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The distribution of seismic moment or energy of earthquakes is well described by the universal
Gutenberg-Richter power law, N(s)=s'"%, where b~0.5-0.6. We have constructed a simple
dynamical model of crack propagation; when driven by slowly increasing shear stress, the model
evolves into a self-organized critical state. A power-law distribution for earthquakes with b~0.4 in
two dimensions and b=0.6 in three dimensions is found. The critical state is “at the edge of
chaos,” with algebraic growth in time of a small initial perturbation.

In 1956 Gutenberg and Richter! noted that the fre-
quency of earthquakes where an energy E (or seismic mo-
ment s) is released follows the remarkably simple power
law N(s)<s~'7% (in this paper the Gutenberg-Richter
law is formulated in terms of seismic moment s, instead
of earthquake magnitude?). The exponent b seems to be
universal in the sense that it does not depend on the par-
ticular geographical area. In a recent analysis, Kagan®
finds b~=0.55 using data from the Harvard earthquake
catalog. The frequency of large earthquakes can thus be
smoothly extrapolated from the frequency of small ones
indicating a common mechanism.

It was realized already in 1976 by Vere-Jones* that the
Gutenberg-Richter law, with a b value of 0.5, can be un-
derstood formally as the consequence of a chain reaction
or branching process. Suppose that some activity is ini-
tiated by an instability somewhere in the crust of the
earth—for instance, in a fault region. After each time
step the activity may die, continue unchanged, or branch
into two (or more) active sites. Eventually, a tree is gen-
erated where the total number of branches is a measure
of the energy release during an earthquake. Only if the
probability of branching exactly cancels the probability
of death can the distribution of earthquakes follow the
Gutenberg-Richter power-law distribution. Thus, the
chain reaction has to be precisely critical. Until recently,
however, there was no dynamical model, not to speak of
a general theory, to support this picture.

In 1987 Bak, Tang, and Wiesenfeld>® discovered that a
large class of extended dissipative dynamical systems nat-
urally organize themselves into a stationary critical state.
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In the critical state, there are avalanches of all sizes prop-
agating throughout the system. Model calculations
showed that the distribution of avalanches was indeed
given by a power law. The most remarkable feature of
the self-organized critical state is that it is robust with
respect to essentially any modification of the system; this
is crucial for the application to any realistic complex
phenomenon in nature. The power law was confirmed by
measurements on sandpile dynamics.’

Shortly thereafter, Bak et al.®71° suggested that the
concept of self-organized criticality applies rather direct-
ly to earthquakes, and it was demonstrated that simple
stick-slip models, similar to models that had already pre-
viously been proposed for earthquakes,'"!? indeed evolve
to the self-organized critical state. Random cellular auto-
mata models®® and models with continuous deterministic
loading'® were studied with essentially identical results.
The idea was further developed by several groups, ex-
tending it to account formally for Omori’s law for aft-
ershock distribution, !* account for temporal correlations
for large earthquakes, ' and include inertia effects. !°

While clearly establishing a general mechanism for the
origin of the Gutenberg-Richter law in earthquakes,
these early models have a couple of shortcomings. First,
the b values do not agree well with the value b =0.5-0.6
estimated from earthquake catalogs, indicating that the
models were not in the correct universality class.!®
Second, the models were block-spring models with a
stick-slip mechanism, where a block slides once the force
exceeds a local critical friction force. This causes the
force to be transferred to neighbor blocks. In real earth-
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quakes, the instability is more likely to be caused by
breakdown of elastic forces when the crust ruptures as
the shear stress from tectonic plates grinding against each
other builds up. Following the rupture, the local stress is
released, but a long-range redistribution of elastic forces
occurs. This dynamics is significantly different from the
dynamics of the short-range stick-slip models, and the
corresponding exponents can be different. In this paper
we present a very simple crack-propagation model of
earthquakes, in which the local breakdown of elastic
force and long-range redistribution of stress are explicitly
introduced. With a slow increase of shear stress, the
model self-organizes into a critical state with b values in
agreement with observations. Our model may also
directly apply to the transformation from the elastic to
the plastic regime of metals subjected to external stress.
In fact, experiments by Bobrov and Lebyodkin'’ on
stressed aluminum and niobium rods have revealed earth-
quakelike ruptures with a Gutenberg-Richter power-law
distribution in the plastic regime.

THE MODEL AND NUMERICAL SIMULATIONS

The situation that we want to describe is illustrated in
Fig. 1. We are focusing on the entire (potential) earth-
quake region rather than individual preexisting faults. A
d-dimensional medium is subjected to a slowly increasing
external stress field. When the stress somewhere exceeds
a critical value (which is must be eventually since the
stress is ever increasing), the shear stress is released while
the medium undergoes a local shear deformation (rup-
ture). This causes a very anisotropic redistribution of
elastic forces, falling off roughly as 1/ r? with the distance
from the instability:!® Somewhere the shear force in-
creases; somewhere it decreases. This redistribution
takes place essentially with the speed of sound, i.e., much
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FIG. 1. Schematic illustration of fault region subjected to
external shear stress. The vertical springs represent shear stress;
the horizontal ones represent axial stress. The model is driven
by slowly increasing the shear forces. When the local stress is
larger than the threshold stress, the spring breaks, causing a
redistribution of elastic forces. The broken spring will be frozen
immediately, i.e., the bond will be replaced with a new spring of
Zero stress.

faster than the geological time scale involved in the build-
up of stress. At the positions with increased stress, the
force may now exceed the critical force causing further
rupture, and so on; the local instability may cause a chain
reaction.

The model is defined on a d-dimensional hypercube,
with mass elements on lattice sites; the nearest neighbors
are connected by springs. Let o, (r) be the stress in the
bond between blocks at r and r+e, (e, is the unit vector
at x direction); this represents a force o, (r) on the block
at r and —o,(r) on the block at r+e,. Similarly we can
define the stress in other directions. We only consider
one component of the forces. Our model does not de-
scribe the details of the dynamical process of ruptures,
but only the stress distribution before and after each
event. Since the earth is at rest between earthquakes, the
total force on each mass element from its neighbors must
be zero before and after. Therefore, the stress o, and o,
must satisfy the following equation (we only consider
two-dimensional lattice here, generalization to three di-
mensional situations is straightforward):

o,(r)to,(r)—o,(r—e,)—o,(r—e,)=0. (1)
In the beginning all deformations are elastic, and we can
assume Hooke’s law for the stress (i.e., o «< Au, where Au
is the difference between displacements at two neighbor
sites). Thus the sum of stress along a closed loop must be
zero. Let us take the border of a unit square as the closed
loop; then we have

ox(r)to,(r+e,)—o,(r+e,)—0o,(r,)=0. (2)

y

The slow increase of the external shear stress is
represented by adding a small shear stress to all vertical
bonds (say, in the y direction). As the stress is increased,
somewhere in the system the stress becomes larger than
the threshold stress which we assigned to be random ini-
tially; the spring will then break, causing a rupture. Let
us consider the effect of breaking, say, a vertical spring
connecting the blocks at ry and ry+e,. After the break,
the original stress (let it be o) is reduced to zero; this
will cause force unbalance and subsequent stress redistri-
bution. The additional stress caused by the local rupture
can be viewed as the effect of applying a force F at ry and
—F at ry+e, (F should have the opposite sign of o; see
Fig. 1). The new stress distribution can then be calculat-
ed as 0., =041 0’, where o’ is induced by the “dipole”
force. We assume elastic redistribution of the stress, so
o’ satisfies Egs. (1) and (2) with additional forces F and
—F added to Eq. (1) at positions r, and ry+e,, respec-
tively. The equations above can be solved easily to obtain

1,19

0, y(1)=—FG, ,(r—15)+FG, ,(r—(r5+e,)), (3)

where G, , are the lattice Green functions for the equa-
tions
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After the rupture, the stress on the bond is reduced to
zero. In order that the forces at position ry and ry+e, be
balanced, F should be related to o, by the condition
F+oy+0,(ry))=0. It is easy to show that
0,(rg)=—F/d; hence F =—[d /(d —1)]o,. We assume
that the bond which has broken will be frozen immediate-
ly, i.e., we replace the old broken bond with a new spring
of zero stress; any additional deformation of the bond will
again be elastic. Also, we assign a new random threshold
stress to the new bond.?® Note that the stress is not con-
served; after a rupture both the local stress and the total
stress are reduced.

The dynamics of the model can be summarized as fol-
lows.

(i) Increase of shear stress: o,(r)—o,(r)+p at each
time step.

(ii) Rupture: When |o,(r))=0,| > o™, then at next
time step (a) on the broken bond,

U[(ro)—*U,’(ro)—'Uo 5

(b) on other bonds,

o;(r)—o;(r)+ —r1y)—G(r—(ryt+e;))) ;

1

-1 oy(G;(r
(c) new threshold stress: o!"(ry)—random number
€[0,1].

In the beginning we set all the stress to be zero and as-
sign the threshold stress to be a random number between
0 and 1; thus all deformations are elastic initially. As the
stress builds up, local isolated ruptures start occurring,
which gradually lead to chain reactions. As the process
continues, bigger and bigger chain reactions, representing
bigger and bigger earthquakes, take place. Eventually
the system enters a statistically stationary state where the
local release of stress during ruptures balances the global
increase of stress. When comparing with real earthquake
data, we assume that the crust of the earth has had
sufficient time to reach this highly excited nonequilibrium
state during the geological evolution of the earth so that
the earthquakes that we observe are those of the station-
ary state. The state of the crust as we observe it, with
fault areas, etc., should be seen as snapshots of a continu-
ously evolving dynamical process. The details, including
the positions of active faults, will change but the statisti-
cal properties will remain the same.

Figure 2 shows the number of local ruptures (springs
breaking) versus time in a simulation of a 40X 40 system,
where the shear is increased by p=0.0001 per unit time.
Note that earthquakes occur in different sizes. Figure 3
shows the structure of a single large earthquake. The line
segments represent the displacement (proportional to the
release of stress) at the bonds which have ruptured during
the earthquake. Note: (i) The ruptures occur along fault
lines (or planes in the 3D model) parallel to the forces,
which have developed dynamically. (ii) The fracture sites
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FIG. 2. Evolution of activity of a sequence of earthquakes for
a 40X 40 system.

of the single event may be disconnected, although the ac-
tivity is clearly clustered. The earthquake appears to
have a fractal structure.

We can measure the size of an earthquake by the
“seismic moment” s, or total energy release, which is pro-
portional to the total number of sites which have rup-
tured following the initial instability. Figures 4(a) and
4(b) show the distribution of seismic moments from a to-
tal of 10000 events. The linearity of the log-log plot indi-
cates that the distribution is a power law, i.e., the crust of
the earth is at criticality. As usual, the interruption of
the power law at large sizes is interpreted as a finite-size
effect; there is no intrinsic typical size of earthquake.
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FIG. 3. The structure of a single earthquake. The line seg-
ments represent the displacement (proportional to the release of
stress) at the sites that have ruptured.
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FIG. 4. Distribution of earthquakes generated in the station-
ary state of the model for (a) a 40X 40 lattice, (b) a 20X20X20
lattice. 10000 earthquakes were included to obtain the statis-
tics. The linear behavior of the log-log plot indicates a
Gutenberg-Richter law with a b value of approximately 0.4 in
two dimensions and 0.6 in three dimensions. The latter value
compares well with the value 0.55 derived from an analysis of
the Harvard earthquake catalog. Some coarse graining of the
data has been done in obtaining the curves.

The slope of the line is 1+b. In two dimensions, the b
value is approximately 0.4; in three dimensions the value
is approximately 0.6. We cannot entirely rule out that
b=0.5, the value corresponding to a simple uncorrelated
chain reaction.* We would expect that all but the very
largest earthquakes should be represented by the 3D
values since the spatial extension of those quakes is less
than the thickness of the crust; for larger earthquakes
there might be a crossover to the smaller two-
dimensional b value.

In any case, the b value is in excellent agreement with
the value b =~0.55 obtained by Kagan from the Harvard
catalog.? We interpret the power law as a strong indica-
tion that the crust of the earth is indeed at the self-
organized critical state, and we interpret the agreement
of b values as an indication that we have identified the
relevant mechanism.

What can we learn about the prospects of earthquake
forecasting from this? Our ability to make predictions
depends on the way a small initial uncertainty evolves in
time. In chaotic systems the deviation grows exponen-
tially, by definition, as A=~e™ so that after a characteris-
tic time of order 1/A we lose track of the system. In self-
organized critical systems, the deviation only grows as a
power law, 10 je., the dynamics is weakly chaotic. To
check this, we add a small random (spatially uncorrelat-
ed) perturbation to configurations of the critical state.?!
Figure 5 shows the growth of this small perturbation in
time, averaged over 2000 perturbations. Not surprising-
ly, we find the growth to be a power law A=1°¢ with ex-
ponent c¢=1.1. The system is exactly at the edge of
chaos, where the uncertainty grows algebraically rather
than exponentially. We gradually lose our ability to pre-
dict, but much more slowly than for chaotic systems.
There is not a well-defined critical time beyond which we
cannot predict, just as there is no characteristic size or
duration of the individual earthquake. The self-
organized critical state is scale invariant in both time and
space.

It has been suggested that self-organized criticality
might provide a general mechanism for the formation of
fractal structures.?? Indeed, earthquakes seem too
clustered on fractal sets.?>~25 It would be interesting to
check if our model, or modifications of the model, for in-
stance, as suggested by Ito and Matsuzaki, '* can account
for this observation.
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FIG. 5. Growth of small initial random perturbation with
time. The power-law behavior indicated that the system is at
the edge of chaos. The slope yields an exponent ¢ ~1.1. The
simulation is done on a 40X40 system with p=0.0003. The
data are averaged over 20 000 perturbations.
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SOME ANALYTICAL CONSIDERATIONS

The numerical simulations indicate that the b value is
close to the value §, corresponding to a chain reaction
with independent branching events.* In fact, this value is
the “mean-field” value for self-organized critical phenom-
ena. From renormalization-group theory for critical phe-
nomena it is well known that mean-field exponents are
correct in dimensions above the so-called upper critical
dimension d,,. One of the authors’®?’ found the upper
critical dimension for the short-range models of self-
organized criticality to be 4. We now argue that in the
present model the critical dimension is lowered to 3, in
which case the mean-field result b=0.5 (which is within
the numerical accuracy) should be exact in three dimen-
sions.

To begin with, let us consider the probability P(r—r’)
[or its Fourier transform P (k)] that a rupture (on a verti-
cal bond) at site r’ (for simplicity let r'=0 below) causes
another bond to break at r. This probability is propor-
tional to additional stress field o’'(r) applied to the verti-
cal bond induced by the original broken bond, or any of
the subsequent ruptures in a critical chain reaction. We
shall consider only vertical shear stress.

From Eqgs. (3) and (5), it is easy to see that the Fourier
transform of the additional stress at vertical bond in lead-
ing order, is o} O<ky2/k2=cos2(ot), where a is the angle
between the horizontal plane and k. To include the effect
of higher-order terms and the contribution from the hor-
izontal bonds, a term —ak? to the above expression
should be added:

3(k)=cos¥(a)—ak? . (6)

The rupture of one bond can initiate a rupture [with
probability proportional to =(k)] at another bond, which

in turn can initiate a third rupture, etc. Making a sum-
mation over a geometric series in order to take into ac-
count this chain reaction of breaking the vertical bonds,
we end up with the final probability propagator

P(k)=3(k)+Z(k)*+3(k)*+ - -+ o
~1/(ak?+1—cos’a)=1/(ak?+a?) . (8)

There is no constant “mass” term in the denominator
due to the criticality of the theory. Essentially, the prop-
agator is only ‘“‘massless” in the (d —1)-dimensional
plane a=0. This propagator has been studied by Larkin
and Khmelnitskii®® in their study of critical behavior of
Ising dipolar magnets, and by Cowley?® in a study of
k=0 structural phase transitions. In the latter study the
singular behavior was actually caused by long-range elas-
tic forces. The effect is precisely to lower the upper criti-
cal dimension from 4 to 3.

Some cautionary remarks are in place at this point.
The analytic theory for self-organized criticality is not
advanced to the level that one can actually prove that the
upper critical dimension is 4 for short-range forces and
therefore 3 for long-range forces, since a good deal of in-
tuitive phenomenological considerations were employed
in the original analytical theory. Also, our numerical re-
sults seem to favor a slightly larger b value.
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