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Three-level atom in a broadband squeezed vacuum field. I. General theory
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A complete treatment of a three-level ladder system interacting with a broadband squeezed vacu-
um field is presented. It is assumed that the ground state and the second excited state are decoupled
in the electric-dipole approximation, and are tuned close to the sum frequency of the incident
squeezed vacuum field. Using Zwanzig s projection-operator techniques, we derive the master equa-
tion, assuming that the system interacts with a broadband squeezed vacuum field in one or more di-
mensions. It is shown that, in the first case, the squeezed vacuum introduces new decay constants
and frequency-shift parameters. These have the same dependence on the atom-radiation coupling
parameter as the ordinary vacuum decay rate and frequency shift, the only major difference being
that they are multip1ied by the squeezing parameters M and 1V. In more dimensions, the decay con-
stants and frequency-shift parameters depend on the solid angle Q over which the squeezing is pro-
pagated. For 0=0 these correspond to the usua1 Einstein A coe%cients and Lamb shifts of the
atomic levels, while for large 0 they are similar to those for the one-dimensional squeezed vacuum.

I. INTRODUCTION

With the recent successful observations of squeezed
states of the electromagnetic field, ' a great deal of atten-
tion has been given to possible applications to radiation-
matter interactions. Squeezing is the noise reduction that
can occur in a quantum field when the quantum Auctua-
tions in one of the field quadrature phases are reduced
below the usual vacuum level. This, of course, is at the
expense of increased noise in the conjugate quadrature.
New theories of the interaction of two-level atoms with
the vacuum field have been recently developed ' based
on the assumption that the atoms interact with a mul-
timode broadband squeezed-vacuum field. This is gen-
erated by squeezed light, which has zero average electric
field, but reduced Auctuations in one quadrature, and a
bandwidth much larger than the natural linewidth of the
atoms. These theories have assumed an ideal coupling
between the atoms and the squeezed vacuum field. The
earliest work assumed that the atoms interact only with
squeezed modes of the radiation field, with no interac-
tions or spontaneous emission into ordinary (unsqueezed)
vacuum modes. This is a significant practical problem,
which Gardiner pointed out in his original paper, stating
the need for either an incoming squeezed electric-dipole
wave, or an appropriate one-dimensional situation. Fol-
lowing this suggestion Parkins and Gardiner extended
the theory to three dimensions, assuming that the two-
level atom was located in a microscopic plane-mirror
Fabry-Perot cavity, and interacted with a squeezed input
field incident over some finite solid angle. All other
modes were in an ordinary vacuum state. Such a finite
and focused beam of squeezed light can be produced us-
ing squeezed light together with a system of lenses and
phase plates. With this modification they have demon-
strated that a significant reduction in fluctuations experi-
enced by the atom can be achieved in one quadrature
when the atom is located at the point in which the input

squeezed field is focused. The reduction in fluctuations
depends also on the solid angle 0 over which squeezing is
propagated and increases with increasing Q.

In this paper we shall consider a three-level atom in a
cascade configuration (ladder system) interacting with a
broadband squeezed vacuum field. In practice this model
can be realized by the pumping of the atomic transitions
by correlated light beams as, for example, can be ob-
tained from the output of a parmetric amplifier. In a
parametric amplifier an intense laser beam at frequency
2'—the pump beam —illuminates a suitable nonlinear
medium. The nonlinearity couples the pump beam to
other modes of the electromagnetic field in such a way
that a pump photon at frequency 2' can be annihilated
to create strongly correlated pairs of photons at frequen-
cies co+a. These correlations lead to the unequal parti-
tion of the quantum noise between two quadrature com-
ponents E, (t) and E2(t) of the electromagnetic field E(t)
emitted by the parametric amplifier. In our theoretical
model an effective three-level atom interacts with
squeezed light. The squeezed light is assumed to be
broadband relative to the natural linewidth of the indivi-
dual atomic transitions. In Sec. II we discuss the Hamil-
tonian in a one-dimensional squeezed vacuum. In Sec.
III we derive the master equation for the reduced density
operator p of the three-level atom interacting with the in-
cident squeezed light. We assume that the squeezed light
is a multimode one-dimensional field, and there is no
spontaneous emission into unsqueezed modes. In Sec. IV
we extend this model to an experimentally more realistic
three-dimensional model in which the incident squeezed
light is propagated over a solid angle Q. We also allow
spontaneous emission into the unsqueezed modes and dis-
cuss in detail the effect of such a "nonideal" coupling be-
tween the atom and the squeezed field on the coeKcients
for spontaneous emission and the frequency shifts. Final-
ly, some concluding remarks are made in Sec. V.

The formalism developed in this paper will be applied
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in the following paper to investigate the spontaneous-
emission properties of a three-level system. We will study
in detail the transient and steady-state solutions for the
populations of the atomic levels.

/3&

j2&

II. HAMILTONIAN IN A ONE-DIMENSIONAL
SQUEEZED VACUUM

We consider a three-level atom in the cascade
configuration with unequally spaced levels
(E3 )Ez )E, ), coupled to a quantized multimode elec-
tromagnetic field (Fig. 1). The transition frequencies
from the ground state 1 & to the first excited state l2 &

and from the state l2 & to the second excited state
l
3 & are

co2, and ~32, respectively. The transitions are connected
by electric-dipole moments p&2 and @23, respectively,
whereas the transition

l
1 & ~ l

3 & is forbidden in the
electric-dipole approximation.

The Hamiltonian for the three-level atom interacting
with the quantized one-dimensional multimode radiation
field is given by

H =H~ +H~+H;„.
The atomic part of the Hamiltonian has the eigenvalue
equation

~g lm &=& Im &, m =1,2, 3 (2)

where

Ac@;.=E;—E. .

The field part of the Hamiltonian is the usual expression

H~ =R d co~ coJ a (coi )a ( coi ), (3)

where a (coJ ) and a "(coi) are bosonic operators for the
electromagnetic field.

The interaction part of the Hamiltonian can be written
in the electric-dipole approximation in the form

H;„=i' fdcoJ„Q gg, (Jco)i$, Ja(coi) H c ,— .(4.)
1 Ji'

FIG. 1. Energy-level diagram of a three-level atom in a cas-
cade configuration with possible transitions.

sumed to vary smoothly over this frequency band. In
practical terms, some type of waveguide would be re-
quired to obtain this interaction Hamiltonian and one-
dimensional mode structure.

We wish to derive from the Hamiltonian (1) the master
equation for the reduced operator p, (t) of the three-level
system. The normal treatment of the interaction between
the atom and the quantized radiation field assumes that
the field is in the vacuum state. Here we assume that the
quantized radiation field is in a broadband squeezed vacu-
um state with a carrier frequency co which is tuned closed
to half the frequency of the atomic transition

l
1 &

—+
l
3 &,

i.e., 2m=~2, +co3z. The bandwidth of squeezing is as-
sumed to be su%ciently broad that the squeezed vacuum
appears as 6-correlated squeezed white noise to the atom.
The correlation function for the field operators a (coi ) and
a (coJ ) can then be written as '

(a (co&)a (coi, ) &
= [N (coi.)+ 1]5(coi.—coJ.),

(6)

(a(coi )a(coi ) & =M(coi )5(2co —
coJ

—coi )

=M (2co —coi )5(2co —coi —co'i ),
where N(co&) and M(coi) are slowly varying functions of
the frequency and characterize the squeezing such that
(see Appendix A)

lM(coi)l ~N(coi)N(2co —coi)+min[N(coi), N(2co —coi)] .

where 5; =li &(jl, (i,j=1,2, 3) are the atomic operators
satisfying the usual commutation relations

'J' PV ] '0 JP PJ

and the closure property

S()+S22+S33=1 .

(5a)

(5b)

The coefficients g2, (coi) and g32(coi) describe the cou-
pling of the atomic transitions

l
1 &

—& l2 & and l2 &
—+ l3 &,

respectively, with the electromagnetic field. For compar-
ison with other notation, we sometimes use the compact
notation of co, =co, +i,. and g, =g, +i, . In Eq. (4) we have
explicitly taken g»(coi) to be zero, assuming that the
transition

l
1 & ~ l

3 & is forbidden in electric-dipole ap-
proximation. The integration in Eq. (4) extends over a
relevant frequency interval around the optical frequencies
co2i and co3~, and the coupling coefficients g,"(coJ ) are as-

In the above equation the equality holds for a minimum-
uncertainty squeezed state, and M (co& )

= lM (coi ) l exp(i/, ), where P„ is the phase of the
squeezed vacuum. Note that the field mode at frequency
co& is correlated with the mode at frequency (2co —

coJ )

through the phase-sensitive term characterized by the
factor M (coi ). For lM (coi ) l

=0, Eq. (6) describes a
thermal field (blackbody field) at a temperature T, with
N(coi) the mean occupation number of the mode A, with
the frequency co&.

The inequality (7) holds for the general case in which
the intensities N(coi ) and N(2co —coi ) may be difFerent as,
for example, in the output from a parametric amplifier
with frequency-dependent losses. In the case of equal in-
tensities, the usual inequality is recovered, in the form '

lM(coJ )l ~N(coJ )[I+N(2co —coi)] .
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This inequality is less stringent than Eq. (7), which is a
more suitable form for describing correlations of fields
that might have unequal intensities.

III. ONE-DIMENSIONAL MASTER EQUATION

Our aim is to derive from the Hamiltonian (1) the mas-
ter equation for a reduced system density operator

projection operator defined by

P. =GtI b

where the operator G should be such that P =P.
It is clear from (9) and (11) that

PW(t)=Gp, (t),
and if we choose G =p, (0), then

PW(t) =pq(0)p, (t)

(12)

p, (t) =tr, W(t), (9)

where the trace is taken over a squeezed reservoir and
W(t) is the density operator of the total system. The
density operator W(t) obeys the equation

W(t) = —(i/A')[H, W(t)] = iLW(t—) (10)

with the initial condition W(to)=p, (to)pb(to), where

p, (to) and pb(to) are density operators corresponding to
the atomic system and squeezed reservoir, respectively.
In Eq. (10), L is the Liouville operator.

The master equation for the reduced density operator
p, ( t) of the three-level atom interacting with the
squeezed-vacuum field can be derived by using any of a
number of traditional techniques as long as the relevant
reservoir is assumed to be squeezed. Here, we will use
Zwanzig's projection-operator techniques. ' Let P be a

p, (t)=tr, PW(t) . (14)

Employing Eq. (10) and the Hamiltonian (1), after some
algebra we derive'

[PW(t)]+ f dr PL,'„(t)L,'„(t r)PW—'(t —&)=0,

L;„.. . . = [H;„,. . . . ] /A' . (16)

After a Laplace transform over time t, with (6), (14), and
(16), Eq. (15) reduces to

(15)

where the superscript I stands for the operators in the in-
teraction picture and

2

p(o) —zp(z)= g [riI,+'(z) —ibco;, (z)]I [SJ+,p(z)S;+]+ [S;+p(z),S,+]I
I,J =1

2

+ g [ri'J+'*(z)+ibco,*j(z)][[S/,p(z)S, ]+[S; p(z), S) ]I
ij =1

2

+ g y';J+'(z)[p(z)S) S,++S S;+p(z) —2S,+p(z)S ]
ij =1

2

+ g [y';J+'(z)+y',
~ '(z)][p(z)S,+S +S;+S p(z) —2S p(z)S; ]

ij =1

+i g [bco;(z)+bco, (z)][li )(il,p(z)] . (17)

Here p(z) is the Laplace transform of p, (t), and the pa-
rameters are given by

M (coq)z
'(z) =fd cong;(coq)gi(2co cog)—

[z +(co; —coq) ]

N(coq)z
y,',"(z)= fd~~g;(~~)gg(~~)

[z +(co, —coq) ]

hco;(z)=g f dcoqlg;~ (cog)l.
JWI [z +(co;.—coq) ]

,'1 '(z) = f dcoqg, (coq)gi*(coq)
[z +(co; —coq) ]

(18)
M (co&)(co; —co~)

b, co;.(z) = f dcoqg;(co~)g, (2co co~) 2
—

z[z +(co, —co~) ]

bco, (z)=g f dcoqlg; (cog)l N(cog)

(co~)

[z +(co,i
—coq) ]

(co; +cog)

[z +(co; +coq) ].
where z is the complex Laplace transform parameter. To
obtain Eq. (17) we have used the commutation relations
(5a) and made the rotating-wave approximation, " i.e., we
neglected rapidly oscillating terms (the so-called counter-
rotating terms). In Eq. (17) we have also introduced a
shorter notation for the atomic operators, i.e.,
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s,+ =s„=I» & 1 I, s; =(s,+ )',
S+ =S = I3) (2I, S =(S+ )t .

(19)

Now we employ the Markov approximation. This
neglects retardation effects and is valid in the long-time

limit t )&co&,co, , providing this is short compared with
the typical relaxation times of the system. With this ap-
proximation we can replace the i)'+'(z), y

—'(z), and
b,co(z) parameters by their limiting values as z~0+.
After this, the inverse Laplace transform of Eq. (17) leads
to the master equation

= —g [M(co;)i); —i ba); ]([S;+p,S.+]+[S+,pS;+])e
I,J

—g [M*(co, )g,*+ib, co,
' ]([S; p. , s& ]+[S~,ps; ])e

—g N(co;)y; (pS S;++S S,+p —2S;+pS )e

—g [N(o); )+1]y; (pS,+S +S;+S, p —2S, pS,+)e ' ' i g—(bee, +bee, )[Ii )(il,p], (20)

where the coefficients in the equation are

ri;~ =erg;(a); )g (2' —co;),

y,, =~g;(co;)g,*(co, ),
g, ( coi )g, (2' —coi )

Ace,, = Jdcoi ' M(coi),
I

lg;, (~i, ) I'
Aco; =g J dpi.~(

b.co,. =g J devi Ig;~(coi )I N(co&)
I

JWl IJ

(21)

1

(co;, +coi )

The general master equation (20) includes both terms
that are time independent and terms that have an explicit
time dependence of the form e'"'. Here 6 is a linear com-
bination of atomic frequencies and of the input reference
frequency co. Terms of this type are generalized level-
shift and decay constants, and are known to occur in
multilevel atomic master equations ' ' in the ordinary
vacuum case. When Q is small, as can occur with degen-
erate transition frequencies, such terms must be included
in the equations of motion. In cases when co is large,
these terms are rapidly oscillating, and are usually
neglected, in a consistent way with the rotating-wave ap-
proximation that is already made here. The new feature
of the present equation is in the terms that oscillate as
2' —co; —co, which must clearly be included under con-
ditions of two-photon resonance, whenever 2' co'+'Mj.

The coefficients y, , (i =1,2), which appear in Eq. (20),
are equal to half the radiative spontaneous-emission
rates, respectively, for I2)~I1) and I3)~I2) trans&-
tions, whereas y, . for iWj are generalized decay con-
stants that arise from the coupling between these two
transitions. In general, the y&2 and y2& are nonzero, but
the time dependence of the terms in which they appear
includes an oscillation at the frequency co; —co-. For a

large difference between the atomic transition frequencies
such terms are rapidly oscillating and can be neglected.
This cannot be done for equally spaced atomic levels
when co

~

—672.

The squeezed vacuum introduces new damping con-
stants i),, (i =1,2) that have the same dependence on the
coupling coe%cients g;(co;) as the decay rates y;;, the
only major difference being the presence of the squeezing
parameter M. These include, as a special case, the
modification to the polarization decay found by Gar-
diner in the two-level atom. Moreover, Eq. (20) also
contains generalized decay constants g, 2 and g2, , which
arise from the coupling between these two transitions in-
duced by the squeezed vacuum. In the following paper
we shall show that these terms play an important role in
the spontaneous emission from a three-level atom in-
teracting with a squeezed-vacuum Geld.

The parameters Ace; and Ace; are generalized energy-
level shift terms. The terms hen; and Ace; are familiar in
atomic spectroscopy, being the intensity-dependent Stark
shift and Lamb shift, respectively. Here the Stark shift
only depends on the field intensity N(ei), and is indepen-
dent of the squeezing parameter M. This is in agreement
with previous treatments of level shifts. The term Am, -

represents the part of the Lamb shift induced by the
first-order coupling in the Hamiltonian of Eq. (1). It is
well known that to obtain a complete calculation of the
Lamb shift, it is necessary to include a second-order, mul-
tilevel Hamiltonian including electron mass renormaliza-
tion. ' If these are included the standard nonrelativistic
vacuum-Lamb-shift result is obtained, although still in
one dimension.

The remaining term Ace; is due to the interaction with
a squeezed vacuum. This is proportional to the cross
correlation M, and has the effect of coupling different lev-
els together. This term was neglected in some earlier
treatments of level shifts in a two-level atom interacting
with a squeezed vacuum. ' In Appendix 8 we show that
the term Am," is different from zero only when the ith
transition is outside of resonance with the squeezing car-
rier frequency m. This is true independently of the exact
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spectral distribution of M (co), and is due primarily to the
symmetry properties of M. We note here that some re-
sults in Appendix 8 are obtained using a flat distribution
for M(co) for purposes of illustration. In practice it is
more likely that M(co) would have a Lorenzian spectrum
at the resonant frequencies of the cavity producing the
squeezed radiation. If propagative methods are used, the
squeezing would be restricted in frequency width by the
phase-matching and dispersion properties of the non-
linear medium used to generate the correlated photons.
This can still be compatible with our broadband assump-
tions, but clearly modifies the shifts hen; and Aco;, which
are very sensitive to the broadband characteristics of the
input field.

Despite this, it is always true that Ace; vanishes when
the ith transition is resonant with the squeezing carrier
frequency co. This provides a justification for the neglect
of these terms in the case of a two-level atom excited at
resonance, since our model can certainly be used for
two-level transitions. Under conditions of two-photon
resonance, m;+ co = 2', we also show in Appendix B that
hco;. = —Ace;. This is consistent with hem; vanishing
when co=ad;, since two-photon resonance then requires
that co=co . It should be clear from this that hco; has
symmetry properties that are different to those of g;, but
it has a similar effect as the g; coupling term. In general,
this term does not vanish or rapidly oscillate in the in-
teraction picture and needs to be included in the equation
of motion not merely as a phase but as a dynamical cou-
pling.

In summary, master equation (20) will be the funda-
mental equation of motion in the theory of interaction be-
tween a three-level atom and a one-dimensional broad-
band squeezed vacuum field. It can, for example, be used
to discuss how the atom decays, or to solve problems con-
cerning population fluctuations, development of atomic
correlations, etc. In the following paper this equation
will be used to study the transient and steady-state popu-
lations of the atomic levels. An essential feature of this
master equation is the assumption that M, X are slowly
varying over the two relevant frequency bands near the
transition frequencies co1 and co&. In experimental prac-
tice, this might imply that the squeezing is produced in
cavity modes that are broadband relative to the atomic
linewidth. Other methods of producing squeezing in-
clude pulse propagation in nonlinear media. In either
case, it is possible for the radiation at frequencies between
co 1 c02 to be in the ordinary vacuum state, as long as the
squeezing bandwidth near the two resonant frequencies is
large compared to the decay rates.

IV. MASTER EQUATION IN A THREE-DIMENSIONAL
SQUEEZED VACUUM

All of the above analyses in Sec. III have assumed an
ideal coupling between the three-level atom and a one-
dimensional squeezed vacuum field. Thus the atom in-
teracts only with squeezed modes of the radiation field.
From the experimental point of view this one-
dimensional model could be realized in an appropriate
waveguide, at whose termination one would locate the

where Hz is the Hamiltonian for the atom given by Eq.
(2), and S;~

=
~i )(j~ are the atomic operators satisfying

relations (5). In Eq. (22), p;~=(i~p~j) is the electric-
dipole moment associated with the transition between the
states ~i ) and

~j), and gz, (r) is the appropriate mode
function, evaluated at the position r of the atom. For a
three-dimensional multimode field in free space, gk, (r) is
defined as [in Systeme International (SI) units]

gk, (r) =
2eoR( 27r )

(23)

three-level atom. However, this would be difficult at visi-
ble wavelengths, though it might be possible at the wave-
lengths corresponding to transitions in Rydberg atoms.
The situation looks more complicated in free space,
where the atom interacts with a three-dimensional elec-
tromagnetic field. In this case an ideal coupling between
the atom and the squeezed-vacuum field is difficult to
achieve in experimental generation of a three-dimensional
squeezed-vacuum field.

To avoid these difficulties Parkins and Gardiner have
proposed a "nonideal" coupling between the two-level
atom and the squeezed vacuum field. The nonideal cou-
pling means that the atom is coupled to the squeezed as
well as to the unsqueezed modes of the electromagnetic
field. In the Parkins and Gardiner model only those
modes whose propagation vectors lie within a solid angle
over which the input field is propagated are assumed to
be squeezed. All other modes are unsqueezed. This mod-
el seems to be more acceptable for experimental realiza-
tion since, for example, the output of a nondegenerate
parametric amplifier could be passed through a system of
lenses and phase plates in order to produce a focused
beam of squeezed light at the point where the atom is lo-
cated.

Following Parkins and Gardiners suggestion we shall
examine how the interaction between a three-level atom
and a three-dimensional squeezed vacuum field can affect
the master equation for the reduced atomic operator p.
First of all, we derive the general master equation for the
reduced density operator p of the three-level atom in-
teracting with a three-dimensional electromagnetic field.
We assume that the three-dimensional field is squeezed
and allow spontaneous emission into the unsqueezed
modes. We start with the assumption that the radiation
field is a generalized Gaussian state. This includes all
possible types of squeezed radiation field. We then spe-
cialize to a model like that of Parkins and Gardiner, in
which only a part of the incoming radiation field is
squeezed.

The Hamiltonian (I) for a three-level atom interacting
with an electromagnetic field in three dimensions has the
following form:

H=H~+Ac g J ~k~a (k, s)a(k, s)d k
S

3

+iAQ g J [p;~. gk, (r)a(k, s)S; +H. c. ]d k,
s ij=1

lWJ

(22)
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(24)

where ek, is the unit polarization vector. We assume, as
in Secs. II and III, that we have a three-level atom in
ladder configuration (E3 )E2) Ei ) located at the point
r=0 with a dipole-forbidden transition from level ~1) to
level ~3), i.e., ~It, „~=0.

The operators a(k, s) and a (k, s), which appear in Eq.
(22), describe a three-dimensional electromagnetic field,
which can be in a squeezed vacuum state. In the general
case such a three-dimensional field can be defined as hav-
ing commutation relations and correlations given by

[a(k,s), a (k', s')]=5 (k —k')5„, ,

(a (k, s)a(k', s')) =n(ks, k's'),
(a(k, s)a(k', s')) =m(ks, k's') .

Here n (ks, k's') and m(ks, k's') are photon number and
squeezing densities, respectively, in momentum space,
whose explicit form depends on the preparation of the
squeezed vacuum. These correlations completely define a
generalized Gaussian state, which corresponds to a wide
choice of possible inputs. ' ' In particular, it includes as
inputs all the possible parametric amplifier configurations
below threshold. It also can be used to describe a pulsed
squeezing experiment.

With the Hamiltonian (22) and on using the correla-
tions (24), the Laplace transform over time t of the mas-
ter equation (15) takes a form identical to the general
one-dimensional case, Eq. (17). The parameters
y' +—', and Ace, are now given by

~ss z/c + k; —k

b,co;~(z)= —g I=1
~ s, s

][+J g& ]
[( / )2+(k k)2]

m (ks, k's')(k —k; )I [p; gi„(0)][p) gq, (0)] d kd k' .
[(z/c) +(k —k;) ]

(k; —k)
~ (0) d k,

[(z/c)'+(k, , —k )']

(25)

&~;(z)=—y y I Jn(ks k's')[p, *, gk, (0)][p~J'gk'(0)]
1

jWi s, s'

(k; —k) (k, +k)
X pj 1J d kd k',

[(z/c) +(kJ —k) ] [(z/c) +(kj+k) ]

where k;=co,. /c and k; =ai; /c. To simplify the nota-
tion, in Eq. (25) we have defined p; =p;+, ;. In the above
form, we have an exact description of the interaction of
the atom with an arbitrary squeezed field, apart from us-
ing the rotating-wave approximation.

As an example of the interaction between a three-level
atom and the three-dimensional squeezed-vacuum field
we now consider the Parkins and Gardiner model. In
this model only those modes are squeezed whose propa-
gation vectors k have an angle Ok with the z axis less than
a maximum value 0 over which squeezing is propagated.
All other modes are not squeezed. The squeezing is
defined to correspond to the focused output field of a
nondegenerate cavity, ' resonant near co, and cu2, but with
each resonance relatively broadband compared to the
atomic relaxation rates. This can be achieved by defining
the squeezing parameters n (ks, k's') and m (ks, k's') as

Here co is the carrier frequency of the squeezing and
U, (k) is defined as a square normalized mode function
that includes only directions k confined to a solid angle
Q& =(Ok, gk) with equal amplitude. This mode function
depends on the angle of propagation, and can have a
different structure depending on the method of propaga-
tion and focusing of the squeezed light. In particular, it
may be chosen to optimize the coupling. We now sup-
pose that the two transition dipole moments are parallel.
This is not an essential feature if the transitions are non-
degenerate, since the two frequencies can be independent-
ly matched to two differently polarized transitions. How-
ever, in practice it is more likely that both transitions
would have identical Am values to obtain a true three-
level submanifold. In this case, p& and p2 are parallel.
The procedure of mode matching to the atomic transition
is then simplified, because U, (k) can be chosen to match
both transitions, with the choice

n (ks, k's') =X'(k) U,*(k)U, (k')5(k —k')/k2,
(26)

A;(k) '~ p,* gk, (r) for Hk ~8
0 for 0„)0 . (27)

m (ks, k's') =M'(k) U, (k) U, (k')5(2ko —k —k')/kk',

where ko =co/c and M'(k) =M'(2ko —k).

This corresponds to the coupling constant (23) coupling
the electromagnetic field with the atomic transition di-
pole moment p;. In Eq. (27) the normalization constant



43 THREE-LEVEL ATOM IN A BROADBAND. . . . I. 6253

JV; is defined so that U is dimensionless, with

~;(o)=f d&» & lp; gk, (r)l', (28)

where 0 is the total solid angle over which the squeezing
is incident. This model describes possibly the simplest
experiment, in which the input radiation is directly in-

I

il';+ '(z ) =—f dk k ( 2k 0
—k )M'( k )

c [(z/c) +(k, —k) ]

cident on the atom. More complex arrangements would
modify Eq. (26). For simplicity, we have not included
possible modifications due to a resonator structure. This
can be readily treated within the general formalism of Eq.
(25), as it simply changes the incident correlation func-
tions.

With the squeezing parameters in Eq. (26), the master-
equation coefficients of Eq. (25) take the form

x f dn» X U, (k)[p, .s„,(o)] dQ» g U, (k')[p .gk, (0)]0 I

y';,+'(z)= —f dk k'N'(k), , f df), » y U,*(k)[p,'. .g„*,(())]
c [(z/c) +(k.—k) ]

f «. r. U, (k')[p, sk's'(0)]0 I

f""" 2, f d&» X [p,* gk, (0)]lp, Sk, (0)],
[(Z/C) +(k, —k) ] sphere

1 (k —k, )
b, co;~ (z) = —f dk [k (2ko —k) ]M'(k)

c [(z/c) +(k —k,. ) ]

f "+» X U. (k)lp 'gk. (0)lf d&» y U, (k')[pj gk, (0)]0

(29)

b,co;(z)= —g f dk k
1

JWl

(k,j+k)
[(z/c) +(k,. +k) ]

(k; —k)
I p', 'gk, (0) I

[(Z /C) +(k; —k ) ] sphere

1 (k,"—k)
~~;(z)= g f dk O'N'—(k)

JWl [(z/c) +(k,"—k) ]
r

f » g U,*(k)[p,*.j gk, (Q)] f d&» g U, (k')[p;j g», (0)]0 I

i g Eq. (29), we have assumed that the atom is located at the point r=Q in which the incident squeezed light is
focused.

ploying the Markov aPProximation in which we ignore retardation e6'ects, and taking the long-time limit, i.e.,
/~„1/mz, we can replace the coefficients (29) by their limiting values as z~o+. This is still quite general, in
of the squeezed mode function U, (k), although it requires that the correlation functions be now relatively broad-

band. Next, substituting Eq. (27) for U, (k) and Eq. (23) for g„„we derive

(, [k;(2ko —k,. ) ] 1/2 1/2
'rj J —,ppM'(k) f dQ» Q lp e

I f d~„,y lp~e
16~ eoW 0

(, k,. 1/2 1/2

p;p, N'(k;) f d&» y IP, ek, l' f d~„,y Ip e„.
16~ BOA'

' J ' n 0

(, k,.

2 p pjf ~ X(P; 'k, )(p, e., »
16m go&

'
sphere

p;pj dk [k (2ko —k)]'~' 1/2

f d&»pip;. ek, l' f dn» ylP, , e„,.l'
(30)

3

f"k f «»g IP;, ek, l'
h

2

f dk O'N'(k) +
J~; 16~ eo4 lj pj

f d&» g IP;,'ek, l'
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where p, is the unit vector along the transition electric-
dipole moment 1M;, and p,. = ~ p, ~.

To carry out the polarization sums in Eq. (30) we can
go over to a spherical representation in which the unit or-
thogonal polarization vectors ek, and ek2 may be taken
as

ek 1 ( cos8k cos+k cos8k slunk s1118k )

ek2=(singrk, —cosyk, 0) .
(31)

Qm =+1
First we consider Am =0 transitions, in which the atomic
dipole moments can be written

p;=p;(0, 0, 1) . (32)

With this choice of polarization vectors, the sums over s
and integrals over d Qk in (30) lead to

2ko —k,
g7J

3/2

(y;yj )' N'(k;)u(8),
J

3/2

( )1/2

J

(y;yl )'/ M'(k; )u(8),

y( )—
7J

(33)
72,;P, d.k [k(2ko —k)] /

6~ co%

2 3
11 ~ 1M)1 f dk k

(k;, —k) '

2

bco; =g v(8)
J~; 6m eofi

1 1
X fdkk N'(k) +

where y, =k, p, /6~roti. The f. unction u(8) depends on
the angle L9 over which squeezing is propagated, and is
given by

FIG. 2. A three-level atomic system with Am = 1 transitions,
in which only the indicated levels can become excited.

M(co;)=M'(k;)v(8), N(co;)=N'(k;)u(8),

while the coefficients in the equation are
3/2

2CO CO;

(y;y, )97J
COJ.

3/2
C07.

)
1/2

(36)

AC07J—
777J

(Cd;lu& )

(37)
d cok [cok (2a) —co k ) ]

M(cok ),
Cdk CO;

d

6~ c eoR J~; (~;J ~k)

the squeezing parameters, decay rates, and frequency
shifts must now be replaced by their effective values in
the three-dimensional squeezed vacuum. In the present
case, the effective squeezing parameters M, N are now
modified to new values that depend on the angle over
which the squeezed field is propagated:

u (8)= —,'[1—
—,'(3+cos 8)cos8], 8&(0,~) . (34)

1 2b.cg; —
& g P&, dMkcokN(cilk )

67T c E'oA J@7. ~1)
To carry out these polarization sums we have used a

linear representation for the polarization vectors ek, . It
is not difficult to show that with a circular representation
for the polarization vectors, i.e.,

ek+ (ekl+lek2)
2

1
ek — (ekl lek2)

2

and with parallel dipole moments P;=+2 '/ (1,+i, 0)
for b.m =+1 transitions, "Eq. (30) leads to the same de-
cay constants and frequency shifts as given in Eq. (33).
In this situation, a true three-level submanifold can exist,
as shown in Fig. 2.

With the parameters (33) the inverse Laplace trans-
form of Eq. (17) leads to an equation of exactly the form
found in Eq. (20), the one-dimensional case. However,

1

(CO,J +COk )

where cop =ck.
The three-dimensional master equation has form iden-

tical to the master equation (20) derived for the one-
dimensional field. However, the parameters M, N now
depend on the angle 0 over which the squeezing is pro-
pagated. For small 8 (8«1), u(8)=0, and the master
equation (36) reduces to the well-known equation '
describing the interaction of the three-level atom with the
ordinary (unsqueezed) vacuum field. We should point out
that what is denoted as 2y; in Eq. (33) is the usual Ein-
stein A coefficient for spontaneous emission from level
i +1 to level i On the othe.r hand, for large 8, v(8)=1,
and then Eq. (36) reproduces the master equation (20) de-
rived for the case when the atom interacts only with an
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idealized one-dimensional multimode squeezed vacuum
field.

In order to show that more precisely, we note that for
all angles 8, v (8) ~ 1. Using the results from Appendix
A, and integrating over all mode directions, it is possible
to show that

~M'(k)
~

& N'(k)N'(2k0 —k)+min[N'(k), N'(2k0 —k )] .

(38)

In terms of the effective one-dimensional squeezing pa-
rameters M, X, this leads to the result

+v(~)min[N(~k) N(2' a~k)] (39)

This is a stronger inequality than the one-dimensional
equation (7), and simply means that it is necessary to
have v (9)=1 (i.e., 8=m) in order for the effective three-
dimensional squeezing correlation function M (co) to have
as large a value as in the idealized one-dimensional case.

Our results demonstrate that there is no essential dis-
tinction between the cases of a one-dimensional and
higher-dimensional squeezed vacuum. A higher-
dimensional squeezed vacuum, in which only some modes
are correlated, behaves exactly as a one-dimensional
squeezed vacuum with imperfect squeezing. In either
case, the terms proportional to M, the effective cross-
correlation coefficient, have a reduced size in the final
master equation. In order to increase the effectiveness of
the squeezed radiation, it may be beneficial to also in-
clude a cavity or arbitrary optical devices into the
configuration. Generally speaking, this can increase the
effective squeezing parameters (M), relative to the case
treated here. However, these only change the vacuum
correlation function, and hence can be treated using the
general theory of Eq. (25).

We note that, as previously, the vacuum-Lamb-shift re-
sults require the addition of a mass-renormalization
counterterm, and higher-order terms in the Hamiltonian,
in order to obtain the correct results. Even then, an ap-
propriate cutoff at cu „-c/I"0 needs to be added at the
atomic dimension of r0, in order for the present approxi-
mation to be valid. In this respect, the present results do
not differ from standard treatments of multilevel atoms
without squeezing. However, the terms proportional to
the squeezing parameter M are a unique feature of the
new master equation.

V. DISCUSSION
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APPENDIX A

We wish to derive the inequality of Eq. (7). According-
ly, assume that we have two modes a,. and a, for which
the correlation functions are

&a, a )=NB,
and

&a;a ) =M, &ata ) =M* for iWj,
(A 1)

where N; =N(co; ) is the intensity of the mode a,. with the
frequency co;. This corresponds to a discrete case, where
the quantization volume is finite. The relations between

and M are related to the squeezing and Cauchy-
Schwarz inequalities, which are known from parametric
amplifier theory. ' For two operators X and X these
limits are

of an arbitrary squeezed field and one where only those
modes are squeezed whose propagation vectors lie inside
the solid angle Q over which squeezing is propagated.
Spontaneous emission into ordinary (unsqueezed) vacuum
modes is allowed. Our master equations [(20) and (25)]
can be applied to many experimental situations. Thus
Eq. (20) holds when the atom interacts with a multimode
one-dimensional squeezed-vacuum field, while Eq. (25) is
generally applicable. Equation (20) with the parameters
(36) and (37) holds when the multimode three-
dimensional squeezed vacuum field is mode matched, and
propagates over some solid angle 0, as well as when the
atom is embedded in a three-dimensional squeezed vacu-
um. The last situation can be realized when the mode-
matched squeezed vacuum field propagates over the angle
0=m, which corresponds to a perfect electric dipole
wave. Our equations also include the situation in which
two incident correlated modes can have different intensi-
ties as, for example, in output from the degenerate para-
metric amplifier. There is no restriction to degenerate
frequencies in the atomic transitions.

In the following paper we shall apply the master equa-
tion (20) to study the transient and steady-state popula-
tions of the atomic levels. We shall compare the atomic
population for the atom interacting with the thermal
(blackbody) field with the population when the thermal
field is replaced by the multimode broadband squeezed
vacuum field.

We have considered here the problem of the interac-
tion between a three-level atom in cascade configuration
and a squeezed vacuum field. Starting from the Hamil-
tonian for the atom coupled to the continuum of quan-
tized electromagnetic modes we have derived, within the
Born and Markov approximations, the master equations
for the reduced density operator of the atom interacting
with a multimode broadband one-dimensional squeezed-
vacuum field and a three-dimensional vacuum field. In
the three-dimensional case we have treated both the case

&x'x) &0,
& x',x, & & x',x,» i & x',x, & i' .

Let us assume that

X=a;+za

Xi =a, +za,

X2 =a +za

From (A2) and (A4) we have that

(A2)

(A3)

(A4)
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N, +
I
z

I ( 1+Xq ) + 2
I
M

I I
z

I
.

Letting Izl =N, , then

2IMI ~1+N;(1+N, ),

(A5)

(A6)

g, (~k) =Pi;(~k) '"
where p is a constant, we obtain

[cok(2co cog) ]
b,co, =P p, ,p, M f d cok

0 cog co;

(83)

(84)

2IM +N ~(1+N;)(1+N ) .

Inequality (A6) or (A7) must be true for all j, i.e.,

2IMI ~1+N;N +min(N, ,N. ) .

(A7)

(A8)

A change of integration variable (u =co&—co) leads to

hco; =P p, ;p, M du
(co u )

1

(85)

On the other hand, from inequalities (A3) and (A4) we
derive

[lzl'+N;(I+ lzl')][I+N, (1+ lzl')] —IM(1+ lzl')I' .

(A9)

where

6; =(co;—co) .

Evaluating the integral in (85) we obtain

b co;, = vrP p; p Mo;, (87)
In particular, for lzl =0

IMI' & N, (1+N, ), (A10)
or

(co, —co)M
L IL

[co; ( 2co co ) ]
(88)

(1+2N, )(1+2N, ) ~ 4IMI' . (A 1 1)

Since, —'(1+2N,. ) & N;(1+N, ) the inequality (Al 1) is
weaker than (A10). The inequality (A10), similar to (A8),
must be true for all j, i.e.,

1+IM ~1+N, N +min(N~, N ) . (A12)

The squeezing limit (A2) leads to the inequality (A8) be-
tween the parameters N;, X, and M, whereas the
Cauchy-Schwarz inequality (A3) leads to (A12). But
(1+ Ml ) is always greater than 2IMI. Thus (A12) is a
stronger inequality than (A8). Further implications of
this relationship are discussed elsewhere. ' In this
present paper, the infinite volume limit is taken to obtain
the continuum mode relationship corresponding to (A12),
given in Eq. (7).

Aco . —
LJ

VL YJ

( co; co& )

d ~k I. ~k(2~ —~k ) ]'"
M(cok) .

(89)

The integral appearing in Eq. (89) can be evaluated simi-
larly to the one-dimensional case and leads to

where q," is defined in Eq. (21). It is evident from the
above equation that the generalized level shift Am, in-
duced by the cross correlation is exactly zero for a transi-
tion with ~=co;, i.e., when the transition is on resonance
with the carrier frequency m of the squeezed field.

For a three-dimensional squeezed-vacuum field the
term Aco, is defined in Eq. (37) and has the form

APPENDIX B

COJ.

Aco;
2co

3/2
CO; CO

( )1/2
L J

g;(~~)g, (2~ —~k)
b, co,j= J dcoi ' M(cog) .

I

(81)

The exact value of this parameter depends on the explicit
spectral form of M(co&). Consistently with the white-
noise approximation we assume a Oat distribution

M for 0(cu&+2'
M(cok) =

'0 for co&&2' .

With this approximation and using the relation (valid
for electric-dipole coupling) that

We wish to estimate the greatest order of magnitude of
the Ace;. parameter, which is due to the cross correlations
between two modes co& and 2~ —co&.

For a one-dimensional squeezed-vacuum field this pa-
rameter is defined in Eq. (21) and has the form

2

X 1+
26), coJ.

(810)

In all the above calculations we have assumed a fiat
distribution for M(co&). Since M(co&) is symmetric, i.e,
M(co&)=M(2co —co&) the integrals in (81) and (89) are
equal to zero for the degenerate case independent of the
spectral form of M (coi ). It is also noteworthy that the re-
sults (87) and (810) have the property that, on two-
photon resonance where co;+m =2',

Act) J
— Ac&) J (811)

More generally, for an arbitrary correlation function
M (cok), the symmetry properties of
M(co&)[=M(2co —co&)] imply that Aco; can always be
written in the form



43 THREE-LEVEL ATOM IN A BROADBAND. . . . I. 6257

ct(u)du
Aco;

co Q 5l

(B12)

where a(u) is an even function for either dimensionality

of the squeezed vacuum. This means that Eq. (Bl 1) must
be true whenever co;+co =2', as 5, = —5. on two-
photon resonance. In this more general case, where a(u)
has a frequency cutoQ; Ace; can be reduced substantially
from the "worst-case" estimates of (B7) and (B10).
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