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Absolute quantitative comparisons between experiment and theory are reported for the steady-
state characteristics of optical bistability with two-state atoms in ring and in standing-wave resona-
tors. The case treated here is the absorptive one, with both atoms and cavity resonant with the field.
The experiment is designed to realize as closely as possible a standard theoretical model of two-state
atoms interacting with a single mode of the electromagnetic field in a resonator and is described in
detail. A detailed explanation is also given of the extensions to the standard theory that are needed
to account for unavoidable experimental limitations such as transit broadening and the nonideal na-
ture of the resonator. The good agreement observed between experiment and theory provides a
foundation for quantitative investigation of nonlinear dynamics and quantum phenomena in this

nonequilibrium optical system.

I. INTRODUCTION

The study of optical interactions has the attractive
feature of intimate connection between theory and exper-
iment; a tractable theoretical model often provides a real-
istic description of a practical experiment. In both
theory and experiment many phenomena in optical phys-
ics are sufficiently simple in concept that they may serve
as ideal proving grounds for ideas from numerous areas
of physics. Some of the most striking tests of quantum
electrodynamics (QED) and indeed of the conceptual
basis of quantum mechanics have been provided by ex-
periments in quantum optics.! The combined capability
of experimental realization and theoretical description,
both in quantitative detail, serves as a stimulus to search
for the limits to the validity of our understanding.

The laser is probably the most extensively studied sys-
tem in quantum optics.>2~* From this basis have sprung a
number of similar progeny; three examples are the laser
with saturable absorber, the laser with injected signal,
and the passive bistable system. It is this last that is the
subject of this work; the intrinsic optically bistable sys-
tem that we investigate differs from the laser in that the
intracavity medium is passive, with no population inver-
sion and no source of energy other than an external driv-
ing field> The combination of nonlinearity in the
response of the intracavity medium together with the
feedback inherent in the intracavity geometry results in a
nonlinear transmission characteristic for the transmitted
versus incident field over some range of incident fields.
The nonlinearity of the intracavity medium may result
from intensity-dependent absorption or dispersion, or a
combination of the two; the resulting bistability is classed
as absorptive or dispersive, or mixed, respectively. Feed-
back may be provided by enclosing the nonlinear medium
in either a traveling-wave (ring) or a standing-wave opti-
cal resonator (cavity). A great deal of progress has been
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made in the study of optical bistability, and it is an active
area of research with interest derived from its potential
application to optical signal processing systems as well as
from its relationship to nonequilibrium statistical
mechanics and to cooperative interactions in atomic
physics.®~?

The standard theoretical model of optical bistability as-
sumes a medium consisting of a collection of two-state
atoms interacting with a single mode of an optical cavi-
ty.!%!! In the semiclassical limit the model allows calcu-
lation of steady-state and transient behavior, and the fully
quantized treatment predicts the spectral densities and
quantum statistics of the transmitted light.> Our purpose
in this paper is to give a complete description of our ex-
perimental and theoretical investigations of the steady-
state regime in absorptive bistability in a system that
closely approximates a collection of radiatively
broadened two-state atoms interacting with a single cavi-
ty mode. Although several quantitative investigations of
optical bistability have been reported,’?”!7 we have en-
deavored in the present study to perform an experiment
in which all relevant parameters are measured precisely
and for which only slight extensions of the standard two-
state theory are required in order to permit absolute
quantitative comparisons. This foundation has enabled
us to explore additional aspects of this fundamental sys-
tem: steady-state characteristics in the mixed
absorptive-dispersive regime,'® critical slowing in the
transient response of the bistable system,!>?° validity of
the single-mode theory as applied to mode-degenerate
and -nondegenerate resonators,?! quantitative analysis of
the single-mode instability,?*?3 coupling-induced mode
splitting leading to oscillatory exchange of excitation,*
and, in the quantum statistics of the transmitted light,
squeezing and photon antibunching?® on the lower
branch.

The importance of absolute comparisons between ex-
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periment and theory such as the one reported here go in which the atomic beams are collimated, optically
beyond the scope of bistability; absorptive bistability prepared, coupled to the cavity mode, monitored, and
represents one of the simplest known models of a none-  dumped; the optical system that produces, conditions,
quilibrium phase transition.”® Knowledge of the cavity  and detects the light interacting with the atoms; and the
geometry and the coupling parameter (dipole strength of  interferometer assembly that includes the optical cavity
the transition between states) permits precise theoretical and its mount.

predictions for critical phenomena and nonequilibrium The vacuum system consists of two connected
transitions in the system. Quantitative comparisons of  stainless-steel chambers pumped by an oil diffusion
theory and experiment also provide a foundation for an  pump. Ionization gauges measure the pressure in each
experimental approach to fundamental questions in QED chamber. Typical pressures range from 8 X 10”7 torr to
regarding the interaction of the electromagnetic field  4X107° torr. The larger, directly pumped chamber con-

with two-state atoms in a cavity.1 tains the sodium oven. The stainless-steel oven, which

The bOdy of this paper is structured as follows. In Sec. has a sodium capacity of approximate]y 30 cm3’ 1S resis-
II we describe the experimental apparatus and procedure tively heated and has a row of ten 0.5-mm-square slits (on
in some detail; in Sec. III we present the theory and ela-  1.5-mm centers) to produce ten effusive sources. The top

borate on the refinements that are necessary for a proper of the oven is maintained at a higher temperature than
description of our experiment. Experimental results are  the bottom to keep the slits clear, and the top and bottom
presented and compared with the theory in Sec. IV, and  temperatures are monitored by thermocouples. A cylin-
the final section contains a discussion and evaluation of  drical water-cooled brass shield, having a small opening

the results. for the sodium beams, surrounds the oven in order to
IL EXPERIMENT reduce background pressure and unwanted sodium depo-

sition in the chamber. By rotating a flap-bearing

A. Apparatus feedthrough, the sodium beams may be blocked before

they reach the collimating apertures. These apertures are
A sketch of the apparatus is presented in Fig. 1. It  in four successive rows of ten slits each and prevent any
consists of three major systems: the evacuated chambers “diagonal” beams from forming. That is, each of ten
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FIG. 1. Experimental layout. The vacuum chambers are shown in heavy outline; the atomic beams are shaded. LN denotes the
liquid-nitrogen cooled beam dump. In the optical system we have the following: IS, intensity stabilizer; H, half-wave plate for inten-
sity control; P1,P2,P3, polarizers; EOM, electro-optic modulator for intensity modulation; Q1,Q2, quarter-wave plates for circular
polarization; L1, mode-matching lens; L2, focusing lens; L3, cylindrical lens; M1,M2, cavity mirrors; PZT, piezoelectric translator;
F1,F2, bandpass filters at 589 nm; P;, diode calibrated to measure input power; P,, photomultiplier calibrated to measure transmitted
power; D, linear diode array; P, , diode for detection of 633-nm locking signal from He-Ne transmission; CP, corner cube reflector for
retroreflection of the monitor beam; P,,, P,,,, diodes for monitor absorption measurement; I,,1,,,, photomultipliers detecting fluores-
cence from the signal and optical pumping beams, respectively. The Na cell is for rough tuning, and the Fabry-Pérot (FP) optical
spectrum analyzer is used to monitor the laser frequency.
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parallel atomic beams is produced by the combination of
one oven slit and one (and only one) slit in the final down-
stream row of apertures. The four rows of collimating
apertures are fixed relative to each other but the entire set
may be tilted and translated, both horizontally and verti-
cally. The aperture set is mounted in the larger chamber
and extends into the smaller. Either of two separate sets
may be used; the two sets differ in the dimensions of the
apertures in the last row: both final rows consist of 0.5-
mm-wide apertures on 1.5-mm centers, but they are 0.5
mm tall in one set and 2.0 mm tall in the other. The dis-
tance from the oven apertures to the final collimating
apertures is 27.0 cm. A liquid-nitrogen-cooled copper
rod extends into the small chamber from the opposite
end; a v-profile horizontal groove in its end serves as a
dump for the sodium beams. To help reduce background
pressure due to stray sodium, the interaction region and
interferometer assembly are surrounded by a slotted brass
shield, which makes thermal contact with the copper
cold finger. This region, in which both the optical pump-
ing and cavity interaction take place, is at the center of
three orthogonal sets of current-carrying coils that null
the earth’s and other stray magnetic fields in the labora-
tory to within approximately 10 mG and provide a field
on the order of 1.0 G parallel to the cavity axis.

The optical beams are produced by a ring dye laser
which is pumped by a 7-W single-line argon laser and
produces as much as 1 W of single-mode radiation at 589
nm using Rhodamine 6G. The dye laser is tuned to the
sodium D, resonance with the aid of a sodium vapor cell
and is stabilized to a linewidth of approximately 500 kHz
by an external reference cavity. Part of the laser output
(about 5 mW) is split off, circularly polarized using a po-
larizer followed by a quarter-wave plate, and used for op-
tical pumping. This by now well-known process®’
prepares the sodium atoms in the 3 251/2, F=2, mp=2
ground state, from which they can reach only the 3 %P, ,,
F=3, mp=3 excited state via excitation by light of the
same circular polarization. This excited state decays ra-
diatively to the prepared ground state only. In certain ex-
periments®® a second dye laser was used to provide opti-
cal pumping from the F=1 ground state to the F=2
ground state through the F =2 excited state, increasing
the effective atomic density by a factor of £. A pho-
tomultiplier monitors fluorescence from the optical
pumping of one of the sodium beams. The largest part of
the dye laser output goes into the signal beam, the one
that drives the resonant cavity mode. This beam is stabi-
lized in intensity to 1%, attenuated as necessary, intensi-
ty modulated at 50-100 Hz, circularly polarized, and
mode matched to the optical cavity, wherein it interacts
with the prepared atoms 1 cm downstream from the opti-
cal pumping. Part of this beam is split off onto a calibrat-
ed photodiode to provide a measure of the intensity input
to the cavity. The cavity output is focused onto a pho-
tomultiplier and is also focused by a cylindrical lens onto
a linear diode array to monitor the beam profile. Anoth-
er photomultiplier monitors the intracavity signal fluores-
cence from one of the atomic beams. Finally a weak,
linearly polarized monitor beam crosses the sodium
beams farther downstream, outside the uniform magnetic
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field; it is reflected back through the beams by a corner
cube, and its absorption is monitored by photodiodes
after one pass (direct) and after two passes
(retroreflected).

The interferometer assembly is a flanged, slotted,
stainless-steel cylinder that is mounted by a stainless-steel
bellows to the chamber wall. The assembly is held in
place by atmospheric pressure and may be tilted and
translated from outside because of the flexibility of the
bellows. The front (entrance) cavity mirror is held in a
piezoelectric-driven mount at the end of the cylinder, and
the rear (exit) mirror is mounted at the end of a threaded
barrel, which screws into the cylinder from the output
end. This arrangement holds the mirrors parallel to each
other. The cavity length may be varied by turning the
threaded barrel for coarse adjustment and by applying a
voltage to the piezoelectric translator (PZT) for fine ad-
justment; since the rear mirror and the barrel provide the
vacuum seal, coarse as well as fine adjustments may be
made at any time. The assembly may be positioned so
that the mirrors form ring or standing-wave cavities.
The standing-wave cavity [Fig. 2(b)] is formed by making
the cavity axis collinear with the signal beam; in this
configuration, the cavity length may be adjusted and both
confocal [(mirror separation)=(radius of curvature)=35
cm] and nonconfocal cavities employed. By a vertical
translation of the confocal cavity from the standing-wave
orientation, a figure-eight ring cavity is formed. Two
variations of this ring geometry were used: the single-
pass ring, using the atomic beams of square cross sec-
tion, as shown in Fig. 2(a); and the four-pass ring, using
the taller atomic beams, as in Fig. 2(c). As will be dis-
cussed later, the confocal and nonconfocal cavities have
different mode-degeneracy properties; our mode match-
ing was efficient enough that approximately 949% of the
input power was coupled into the fundamental transverse
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FIG. 2. Cavity types. These are side views, looking toward
the oven. Note that the horizontal and vertical scales are
different—the mirror separation is 5 cm; in addition, the axial
extent of the atomic medium is exaggerated by about a factor of
2. (a) The single-pass ring, showing the ten atomic beams of
square cross section, and indicating the input (P;) and transmit-
ted (P,) signals and the axial offset. (b) The standing-wave cavi-
ty. (c) The four-pass ring, with the tall atomic beams.



43 ABSORPTIVE OPTICAL BISTABILITY IN TWO-STATE ATOMS

mode of the cavity. The cavity length was stable over a
period of a few seconds; drift could be counteracted by
manual change of the PZT voltage. If desired, the cavity
length could be stabilized by locking to the resonant
transmission of the light from a Zeeman-stabilized tun-
able helium-neon laser, either by using a simple side-
locking circuit or by modulating the He-Ne laser frequen-
cy and using standard phase-sensitive techniques to lock
at the peak of the transmission profile for the light at 633
nm. Given the tunability of the Zeeman-stabilized He-
Ne laser and the absence of appreciable dispersion at 633
nm due to the Na transitions around 589 nm, we thus
had the capability to stabilize and to vary systematically
the cavity detuning independent of the presence or ab-
sence of the nonlinear processes at 589 nm.

B. Procedure

The necessity of partial disassembly of the vacuum sys-
tem for cleaning after each experimental run means that
the system must be realigned each time. The oven is
designed so that it may be removed and replaced without
changing its alignment; the ten oven apertures form a
horizontal row (parallel to the surface of the optical table)
and serve as the basis for alignment. Alignment is done
using a traveling telescope, sighting backwards along the
intended horizontal atomic beam path towards the oven
apertures. The collimating apertures are installed and
backlighted so that the first row may be aligned by
translation; the last row is then aligned by tilting. Setting
the height of the optical beams completes the initial
alignment. The above process guarantees that the optical
and atomic beams cross, so that the laser may be tuned to
atomic resonance by observing fluoresence from the opti-
cal pumping and signal beams; final alignment requires
this resonant interaction. Using atomic beams of low
density, the monitor beam (in Fig. 1, the beam reflected
by CP) is aligned perpendicular to the atomic beams by
scanning the laser frequency and requiring coincidence of
the resonant absorption dips in the direct and
retroreflected monitor signals. An attenuated optical
pumping beam (in Fig. 1, the beam passing through P3
and Q2) is then aligned by making its fluorescence peak
coincident with the monitor absorption dip. After re-
moving the attenuators from the pumping beam, the
monitor beam must be realigned because of momentum
transfer to the atoms from the pumping beam. The ab-
sorption profile from the realigned monitor beam is then
used to adjust the signal beam (in Fig. 1, the beam pass-
ing through M1 and M2) for perpendicularity. The mon-
itor and signal absorption dips are made coincident to
within +0.5 MHz, corresponding to an alignment uncer-
tainty of +0.6 mrad.

Since it is necessary to know the signal beam absorp-
tion at all times during an experiment, and since it cannot
be measured directly with the cavity mirrors in place, a
calibration is performed which allows signal absorption
to be found from measurement of either the fluorescence
from the optical pumping beam or the absorption of the
monitor beam. To accomplish the calibration, a number
of runs are done in which the signal absorption [ag,l,
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where the reduction in signal beam intensity in passing
through the atomic medium of length / is given by
I=Ipexp(—agl)], the optical pumping fluorescence
(I,p), and the monitor absorption (a,e,!, defined in the
same manner as ag,/) are measured as the atomic beam
density is varied via the oven temperature. In these cali-
bration runs, the laser frequency is scanned through reso-
nance, the signal intensity is kept low to avoid saturation
(when this was not possible, correction for power
broadening was necessary), and the atomic density is kept
fairly low in order to reserve sufficient sodium to do the
experiment. These absorption scans could be done with
the interferometer assembly retracted by compressing the
bellows to bring the front cavity mirror (M1) to the other
side of the atomic beams; this method necessitated mea-
surement of the signal reflected back towards L1 from the
displaced mirror M1. A second option was to do the
scans with the interferometer in place and the rear cavity
mirror (M2) replaced by an anti-reflection-coated (AR)
blank; this meant that the oven would have to cool and
the system would have to be pressurized with dry nitro-
gen for a few minutes in order to replace the blank with
the high-reflectivity (HR) rear cavity mirror (M2) for the
bistability experiment. Because of the difficulty of
measuring the weak (typically 7 nW) absorption signal on
the laser side of the cavity in the presence of significant
scattering in the chamber from the other laser beams, the
second method was found to be preferable. In addition,
this method had the advantage of providing precisely the
same laser beam geometry relative to the atomic beams
for both the calibration and the actual bistability experi-
ments, since the focusing through the front mirror sub-
strate (M1) was identical for the calibration (M2 as AR
blank) and for the actual bistability run (M2 as HR back
mirror of cavity). In the first method (with the inter-
ferometer retracted) one must correct for additional tran-
sit broadening resulting from the absence of the signal
beam defocusing normally occurring when the front mir-
ror (M1) is in place (with all other input optics such as L1
unchanged).

Figure 3 shows typical absorption scans, using the
second calibration method, with and without optical
pumping; the absorption coefficient for the largest feature
(F =2—F =3) increased by a factor of 2.1, compared to
the theoretical value of 2.14, confirming the efficiency of
the optical pumping process and verifying the complete-
ness of circular polarization of the pumping and signal
beams and the uniformity of the magnetic field. Calibra-
tion plots of the fluorescence from the optical pumping
beam and of the absorption of the monitor beam versus
the actual measured absorption of the signal beam are
shown in Fig. 4. Each point in these plots is obtained
from a sweep such as that shown in Fig. 3 for which the
signal absorption, monitor absorption, and optical pump-
ing fluorescence are simultaneously recorded, with the
corresponding ag,l, o/, and I, taken from the peak of
the signal at zero atomic detuning. These linear fits were
extrapolated to regimes of greater atomic density, a pro-
cess justified by separate calibration runs that showed
linear behavior to the highest densities used in the experi-
ments. After calibration, the cavity was introduced,
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FIG. 3. Transmitted power through the atomic beams as a
function of frequency. (a) Without optical pumping, showing
absorption by the F =2 and 3 excited states. (b) With optical
pumping, showing enhanced F =3 absorption.

aligned with the signal beam, and characterized by
measuring its peak transmission and finesse while scan-
ning its length with the PZT.

In an experimental run the laser intensity was modulat-
ed as nearly as possible to 100% depth of modulation at
50—100 Hz. This rate is at least five orders of magnitude
slower than the atomic and cavity decay rates, ensuring
that our measurements of transmitted power as a func-
tion of input power accurately reflect the true steady-
state characteristics.”® Figure 5 shows (a)—(c) the
transmission-input characteristics of the empty (atomic
beams blocked) and filled cavities for three values of the
atomic density; (d) a schematic of (c) showing the normal-
ized intensity coordinates of the switching points and the
sense in which the hysteresis cycle is traversed; and (e)
the input and transmitted powers as functions of time un-
der conditions of bistability. In our bistability experi-
ments the laser was tuned near atomic resonance by max-
imizing the optical pumping fluorescence; this technique
was of low sensitivity, however, owing to large power
broadening. At higher atomic densities, maximizing the
monitor absorption permitted greater precision in tuning
the laser to atomic resonance. (Recall that the three
beams—signal, monitor, and optical pumping—were
aligned to be perpendicular to the atomic beams to within
+0.5 MHz.) The cavity could be tuned to resonance by
maximizing the transmitted power high on the upper
branch. Our operational definition of absorptive bistabil-
ity, and so atomic resonance, was the absence of depen-
dence of the switching points on the sign of the cavity de-
tuning. Optimization of the laser frequency to meet this
criterion agreed with the separately observed optical
pumping and monitor signals to within =1 MHz. The
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cavity transmission versus input characteristic, the signal
fluorescence versus input characteristic, the pumping
fluorescence signal, the monitor absorption, and the oven
temperature were continuously recorded as the oven tem-
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FIG. 4. Calibration relations giving (a) optical pumping
fluorescence intensity I, and (b) monitor absorption ame,! as
functions of signal absorption ag,l.
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perature (hence atomic beam density) was slowly raised.
The detectors used for the input and transmitted signal
beam were calibrated to a Natl. Bur. Stand. traceable
power meter at several times, both during and after an
experimental run.

From these data our primary result is the evolution of
the switching points of the hysteresis cycle as the signal
absorption, and thus the cooperativity parameter, is in-

2ms

6289

creased. The pumping fluorescence (,,) and the monitor
absorption (a,,,,/) measured during a run give us the sig-
nal absorption (ay,l) directly for low intracavity absorp-
tion, and by extrapolating the calibration curves of Fig. 4
we obtain the signal absorption at high optical density.
The detector calibrations and the record of the hysteresis
cycle as in Fig. 5 give us the transmitted power versus the
input power, and by using the measured cavity properties

TIME

FIG. 5. Transmitted power vs input power for the cavity without (left trace) and with the atomic medium, illustrating the evolu-
tion of hysteresis with increasing atomic density: (a) near threshold (C=10); (b) just above threshold (C ~14); (c) farther above
threshold (C =~42). The horizontal separation between the empty-cavity trace and the upper branch of the filled-cavity trace provides
a measure of the value of C. (d) A sketch of the situation in (c), with the switching values of the normalized intensities labeled. (e)
Time dependence of input (upper trace) and transmitted powers when the hysteresis shown in (c) is present.
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these can be converted to normalized variables for com-
parison with theory as described below.

III. THEORY

A. Basic model

The basic model for optical bistability with two-state
atoms makes a number of assumptions, not all of which
can be realized experimentally. This model is well known
and will only be summarized here; consideration of the
experimental fulfillment of the assumptions will be the
subject of Secs. III B and III C.

In the ideal case, which is often referred to as the stan-
dard model,’ the two atomic states are connected by a di-
pole transition and the absorption resonance is homo-
geneously broadened. The atoms interact with a single
plane-wave longitudinal mode of an optical ring resona-
tor (cavity) consisting of four mirrors (see, e.g., Fig. 1 of
Ref. 5). Two of these mirrors are perfect reflectors; the
other two, the entrance and exit mirrors, are partially
transmitting and have identical reflectivities R, transmis-
sivities 7T, and no other losses (R +7 =1). The atomic
density and the mirror transmissivity are taken to be
sufficiently low that the amplitude of the field is not
changed appreciably in one round trip; thus the uniform-
field limit applies.® The stationary solution in the stan-
dard model is expressed by the following state equation
relating the input intensity and transmitted intensity:

2 2
y=x| [1+—25 o— 24 (1)
1+A2+X

1+A%2+X

In Eq. (1), Y is the input intensity in units of the satura-
tion intensity, normalized so that it represents the intra-
cavity intensity in the absence of the atomic medium
(empty cavity). Similarly, X is the transmitted intensity
in units of the saturation intensity, normalized to
represent the intracavity intensity with the atomic medi-
um present (filled cavity):

I;
Y= ,
T ()
It
X= .
LT (3)

Here I; and I, are, respectively, the input and transmitted
intensities, I is the saturation intensity, and T is the mir-
ror transmissivity. The cavity and atomic detunings are
given by 6 and A, respectively:

DT W

o0=——, (4)
K

Wy W

Y1

In Egs. (4) and (5), o., oy, and @, are the frequencies of
the cavity resonance, input field, and atomic resonance,
respectively. The half-width of the cavity resonance, or
cavity field loss rate, is given by k, and the atomic reso-
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nance half-width or transverse relaxation rate is given by
v.. The atomic cooperativity parameter C is equal to
one-half the ratio of the round-trip atomic absorption
loss to the round-trip cavity (mirror transmissivity) loss:

ool
C ar’ (6)
where / is the length of the medium and « is the absorp-
tion coefficient.

The basic model treated in this subsection is appropri-
ate whenever the transition between the two states is
homogeneously broadened and has a Lorentzian line
shape. However, later in the paper we will want to em-
phasize the distinction between radiative and other types
of homogeneous broadening. Therefore, we will under-
stand @, to be the line-center, small-signal, absorption
coefficient for intensity loss for a radiatively broadened,
stationary collection of two-state atoms, and I; to be the
corresponding saturation intensity. For a two-state atom,
the absorption coefficient and the saturation intensity
may be written in terms of w,, ¥, the atomic number
density p, and either the resonant absorption cross sec-
tion ¢! or the dipole moment and the longitudinal relax-
ation rate.’ In the special case of a radiatively broadened
transition, the longitudinal relaxation rate y satisfies

_ 1
i=2Y=—, (7)
Tep
where 7, is the spontaneous lifetime of the upper state,
and we may write

ay=op , (8)
and
#i
[ =212V )
o

where, for atomic dipoles aligned relative to the driving
field,
2 2
o= = %"— , (10)
(o T
A being the wavelength of resonant radiation. Even
though we will be dealing with nonstationary atoms later
in the paper, we will continue to define Y, X, and C in
terms of the invariant quantities I; and «,.

The plane-wave approximation of the standard model
is inadequate when the cavity has spherical mirrors as in
Fig. 2. In such a case the homogeneously broadened
two-state atoms are assumed to interact with a single
transverse mode of the cavity. This mode is taken to be
the fundamental TEMy, Gaussian transverse mode?® ™2
and the cavity is considered to be ideal®® in the sense that
the two mirrors are identical, having transmissivities T,
reflectivities R, and no absorption or scattering losses, so
that T+ R =1 as before. Again, low atomic density and
high cavity finesse will allow application of the uniform-
field limit. In order to be able to neglect the longitudinal
variation of the cavity-mode diameter, the atoms are as-
sumed to be distributed near the mode waist, within a
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distance short compared to the Rayleigh length.3? The
state equation now becomes

Y=X[(14+2Cx)?*+(6—2CAx)*], (11)
where the ‘“‘susceptibility” Y takes, in a ring cavity, the

functional form

.
Xr=5%

2X
1+A?

1+ , (12)

and in a standing-wave cavity the form

3

=—=In L
Xsw X

1 8X
2 2

3(1+A?)

172
} . (13)

Now Y and X may be written in terms of the input power
P; and transmitted power P, as

P
:~f‘2_ , (14)
Twol, T
P
=—f—‘;‘— , (15)
Twol, T

where w is the 1/e field radius at the mode waist and f;
takes on different values for the two types of cavities:
f1=1 (ring) or f{=3 (standing wave). The form of the
cooperativity parameter C now depends on the particular
cavity configuration:

ol

a
szo‘i*f, (16)

where f is the ratio of the number of passes through the
medium to the number of (identical) reflections (R < 1) in
a round trip; f,=+ for the single-pass ring [Fig. 2(a)],
and f,=1 for the standing-wave cavity [Fig. 2(b)] or the
four-pass ring [Fig. 2(c)]. The cavity and atomic detun-
ings are given by Egs. (4) and (5), respectively, as in the
plane-wave case. The susceptibilities y given in Egs. (12)
and (13) are found by integrating over the Gaussian radi-
al field distribution in the ring-cavity case and over both
the Gaussian radial and standing-wave longitudinal field
distributions in the standing-wave-cavity case; this is
justified both experimentally?! and theoretically.** The
results are given with the normalization of Drummond?
rather than that of Lugiato and Milani*? for the sake of
consistency with our earlier work.!” In Ref. 29, Y and X
are defined in terms of the radially averaged intensity
(that given by P/mwj), whereas in Ref. 32 they are
defined in terms of the peak of the radial intensity distri-
bution, thus differing by a factor of 2 from Ref. 29. In
the ideal cavity assumed here, the absence of absorption
or scatter loss in the mirrors implies a peak empty cavity
transmission of unity; therefore, 1/7T represents the intra-
cavity enhancement of incident power in Eq. (14) and re-
lates the intracavity power to the transmitted power in
Eq. (15). Our values of f, given above then lead to a
unified limit for the ring and standing-wave cases in the
dispersive limit.”> The ideal-cavity field loss rate « is re-
lated to the mirror transmissivity 7" through
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cT
K=oT (17
where c is the speed of light and L the mirror separation.
Inhomogeneous broadening is included by specifying
the distribution of atomic resonance frequencies and in-
tegrating the state equation (11) over this distribution.
This atomic resonance distribution is assumed to be sym-
metric about its center frequency ,o. The corresponding
distribution of atomic detunings is specified by the func-
tion g(A—A,), symmetric about Ay, with
Ap=—2e0 0 (18)
Y1

The state equation is then written as

Y=X

[1+chﬁ°° Y(X,A)g(A—Ag)dA ]2

(19)

+[o—2c [ axxga—agda |’

This completes the summary of the basic model for op-
tical bistability with two-state atoms. Further discussion
will be limited to the absorptive limit, that of zero cavity
detuning 6 and zero central atomic detuning A,. In this
limit the state equation simplifies to

y=x [1+2¢ [* y(x,a)g(80da | . 20)

B. Refinements of basic model

1. Cavity properties

In order to compare theory to experimental results, the
basic model given above must be modified somewhat to
provide an adequate description of those aspects of an ex-
periment that are necessarily less than ideal. The first of
these is the optical resonator; a real cavity’s nonideal
properties may have a pronounced effect. All high-
reflectivity mirror coatings have some loss due to absorp-
tion and scatter (R +7 < 1), so the transmissivities of the
two cavity mirrors may not be equal and the peak cavity
transmission will certainly be less than unity. This has a
direct effect on the definitions of Y and X; letting T'; and
T, represent the transmissivities of the front (entrance,
M1) and rear (exit, M2) cavity mirrors, respectively, and
T, the peak transmission of the empty cavity, by follow-
ing a procedure similar to that in Ref. 16, we find in place
of Egs. (14) and (15),

P, T
Y:_fli'0 , 1)
Ww%)IsT2
1Tw%IsT2

In Egs. (21) and (22), f, takes on the same values as in
the ideal-cavity case, namely f,=1 (ring) and f;=3
(standing wave). The intracavity power enhancement is
now given by T, /T,, and it is the transmissivity of the
exit mirror (T,) that relates the transmitted power to the
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intracavity power. There is also an effect on the
definition of the cooperativity C. To understand this,
first consider the cavity finesse F, which is defined as the
ratio of the free spectral range (FSR) to the full-width at
half maximum of the cavity resonance (FWHM). As-
sume that F is large enough that the Airy formula for the
cavity transmission function may be approximated near
resonance by a Lorentzian. The FSR (in Hertz) is the fre-
quency separation of adjacent longitudinal modes, or the
inverse of the round-trip time 7gy. The FWHM (in
Hertz) is 2k /2, and so the finesse may be written in this
small-loss limit as

172

T
2 , 23)

T,

o w
F= = =qr
KTgr 1—7rgrr

where rgr =R R, for the ring cavity [Figs. 2(a) and 2(c)]
and rgr=(R;R,)!"? for the standing-wave cavity [Fig.
2(b)], R; and R, being the reflectivities of the front and
rear mirrors, respectively. Because of the absorption and
scatter losses at the cavity mirrors, the cavity loss cannot
be expressed simply in terms of mirror transmissivity
alone, as implied in Egs. (16) and (17). Equation (23)
gives four possible measures of cavity loss, where the
operational definition of F is the FSR to FWHM ratio.
The first and last of these are the most easily accessible in
our experiments, and, therefore, we write the cooperativi-
ty either as

. aolF
c=f, Py (24)
o
or as
172
c—p, | _To (25)
22 |1 T, ’

where f, differs from f, owing to the two possible forms
of rgr; f, =1+ for the ring cavity [Fig. 2(a)], f, =1 for the
standing-wave cavity [Fig. 2(b)], and f, =2 for the four-
pass ring [Fig. 2(c)].

Another aspect of a nonideal cavity is that it may
suffer a significant broadening of its transmission reso-
nance due to imperfect constructive interference, a pro-
cess which we will refer to as “dephasing.” Spherical
aberration, the relative displacement of the multiple
reflections (“walkoff”’) of a beam of finite cross section in-
cident non-normally on a multilayer reflective coating,
and instability of the confocal ring resonator may all con-
tribute to this effect. The result of this dephasing is that
the cavity may no longer be described in terms of a single
loss parameter.’® Therefore, measurements of F and T,
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give different information and the equivalence expressed
in Eq. (23) does not hold. We have shown?? that the state
equation (11) is no longer valid in the case of extreme de-
phasing, but that for less severe dephasing an adequate
approximation is simply to use Eq. (11) with C given in
terms of T, as in Eq. (25), rather than C in terms of F
[Eq. (24)]. The bistability state equation that relates Y
and X may be written in terms of the ratio of empty cavi-
ty transmission (7,) to filled cavity transmission. Be-
cause of this and because absorptive bistability implies
resonance of the cavity, the cavity loss is better expressed
using a measurement made on resonance [Eq. (25)] than
one which involves detuning [Eq. (24)]. Minor dephasing
was a consideration for our ring cavities, but was negligi-
ble for the standing-wave ones. However, it did preclude
the use of ring cavities offset from the standing-wave
orientation by much more than the 1 mm used in the
single-pass ring, because the dephasing contributions de-
scribed above increase with offset. Two problems enter
with the description of Y, X, and C in terms of T, and
T,. The first is that it is not possible to measure 7', dur-
ing the experiment; the second is that the efficiency with
which the signal beam is mode matched to the TEM,
mode of the cavity can affect the measurement of 7T,. In
the nonconfocal cavities, the lack of frequency degenera-
cy of the different transverse modes means that the mea-
sured peak transmission of the cavity will be less than the
true T, if the mode matching is imperfect. Thus T, was
found by multiplying the measured transmission in each
non-mode-degenerate (nonconfocal) cavity by the inverse
of the measured mode-matching efficiency. This
efficiency averaged 0.94 (in power).?! The peak transmis--
sion T, remained constant throughout the experiment, so
T, was assumed constant, also, and was, furthermore,
measured before and after each experiment. Some prop-
erties of several of our cavities are given in Table I.

The single-longitudinal-mode assumption of the theory
is valid because the free spectral ranges of our cavities are
much larger than any detuning or Rabi frequency en-
countered in these experiments. The single-transverse-
mode assumption is found to be supported by experi-
ment,?! not only in the nonconfocal-cavity case, but also
for the confocal cavity. The transverse modes are well
separated in frequency in the nonconfocal cavity, so that
a single-mode interaction is perhaps to be expected. In
the confocal cavity, however, transverse modes are fre-
quency degenerate, yet rapid diffractive mixing together
with the mode-matched external excitation prevents the
growth of appreciable excitation in modes other than the
fundamental mode, as noted in Refs. 21 and 23.

TABLE 1. Cavity properties.

Type T, T, T, F
Ring 1 (3.84+0.6) X 1073 (1.840.1) X 1073 (4.8+0.3)x107* 188+10
Ring 2 (3.0£0.2)X 1073 (1.8+0.1)x 1073 (4.8+0.3)x107* 144410
Ring 3 0.066+0.005 (3.2+0.1)X107° (3.0+0.1)x 1073 166+10
Ring 4 0.088+0.007 (3.0+0.1) X 1073 (3.0+0.1)x 1073 300+15
Standing wave 0.32+0.01 (3.0+0.1)X 1073 (3.0£0.1)X 1073 60030
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2. Transit broadening

Another unavoidably nonideal aspect of the experi-
ment is that the atoms spend only a finite time interacting
with the field as they transit through the cavity mode.
This finite transit time results in a broadening of the ab-
sorption resonance from its radiatively broadened (natu-
ral) width of 10 MHz to slightly more than 12 MHz, ac-
counting for most of the extra broadening shown in Fig.
3. Because the observed line shape is broadened very
nearly as found by a treatment that assumes a monoener-
getic atomic beam (with all atoms having the most prob-
able velocity of 773 m/s) interacting with a Gaussian dis-
tribution of incident field frequencies (given by the
Doppler shifts from the spread in transverse wave vectors
in the beam waist), such an approach, treating transit
broadening as a homogeneous process, was attempted
first.!” In this method, the homogeneously broadened
line will have a Voigt line shape. We find the reduction
factor for the resonant absorption coefficient for a Voigt
profile of the observed linewidth (relative to the natural
width), and call this factor 3;,. Then, to apply the stan-
dard state equation (11), we approximate the line shape
by a Lorentzian, effectively replacing the transverse re-
laxation rate ¥, by y{=v,/B;. This means that the satu-
ration intensity I,=6.4 mW/cm? gets replaced by

=1 /31 7.3 mW/cm?, and the absorption coefficient
ao by ay=Bjap=ag,- Then Eq. (11) applies with C re-
placed by C'=B,C, X by X'=f3,X,and Y by Y'=f,Y. As
we will explain, this works quite well if interpreted
correctly.

However, as one of us pointed out,>® because the in-
teraction between the atoms and the field is a coherent
transient one, the absorption exhibits a qualitatively
different effective resonant saturation behavior from that
of the simple modification y,—y|. This affects our re-
sults at low X. For this reason, the effect of transit
broadening in our experiment was numerically calculated
in some detail. The results of Ref. 35 were extended so
that our model now includes not only motion of the
atoms through a Gaussian field variation along the path
of an atom, but also the velocity distribution of the atoms
and the Gaussian variation transverse to the atomic
beams (the mode waist radius is wy=69 um and the
atomic beams are at least 0.5 mm tall, so atoms interact
with the mode out to at least 3.5w, above and below the
mode axis).

This calculation is carried out by finding the uniform-
field limit of the effective absorption coefficient a(ry,z),
which gives the rate of decrease of the total optical power
P with field propagation in the z direction through the
atomic medium,

dP(z) _
dz

—alte,z)P(z) , (26)

where 7, is the most probable transit time in units of
1/v, and P(z) is the integral of intensity over the plane
perpendlcular to the direction of propagation;

z)—bffﬂ x,y,z)dx dy, where b is a constant and
Q(x,y,z) is the Rabi frequency in units of y,. For an
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assumed Gaussian field variation, Q(x,y,z)
=Q(z)exp[ —(x2+y?)], and with x the coordinate in the
direction of atomic motion and y the transverse (vertical)
coordinate, both scaled in units of w,, the time depen-
dence of the field sensed by an atom of velocity u transit-
ing the cavity mode at a position z is given by

2,2 1'2
Qst,p,2)=Qg(z)e " e % 27)
where ¢ is units of 1/y,, 7, is given by

;o= Y 1Wo
0 \/Eup ’

(28)

and s is the atomic velocity in units of the most probable
velocity u,,, that is, s=u /u,. The atomic response is cal-
culated by integrating the usual optical Bloch equa-
tions,?® which, at resonance and in the rotating-wave ap-
proximation, take the form

%v (t,y,z,5)=—wvl(t,y,z,5) +Q(st,p,z)w(t,y,zs) , (29)

w(t,p,z,8)=—y[w(ty,zs)+1]—Q(st,y,z)v (t,p,2,5) ,

at
(30)

where v is proportional to the in-quadrature component
of the atomic polarization, w is proportional to the popu-
lation difference, and ¥y =y, /y,. To find the effective ab-
sorption coefficient a(7y,z), we compare Eq. (26) with the
wave equation for the field in the slowly varying ampli-
tude approximation, which in our notation may be writ-
ten as>®

d
iz Q(st,y,z)
Suppose we have a monoenergetic atomic beam, so
that all atoms have a transit time of 7, and a relative ve-
locity s =1." Further, suppose that the field is uniform in
the transverse direction, hence independent of y. Then
from Egs. (26) and (31) applied to power per unit trans-
verse length (along y) we find that

—v(t,y,z,s) . (31)

Jazw(s,2)dt
o= fﬂz(t,z)dt 32
or
Qo © -
a(1g,z)= \/—m'-?)mf ! /2Tzv(t z)dt . (33)
0 0

In the uniform-field limit, the absorption per pass goes to
zero; the effect of this is to eliminate the z dependence in
Q, and v in Eq. (33). The effective absorption coefficient
is then given in the uniform-field limit by

—t2/272

alty)= v(t)dt . (34)

\/777'000 f

Integrating this relation and Eqgs. (29) and (30) numerical-
ly we find that the ratio a(7y)/a(« ), where a( ) [ap-
proximated by setting 7,=100 in Eq. (34] is the
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stationary-atom limit of a(7,), reproduces the results of
Ref. 35 for the cases of 7y=4 and 1 in the case of interest
here, which is that of natural (radiative) broadening
(y=2).

To include the Gaussian transverse variation of the
field along the direction perpendicular to the atomic
beams, the y dependence is included and Q(st,y,z) is as
given in Eq. (27). Now with y =2, we have Q=4X when
X is defined as in Eq. (22). We also wish to take into ac-
count the normalized velocity distribution function for
atoms interacting with the cavity mode, which is

pls )~—‘-/4—7T~52e -7
where s is the velocity in units of the most probable ve-
locity, s =u /u,, with u, =(2kT /m )1/2; k is Boltzmann’s
constant, T is the temperature of the source oven, and m
is the mass of the sodium atom. For a typical experimen-
tal oven temperature of 7=823 K, we have u, =773
m/s; because of the weak dependence of u, on tempera-
ture, and because the temperature is varied by at most

20% over the course of an experiment, u, is taken to be
J

(35)

a(T0)=—

Equation (38), together with Egs. (29) and (30), is in-
tegrated numerically and the effect of transit broadening
on absorption is shown in Fig. 6. To see the effect of
transit broadening relative to natural broadening for sta-
tionary atoms, we plot the ratio a(7y)/a( « ) versus X for
three values of 7: (a) 4, (b) 1.97, and (c) 1 (curves i). This
effective saturation behavior is compared with what
would be expected from a homogeneous approximation,
which is calculated as follows. Radiatively broadened ab-
sorption (stationary atoms) in a Gaussian beam saturates
as
@

a(o) 2Xln(1+2X). (39)
In the homogeneous transit broadening approximation
(finite 7y), both ay and X are multiplied by a factor f3,,
which is less than unity, to give a; and X'. In the
stationary-atom limit, as 7o— o, 3;—1; B; is found as
described at the beginning of this discussion of transit
broadening. The values of 3, found for homogeneous
broadening corresponding to the three 7, values in Fig. 6
(4, 1.97, and 1) are 0.96, 0.88, and 0.72, respectively. If
the homogeneous approximation is good for low intensi-
ties, the X —0 limit of a(7y)/a( ) calculated from Eq.
(38) should give the same values. It gives, respectively,
0.961, 0.882, and 0.736; so for our experimental 7, (1.97)
we will call this limit 8, also. (For more severe transit
broadening—smaller 7,—the Lorentzian fit to the Voigt
line shape in the homogeneous approximation gets
worse.) This homogeneous absorption then saturates as

T\/ZX f f fms e=ste e ’v(t,y,8)ds dy dt .

ROSENBERGER, OROZCO, KIMBLE, AND DRUMMOND 43

constant here. For a sodium atom of speed u =u,, with
Y. /2mr=5X10% s}, and for w,=69 um, Eq. (28) gives
To=1.97. Note that the expression for p (s) given in Eq.
(35) is not that for an effusive beam. This is because the
probability for an atom in the beam to be found within
the cavity mode is inversely proportional to the atomic
velocity. As a result, the distribution of speeds is the
same for interacting atoms as it is for atoms in the oven.?’

Now call df the power absorbed by atoms with speed s
as the field propagates a distance dz. Then from Eq. (31)
we find, using Eq. (28),

df aonO o —s 12/21'2 _p2
P f [T g
v(t,y,z,s)dy dt . (36)
Then
dp wdf
£l = =L 37
- fo dzp(s)ds , (37)

and we find, on comparison with Eq. (26) and taking the
uniform-field limit, that

(38)
[
ag , Qo
@y (1) =5 FIn(142X") = - In(1+2X ) (40)
The ratio of these two cases, Eqgs. (39) and (40),
1.0 T T T T T T ]
A - - ]
s ]
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FIG. 6. Effect of transit broadening on absorption. The ratio
of absorption coefficients for moving and stationary atoms,
a(rg)/al ), is plotted as a function of normalized intensity for
three values of 74: (a) 4.00, (b) 1.97, (c) 1.00. The coherent tran-
sient results calculated by integrating Eq. (38) together with the
Bloch equations (29) and (30) (curves i), are compared to the
homogeneous approximation results from Eq. (41) (curves ii).
Case (b) corresponds to the experimental value of 7,. Here 7 is
the most probable transit time in units of 1/y,.
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ay(ry)  In(1+2XB;)
alw)  In(14+2X) °’

is then also plotted in Fig. 6 for comparison (curves ii);
one sees that the homogeneous approximation, Eq. (41),
is not very good for the small values of X shown there.
For very large values of X, both solutions (curves i and ii)
will approach 1.0 and the homogeneous approximation
will be more nearly valid. It should also be emphasized
that the error incurred in the absorption coefficient by
making the homogeneous approximation is just the
difference between curve i and curve ii for any value of 7.
For our experimental value of 7,=1.97, case (b) in Fig. 6,
this is a maximum of approximately 5% near X =1.

Discussion of the full effect of transit broadening on
the evolution of the switching points with increasing C
will be deferred to Sec. III C.

(41)

3. Residual Doppler broadening

The imperfect collimation of our atomic beams pro-
duces a distribution in velocity along the cavity axis, re-
sulting in some residual Doppler broadening. To find the
form of the distribution of atomic detunings, we assume
that the central detuning is zero, as it will be for proper
alignment of the optical and atomic beams. Thus the an-
gular distribution of the collimated atomic beam is taken
to be triangular,’’

1 gl
Plp)={ %0 Po 0
0, lel>¢ 42)

where @ measures the angle from perpendicular to the
cavity axis. For our collimation geometry, ¢,=1.85
mrad. Using the velocity distribution for the interacting
atoms given in Eq. (35), and making the small angle ap-
proximation sing=¢, the distribution of axial velocities
for an atomic ray at angle ¢ is

(s )=—4 Sa ens"z/‘p2
p(p a ‘/7_7 |(p|3 ’

(43)

where s, is the axial velocity in units of u,: s, =u,/u,.
Then the atomic detuning A is given by A=wgu,s, /cv,,
and the distribution of detunings is

g(A)=f_"’%P((p)pq,(A)d<p
i |

5 — Vq_r*%—erfc

A

)

(44)

where 8 =wgu,py/cy, is a measure of the width of the
distribution and erfc denotes the complementary error
function.>® This distribution has the effect of broadening
the absorption of a homogeneous Lorentzian of FWHM
= 12.0 MHz to a width (FWHM) of 12.8 MHz. The ap-
proximate way in which this distribution is used will be
discussed in Sec. III C.
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4. Finite absorption

Our apparatus is capable of producing atomic beams
dense enough that the measured single-pass absorption
for the signal beam intensity is as large as ag,/ =3, so the
validity of the uniform-field assumption is questionable.
To estimate the effect of making this assumption, we
derive and solve an ‘“‘exact” state equation for the case of
finite absorption in the (single-pass) Gaussian-mode ring
cavity with homogeneously broadened atoms. We follow
the method first used by Bonifacio and Lugiato® to get
an exact solution for absorptive bistability in a plane-
wave ring cavity, and begin with the mode-amplitude
equation

dp
d§

Equation (45) is the large-Fresnel-number limit of Eq.
(30.1) of Lugiato and Milani*? (in our notation) where p is
the mode amplitude, £ measures relative displacement
along the atomic medium, and « is the homogeneous in-
tensity absorption coefficient. Integrating over £ from O
to 1 we find

=—lalp : (45)

1
—?ln(l-l-pz)
o

—al= [T 2290 _ji(1 1) —ti(14p3),  @6)

Po In(1+p°)
where li(x)= fdx[ln(x)]_l,” po=p(0) (mode amplitude
at the input end of the medium), and p,=p(!) (at the out-
put end). In our notation p7=2X and we may relate p, to
p; by the boundary condition [Eq. (26) of Ref. 32, in our

notation and assuming no broadening of the cavity reso-
nance by dephasing]

T

p0=%(2Y)1/2+ (2x)172 @7

where F is the finesse [Eq. (23)]. From this, we find the
state equation

_F | _ |z
2m?

Y

2
(2X)‘/2+(A—1)”2] ,  (48)

where A must satisfy

li(4)=1li(1+2X)+al . (49)

In the uniform-field limit (¢l —0, alF =a finite constant)
A(al) from Eq. (49) may be expanded in a Taylor series
to find 4 =1+2X+al In(1+2X); substituting into Eq.
(48) and retaining terms up to first order in al reproduces
the homogeneous limit of the absorptive state equation
(20).

We have used the “exact” state equation (48), with
a=agy, from the measured absorption to calculate
switching intensities Y, Y,, X;, and X, [as defined in
Fig. 5(d)]. This calculation shows that, at the largest
values of a;, for which we present data here (correspond-
ing to C =50 in the single-pass ring cavity), Y, Y,, X,
and X, are changed relative to their uniform-field values
by —1%, —3%, +1%, and —4%, respectively. In the
following analysis, we will therefore neglect this correc-
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tion and assume the uniform-field limit, keeping in mind
that the large absorption may be responsible for a slight
reduction of the experimental values of Y, and X, rela-
tive to the uniform-field values at large values of C. The
conclusion that we may reach from these exact results is
that the uniform-field limit is appropriate on the upper
branch even for very large values of ag,l (ag,/==3). On
the lower branch, however, the effect of finite absorption
is significant. For example, the value of X at the point on
the lower branch from which the system switches up to
the upper branch (for C =50 in the single-pass ring) is re-
duced by 44% in the case of finite absorption as com-
pared to the uniform-field result. Our conclusion and the
results of finite absorption on the switching points are
straightforward to understand qualitatively. On the
lower branch the intracavity medium behaves as a nearly
linear absorber, causing an appreciable variation in the
intracavity field amplitude along the length of the medi-
um and indeed at different points in the cavity. Hence
the value of the intracavity field at the point of switching
from the lower branch to the upper can be a function of
position within the cavity. Fortunately, the value of the
incident field at the switching point on the lower branch
is relatively insensitive to the finite absorption since satu-
ration and switching proceed from the front of the medi-
um (near the input mirror). On the other hand, along the
upper branch, where X is generally large, the absorption
of the medium is saturated, and the uniform-field approx-
imation is quite adequate.** Unfortunately, X on the
lower branch was an inaccessible quantity in the setup
that we employed.

C. Extended theory

We now want to incorporate all the considerations dis-
cussed in Sec. III B into a model that will allow us to
make an absolute comparison with our experimental re-
sults. As mentioned above, we will continue to make the
single-mode uniform-field assumption. This should apply
at all but the highest values of C and even then have only
a small effect on the switching-point values Y, and X,.
The residual Doppler broadening will be treated in an ap-

|

16 © © © T/2 3 2
=m0 cos(kz)s’e  *e
Xsw 77'5/27'0(8X/3)1/2 fﬁw fﬁw fO fO

where we still have made the uniform-field approxima-
tion, but where now Egs. (29) and (30) for v and w are in-
tegrated in time for each of a large number of divisions of
the interval 0 < kz <7 /2. The numerical model including
transit broadening was carefully checked for both ring
and standing-wave cavities by taking the large-r, limit
(1o=100 was used) and by verifying that the predictions
for the switching points of Y and X as functions of C
agreed with the results using the expressions in Egs. (12)
and (13) for y together with the state equation (20). A
further check was that the small-X limit of a( ) is just
ay, and thus that the value of y found in Egs. (51) or (52)
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proximate way. We assume the effect of Doppler
broadening to be the same for the actual situation of tran-
sit broadening as for the homogeneous transit broadening
approximation. The resulting changes in the switching-
point values of Y and X are then assumed to apply in all
cases.

For the ring cavity with transit broadening only, the
switching points were calculated by using the result that
the ratio of the calculated absorption coefficient [Eq. (38)]
to the radiative absorption coefficient, a(ry)/a,, is just
the susceptibility y that goes into the state equation (20).
To understand this result, recall that the mode-amplitude
equation, of which Eq. (45) is an example, is just a special
case of the general slowly varying amplitude approxima-
tion of the wave equation that may be written, in our no-
tation, as

d P

- Dl2) == X (XQ(2) (50)

where the integrations over transverse profile and stand-
ing waves (if necessary) have been performed and are in-
cluded in y.* Comparison of Egs. (50) and (26) now
shows that, for the ring cavity in the uniform-field limit,
X, is precisely the ratio a(7,)/ay:

4 w e pe 2 -5
Xr:“mfﬂo f~w fO sle e !

Xv(t,y,s)ds dy dt .
(51)

2
/278 2
Oe y

For the standing-wave cavity, the normalized Rabi fre-
quency becomes

Q=2Qexp(—s2t2/2713)exp( —y?)cos(kz)

and the power absorbed is found by integrating over the
length (along z) of the atomic medium (length / >>A). In
order to retain the correct normalization in the dispersive
limit, we have Q3=4X /3; thus for the susceptibility Xsw
in the standing-wave cavity we find

752 2
2y (1,9,5,2)d (kz)ds dy dt (52)

[

reduces to f3; in the limit of small X.

Before presenting our main results, we will compare
the effects of the various approximations on the theoreti-
cal switching-point values. The disparity in the results of
different methods will appear to be more or less
significant, depending on whether the switching points
are described in actual measured variables or in normal-
ized variables, respectively. We choose to compare the
approximations in terms of measurable predictions, as
the more relevant criterion. In Fig. 7 for the standing-
wave cavity, the points plotted are measured values of the
input power (P;) at the switching points versus measured
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absorption ag,l. In this same figure we have then plotted
theoretical curves for the switching points, as derived
from Eq. (20) under the following three treatments: (i)
the homogeneous approximation neglecting Doppler
broadening, in which the susceptibility Ygw to be used in
Eq. (20) is given by Eq. (13); (ii) transit broadening
(neglecting Doppler broadening) as treated by the com-
plete coherent analysis leading to Eq. (52) for the suscep-
tibility; and (iii) the complete transit broadening analysis
as in (ii) but corrected for residual Doppler broadening by
an approximate method to be described below.

The theories of optical bistability are formulated in
terms of the normalized variables Y, X, and C, so these
must be ‘“denormalized” to obtain actual powers and ab-
sorption coefficients for the comparison given in Fig. 7.
This is done using the measured properties of the
standing-wave cavity listed in Table I and the relations of
Egs. (21), (22), and (25). In this procedure, one must real-
ize that C is being defined in terms of the natural line-
center absorption. Because we measure a,/, not agyl, Eq.
(25) becomes

sig

20

Pi(nW)

agg

FIG. 7. Input switching powers in the standing-wave cavity
of Table I as functions of measured absorption. The points are
experimental data; the curves are determined by Eq. (20).
Curves (i) represent the homogeneous theory using x from Eq.
(13); curves (ii) represent the transient theory, with y from Eq.
(52); and curves (iii) represent the transient theory including a
4% increase in the theoretical value of P; due to residual
Doppler broadening. Details of the conversion between mea-
sured and normalized variables are given in the text.
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where B, (=0.882) gives the reduction in absorption due

to transit broadening alone, and f3, (=0.960) gives the ab-
sorption correction found for Doppler broadening as dis-
cussed below. For the standing-wave cavity, f,=1. The
appropriate normalized variables to be used in the state
equation (20) are found as follows. For case (i), the
homogeneous approximation to transit broadening, we
assume that only homogeneous broadening is present;
thus we replace 3, by 1.0 and use Eq. (53) to calculate C,
(=C"=B,C). Then Y, (=Y’) and X, (=X') are calcu-
lated from Egs. (21) and (22) in which the radiative-
broadening saturation intensity I, (=6.4 mW/cm?) is re-
placed by its value assuming that transit broadening can
be treated as homogeneous broadening, I, =1, /3, (=7.3
mW/cm?). For case (ii), transit broadening without
Doppler broadening, C, is found using Eq. (53) with
B,=0.882, B, replaced by 1.0, and Y, (=7) and X, (=X)
obtained from Egs. (21) and (22) with I, taking its natural
value of 6.4 mW/cm?.

Our method for treating combined transit and Doppler
broadening is as follows. We note that when transit
broadening is treated as a homogeneous process with
width y|=v,/B,, it is easily possible to include Doppler
broadening in the usual way. With this approximation,
and the distribution of detunings in Eq. (44), we find that
the resonant absorption coefficient is reduced to 96% of
the value it would have for pure homogeneous broaden-
ing with | as the decay rate. In addition, using the state
equation (20), the computed switching values of Y and X
are all 4% larger than the values they would have if the
reduced absorption were due to a further increase in the
Lorentzian homogeneous broadening, which would
reduce C by 4%. These changes in Y and X switching
values apply nearly uniformly over a range in C which is
greater than that for which we have experimental data.

The effect of the Doppler broadening is therefore
different from that of purely homogeneous broadening.
However, because the difference is both relatively small
and remarkably uniform, we assume that including
Doppler broadening will have the same effect on the actu-
al transit broadening as it does in the homogeneous ap-
proximation. That is, for case (iii), transit and Doppler
broadening, C,, is found from Eq. (53) with ,=0.882
and $3,=0.960 and is therefore just C; Y,, and X, are
again found as in (ii) from Egs. (21) and (22) with I,=6.4
mW/cm? and are therefore just ¥ and X. The switching
values (Y},Y,,X,,X,) found in case (ii) for a given a,/
are then increased by 4% to match the increase that
occurs in the homogeneous transit broadening approxi-
mation with Doppler effects included fully.

The comparison of the three theories is given in Fig. 7.
It can be seen that the more realistic transit broadening
treatment including Doppler effects (iii) provides some-
what better agreement between theory and experiment
than the homogeneous approximation. Over the range
shown in Fig. 7 the difference between the homogeneous
approximation and actual transit broadening is about 9%
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in the upper switching power corresponding to Y,. Not
shown are the data for the switching points in the
transmitted power (P,); in that case, these two theories
disagree by about 12% for the higher switching value
with the same qualitative trend as in Fig. 7. Normaliza-
tion of P; to give Y and P, to give X hides these disagree-
ments, however. When the cases of the homogeneous ap-
proximation and of the actual transit broadening (both in
the absence of Doppler broadening) are compared, the
predicted normalized switching values are in agreement
to within 4%. On the one hand, this insensitivity of nor-
malized results to the precise form of the model indicates
a reasonable range of validity and vigor of the single-
mode theory.”’”3?> However, on the other hand, when
our data are presented in normalized form, this insensi-
tivity tends to mask the absolute agreement between ex-
periment and theory that is evident in Fig. 7.

IV. RESULTS

As we indicated earlier, we have chosen to test the
correspondence between experiment and theory by com-
paring our experimental results for the normalized
switching points (Y,X) with the theoretical values. This
comparison is made over a range of cooperativity C from
threshold (where the output first begins to display hys-
teresis) to values of C that are several times that critical
value. From our measurements Y, X, and C are found
from measured quantities as in Egs. (21), (22), and (53),
where all quantities are measured in absolute terms. The
theory used is that of coherent transit broadening with
Doppler broadening included approximately, as de-
scribed in Sec. ITII. The x to be used in the state equation
(20) is found from a numerical integration of Eq. (51) for
the ring cavity or Eq. (52) for the standing-wave cavity.
Equation (44) gives the distribution of atomic detunings
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to be used in Eq. (20). The approximate method of in-
clusion of Doppler broadening is, stated again explicitly:
for a given C, the switching values of Y and X obtained
from the transit broadening calculation using C,=p,C
are increased by 4%. Ring-cavity results will be present-
ed first, followed by equivalent results for the standing-
wave cavities. We emphasize again that there are no free
parameters; the comparison between experiment and
theory is absolute.

In Fig. 8 we plot the ratio of the input switching
powers Y, /Y, as a function of C. The experimental data
shown come from four different experimental runs, three
using the single-pass ring [Fig. 2(a)] and one using the
four-pass ring [Fig. 2(c)]. These data are insensitive to
systematic errors in the calibration of input intensity, and
therefore provide a direct test of our understanding of C.
The systematic uncertainty in the calibration of C for the
entire set of data is =15%. Contributing to this scale un-
certainty are uncertainties in the measurements of the
cavity properties (T, T;,T,) and in the proportionality
relations between the measured absorption ag,/ and ei-
ther the optical pumping fluorescence intensity I op OF the
monitor absorption a,,,/ (Fig. 4). The error bars indi-
cate the uncertainties in the measurement of the detector
output signal for individual data points. The approxi-
mate agreement with theory indicates that the critical on-
set and growth of the bistable region scale as expected
with C. The apparent offset of the data for the four-pass
ring is probably due to the inherent overestimate in the
assumption that the cooperativity is that of a single pass
multiplied by 4, when two of the passes cross in the medi-
um and give rise to a transverse standing wave.

The normalized input (Y;,Y,) and output (X,X,)
switching intensities, as defined in Fig. 5, are shown as
functions of C in Fig. 9. The data here are from a typical
single-pass ring experiment. The systematic calibration

T T T T " T T T
1.8
1.6 -
Yo |
Y,
1.4
1.2 -
1.0 -
AT WS SN RN T S
o 5

FIG. 8. Ratio of input switching powers as a function of cooperativity parameter C for four ring cavities (see Table I). Ring 1,
solid circles; ring 2, open circles; ring 3, X; ring 4, +. Rings 1-3 are single-pass [Fig. 2(a)]; ring 4 is four-pass [Fig. 2(c)]. The curve
is from the extended theory, Egs. (20) and (51), with Doppler broadening treated approximately.
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FIG. 9. (a) Input (Y, triangles; Y,, diamonds) and (b) output (X, triangles; X,, diamonds) switching intensities (defined in Fig. 5)
as functions of cooperativity C. The points are from a typical experimental run, in this case using ring 1. The curves are from the ex-
tended theory, Egs. (20) and (51), with Doppler broadening treated approximately. The absence of data for values of C between 14
and 18 reflects an uncorrected laser frequency drift that caused measurements in that interval to be made off resonance.

uncertainties are +=10% in C, £12% in Y, and +£20% in
X. The Y and X calibration uncertainties arise from un-
certainties in the cavity properties, in the mode waist size
wy, and in conversion of detector signals to optical
powers. This figure shows that the actual limits of the
bistable region individually evolve as expected with C.
That is, Y,,X, scale nearly linearly with C while Y,,X,
scale approximately quadratically with C far above the
critical onset of bistability. The agreement between ex-
periment and theory is good for the input switching
values [Fig. 9(a)], but not as good for the output switch-
ing values [Fig. 9(b)]. The experimental points are lower
than the theoretical curves in Fig. 9(b), reflecting the
variability encountered in calibrating the output detec-
tion system in early experiments.

We present similar results for the confocal standing-
wave cavity in Figs. 10 and 11. In Fig. 10, the ratio of in-
put switching powers versus C is shown. This figure in-
cludes data from the confocal standing-wave cavity of
Table I and from the nonconfocal cavity described in Ref.
21; it is a combination of Figs. 2(a) and 2(b) of Ref. 21.
Again the systematic calibration uncertainty in C is
+10%, and again the agreement indicates that the region
of bistability grows as expected with increasing C. The C
dependence of the normalized input and output switching
intensities is shown in Figs. 11(a) and 11(b), respectively
[these appeared as Figs. 3(a) and 4(a) of Ref. 21]. Calibra-
tion uncertainties are £10% in Y and £12% in X. We

have previously reported?! an extensive investigation of
the switching points in optical bistability for both confo-
cal and nonconfocal standing-wave cavities. Our work
indicates that the mode degeneracy of the confocal cavity
is not detrimental to the applicability of the single-
transverse-mode theory of absorptive optical bistability.

That the agreement between theory and experiment is
better in the standing-wave case than in the ring case
most likely reflects the evolution of our experimental
technique rather than any underlying physics. For exam-
ple, in contrast to the much earlier results shown in Fig.
9(b), in the case of Fig. 11(b) we can say that the con-
sistently high experimental values of X, relative to the
theoretical curve probably result from the difficulty in
determining X; experimentally owing to the extreme
slope dX /dY of the state equation in the neighborhood of
X,. Furthermore, we have presented elsewhere?? a com--
parison of theory and experiment using a four-pass ring
cavity [Fig. 2(c)], for values of C up to 140. The quality
of the agreement between theory and experiment in Fig. 2
of Ref. 22 (allowing for the larger uncertainty in the scal-
ing of Y in that work) is more comparable to that in Fig.
11 than to that in Fig. 9.

V. DISCUSSION AND CONCLUSIONS

We have presented experimental results for absorptive
optical bistability in a fundamentally simple system con-
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FIG. 10. Ratio of input switching powers as a function of
cooperativity for two standing-wave cavities. The curve is from
the extended theory, Egs. (20) and (52) with approximate
Doppler broadening. Experimental points are from the confo-
cal cavity of Table I (diamonds) and from the nonconfocal cavi-
ty described in Ref. 21 (squares).

sisting of a nearly Doppler-free medium of two-state sodi-
um atoms interacting with a single transverse mode in
both traveling- and standing-wave resonators. These
data have been shown to compare favorably with a ver-
sion of the standard theory which was extended to in-
clude the effects of a nonideal resonator and a small

10000 |-

5000
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amount of transit broadening. The comparison is abso-
lute in the sense that no free parameters are used for
fitting; all relevant experimental parameters are measured
in absolute terms. The improvements over our prelimi-
nary report!’ are both in our experimental techniques
(improved stability of the laser and the optical cavity,
better calibration procedures) and in our theoretical
analysis (better treatment of cavity properties and of
transit broadening).

The error bars in Figs. 8—11 reflect uncertainties in the
reading of signals from the detectors for input power,
transmitted power, optical pumping fluorescence, and
monitor absorption. The overall systematic uncertainties
are derived from uncertainties in the calibration factors
which are determined once for each experiment and are
then used to convert the detector signals into values of Y,
X, and C. These systematic uncertainties also reflect the
consistency (or rather the lack thereof) of the several in-
dependent methods used for determination of each of
these calibration factors. The lower systematic uncer-
tainties for the standing-wave experiments come from
higher precision in measurements of the cavity properties
and of the signal-beam absorption and less discrepancy
between independent measurements of these quantities.
Some of our ring absorption calibration results had to be
corrected for power broadening and for tighter focusing,
as discussed in Sec. II. Our estimate of how well the ab-

- sorptive limit was achieved is expressed as estimated de-

viations of A and 6 from zero: for each we find 0.0+0.1.
Four experimental runs resulted in data that have not

5000 |-

FIG. 11. (a) Input (Y, squares; Y,, diamonds) and (b) output (X, squares; X,, diamonds) switching intensities as functions of
cooperativity for the confocal standing-wave cavity of Table I. The curves are from the extended theory, Egs. (20) and (52) with ap-

proximate Doppler broadening.
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been reported, owing to problems that were clearly un-
derstood in three of the four runs. These difficulties in-
clude the following: errors in detector calibration due to,
for example, movement during the course of the run;
misalignment of the cavity, signal beam, or collimating
apertures, either during a run or between the absorption
calibration and the experiment; and the presence of an
unacceptable amount of background sodium vapor
within the cavity because of leaks in the vacuum system
or poor thermal contact between the cold finger and the
shield around the interferometer assembly. The single ex-
periment for which we do not understand the poor quali-
ty of the data (the experimental Y and X switching values
were about 40% too high, yet the ratios Y,/Y; and
X,/X, were in reasonable agreement with theory) was
presumably also affected by one or more of these
difficulties. Our justification for neglecting the results of
this run is simply the concurrence of the data from many
(ten) other experiments, done under widely varying con-
ditions, in which we were sure that none of these prob-
lems occurred.

The validity of the assumption of a single Gaussian
transverse mode, reflecting large diffractive mixing even
in a confocal cavity in which different transverse modes
are degenerate in frequency, is supported by the good
agreement between experiment and theory. In ref. 21, we
have made a much stronger case for the single-mode
theory by direct comparison of results from two other-
wise nearly identical cavities, one of which is confocal
and the other not. As discussed earlier, the uniform-field
assumption is valid for the data presented here because
ag,l is not too large and because all points plotted for X
are taken from the upper branch, where the intracavity
intensity is large. For measurements on the lower
branch, or for comparison of measurements made on the
upper and lower transmitted beams of the four-pass ring
[Fig. 2(c)], or even for the measurements made on the
upper branch at very large values of ag,l ,2223 the
uniform-field assumption would be inadequate.

Broadening of the transmission resonance occurs in
real optical cavities because of imperfect constructive in-
terference. The existence of this “dephasing” loss, be-
cause it is not too serious in the cases reported here, re-
quired only that the effective cavity loss for calculation of
C be found from the measurement of the peak transmis-
sion rather than the finesse.* This procedure for calculat-
ing C is necessary in the ring cavity but redundant in the
standing-wave cavity; the offset of the cavity axis obvi-
ously contributes to the dephasing. Another property,
peculiar to confocal cavities, that deserves consideration
is the indeterminacy in the position of the mode waist.
The waist need not be at the center of the cavity; the
value of w, given in Sec. III assumed that it was. The
mirrors of a given confocal cavity can satisfy the bound-
ary conditions for a mode with arbitrary waist position
(between the mirrors) and a spot radius w, determined by
that position.*! The maximum of w, occurs for the sym-
metric mode, with the waist at the cavity center.
Nonideal mode matching could have resulted in a longi-
tudinally asymmetric mode, with the waist displaced
closer to one mirror or the other. For slight asymmetry
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(waist still within atomic medium), the effect on switching
intensities would be small (less than 5%). Extreme asym-
metry, however, would result in substantial variation of
the mode cross section over the atomic medium and
might explain our one questionable experimental run.

Other factors to consider in a discussion of our experi-
ment include laser or cavity fluctuations and the two-
state approximation. For the former, there are several
types. Fluctuations in the length of the cavity are
suppressed by acoustically isolating it and by using a very
low-noise power supply to drive the piezoelectric transla-
tor on which one cavity mirror is mounted. Further-
more, the cavity length could be stabilized, as described
earlier, to minimize fluctuations in cavity phase. Bubbles
in the dye jet of the laser produce occasional large fluc-
tuations in frequency, but their duration (several mi-
croseconds) is short enough that they do not affect mea-
surements of the steady-state characteristics. The laser
linewidth of 500 kHz (rms value over a bandwidth of
roughly 10 Hz to 10 kHz) is smaller than the cavity
linewidth (typically 5—8 MHz) and the transit-broadened
atomic linewidth (12.8 MHz), and so should enter princi-
pally into our estimate of the systematic uncertainties of
C and Y through its effect on the measurement of reso-
nant cavity transmission T, and the atomic absorption
Qgigl.

We have considered the two-state approximation from
the point of view of the effects of other levels in the sodi-
um spectrum, particularly the F=1 ground state.
Dispersion due to this state and the possibility of self-
focusing or -defocusing have been evaluated and ruled
out as significant perturbers of the two-state system.

We conclude that our results represent a simple situa-
tion: the comparison of experimental data from a well-
understood, well-characterized, and conceptually simple
bistable atomic system with a fundamental theoretical
model of two-state atoms in a single-mode cavity. From
both experimental and theoretical viewpoints, the situa-
tion is one in which we can feel comfortable enough to
ask for absolute quantitative agreement, the lack of
which would indicate a fundamental flaw in our under-
standing of one side or the other. Our results give no
substantive indication of such a flaw to within the quoted
uncertainties. With this experimental and theoretical
foundation, future absolute comparisons in studies of
quantum phenomena or nonlinear dynamics in optical bi-
stability are made possible. Another significant aspect of
our experiments is that they represent an exceptional cir-
cumstance in the study of nonequilibrium phase transi-
tions, in that an ab initio theory leads to a remarkably ac-
curate description of the observed critical phenomena.
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FIG. 5. Transmitted power vs input power for the cavity without (left trace) and with the atomic medium, illustrating the evolu-
tion of hysteresis with increasing atomic density: (a) near threshold (C~10); (b) just above threshold (C~14); (c) farther above
threshold (C =42). The horizontal separation between the empty-cavity trace and the upper branch of the filled-cavity trace provides
a measure of the value of C. (d) A sketch of the situation in (c), with the switching values of the normalized intensities labeled. (e)
Time dependence of input (upper trace) and transmitted powers when the hysteresis shown in (c) is present.



