmonic mode is also essential for generating
squeezed light. Even though the potential for squeezing
seems to be limited to approximately 60%, there are
several advantages combined in self-frequency-doubling
lasers as sources of nonclassical light. They can be in-
coherently pumped, the squeezed mode is at the shorter
wavelength, and the high power of the beam implies that
the shot-noise level is low. For applications, e.g., in sub-
shot-noise interferometric devices, these lasers could be a
promising light source.
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