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In this paper we derive analytic expressions of the field on the mirror surfaces of a pendular and
misaligned Fabry-Perot resonator by taking into account longitudinal and transverse optical modes.
In particular, we obtain analytic expressions of the spectral components of the power reAected by
these devices for oscillating mirrors and modulated laser beams. In addition, we discuss the equa-
tions of motion of the mirror holders and analyze the onset of instabilities induced by the radiation
pressure, by accounting for transverse optical modes and torsional oscillations of the multiple pen-
dula to which the mirrors are suspended.

I. INTRODUCTION
Fabry-Perot resonators are playing a major role in long

baseline interferorneters used for detecting gravitational
waves (GW). Following the idea first illustrated in a pa-
per by Gertsenshtein and Pustovoit' in 1963 and ana-
lyzed by Weiss in 1972, Drever built in 1980 a GW
detector by placing two Fabry-Perot (FP) cavities in the
arms of a Michelson interferometer. Presently, two pro-
totype Fabry-Perot interferometers are working at the
University of Glasgow, Scotland and at California Insti-
tute of Technology, Pasadena, California. In order to
reduce the seismic noise, the mirrors of projected GW an-
tennas will be fixed to suitably suspended masses. Con-
sequently, typical features of these detectors will be
lerigths of about 3 km. and mirrors attached to mechani-
cal pendula. 4

The mirrors of these long FP resonators must be kept
aligned to high precision with the laser beam in order to
achieve a projected accuracy of 10 ' in the measure of
the relative variation of the distance of the test masses.
Proper alignment of the input laser beam means that it
couples completely to the fundamental spatial mode of
the cavity and not at all to the higher-order ones. Trans-
verse displacement and mismatch of the beam with
respect to the cavity axis and waist size give rise to in-
phase coupling to the first- and second higher-order
modes of the cavity. On the other hand, angular
misalignment and waist translations couple these modes
in quadrature. All these effects reduce the detection sen-
sitivity of GW signals.

The solution to the alignment problem of FP cavities is
provided by servo systems using alignment and matching
error signals obtained by modulating the laser beam
and/or the mirror positions at suitable frequencies and
monitoring with coherent detection techniques the inten-
sity of the rejected and/or transmitted beams.

A systematic analysis of the excitation of the cavity
modes can be carried out by representing the field inside
the cavity and that reAected from it as a combination of
Gauss-Hermite modes. The beams incident on and
reQected from or transmitted through the FP cavity are
represented by vectors (E), whose components give the

amplitudes of the above modes. In this framework, the
FP cavity is represented by the matrices Xi and Xz,
which transform the incident vector (e) into the vectors
(E', ', K~2+') relative to the beams incident on mirrors M,
and M2 respectively. The components of Xi and X2 can
be calculated by means of scalar diffraction theory, which
takes into account the deviation of the mirror surfaces
from the ideal profiles, their finite sizes, and misalign-
ments.

The radiation pressure in a Fabry-Perot cavity pro-
vides a spring action, observed experimentally by Dorsel
et al. and discussed by Meystre et al. , which either
acts against or reinforces any perturbation. A motion of
the mirrors produces not only a phase change on the light
emerging from it, but also an intensity change inside the
cavity. The resultant change in radiation pressure will
act back on the mirrors. Braginsky and Manukin first
pointed out that the radiation pressure in a cavity that is
not perfectly resonant will provide a spring action that
acts against any perturbation, while the changing part of
it tends to destabilize the system. Instability will result if
this dominates the damping effect of the mirror suspen-
sion.

The analysis of the dynamical consequences of
radiation-pressure changes has been carried out by
Tourrenc, Aguirregabiria, Deruelle, Bel, and
Boulanger' ' by considering a simple model of cavity
with plane mirrors. They have shown that there exists a
threshold power of the laser beam above which the cavity
becomes unstable. In particular, Bel et aI. ' ' have asso-
ciated a nonlinear difFerential equation to the retarded
system, whose solution approximates asymptotically the
exact one. More recently, Meers and MacDonald' have
analyzed this problem by taking into account the stabiliz-
ing efFects of the electronic system controlling the mirror
position.

All these authors have treated the cavity modes as sim-
ple plane waves. Now, the question arises, to what extent
do their analyses remain valid for cavities with spherical
mirrors? The present paper addresses this problem by
considering both longitudinal and tilting displacements of
the mirror holders. For the sake of simplicity we consid-
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er only the misalignment of the FP input mirror M&.
When the mirrors are tilted, a mechanical momentum

arises as a result of the asymmetry of the radiation pres-
sure. A rotation of the mirrors produces a change in the
radiation-pressure momentum which may tend to desta-
bilize the system. In this paper we analyze this type of
instability by establishing a relation among the moment
of inertia of the mass of the mirror holder, the natural
period of the torsional oscillation, its damping times, and
the power threshold for torsional oscillation.

The paper is organized in eight section. In Sec. II we
discuss the response of a FP resonator in terms of Gauss-
Laguerre modes. In particular, we show that the matrix
X, can be expressed as a product X' ', representing the
response of a perfectly aligned cavity, by the alignment
matrix A, which describes the mirror misalignment (tilt-
ing and axial displacement). In Sec. III we show that in
case of mirror tilting, A can be represented by means of
the displacement operator used in quantum mechanics
for describing coherent states of harmonic oscillators.
Section IV is dedicated to the evaluation of the alignment
matrix for mirrors undergoing torsional and/or axial os-
cillations with generally complex frequencies co. The
series representing the matrix X& relative to longitudinal
oscillations is summed up by introducing an operator

0 (A) = [R (A) —A]/(A —I )

obtained from the scaling operator R
[R (A)f (x)=f (Ax)]. The parameter A=exp( ivor)—
represents the dephasing of a signal at frequency 6 dur-
ing the round trip r of a photon in cavity. Analogously,
the series relative to tilting oscillations is also summed up
by introducing a displacement operator whose argument
is proportional to O(Ae' ~). The presence of the factor
e' ~ marks the difference with the longitudinal oscilla-
tions. The quantity 2P represents the dephasing under-
gone by the fundamental mode during a round-trip, with
respect to a plane wave. Consequently, the tilting effects,
contrary to the longitudinal ones, depend on the cavity
geometry through the parameter 2P. Section V is dedi-
cated to the discussion of a longitudinal detuning de-
scribed by a generic function of time. The case in which
the cavity is excited by a TEMOO Gaussian mode is dis-
cussed in Sec. VI. In Sec. VII we consider different align-
ment errors obtained by either imposing mechanical os-
cillations on the mirrors or modulating the laser beam at
some suitable frequencies. The radiation pressure and
the relative momentum with respect to the suspension
axis of the mirrors are analyzed in Sec. VIII. Section IX
is dedicated to the analysis of the torsional and pendular
oscillations. The work is completed by four appendices
dedicated, respectively, to the properties of the operator
O(A, ) (Appendix A), to the extension of the so-called
Jacobi formula to an exponential function of O(A, ) (Ap-
pendix 8), to the representation of exp[JR (A, )]X' ~ by
means of degenerate hypergeometric function (Appendix
C), and, finally, to the pupil of an element of an array
detector (Appendix D).

II. RESPONSE OF A FP RESONATOR
TO AN EXTERNAL LASER BEAM
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FIT&. 1. Schematic of a Fabry-Perot interferometer with the
mirrors supported by suitable multiple pendula for attenuating
the seismic noise.

Let us consider a linear FP resonator consisting of two
concave mirrors M, and M2 with curvature radii R i and
R z, separated by a distance d much greater than the mir-
ror dimensions (see Fig. I). The linewidth of the laser
beam used in GW detectors is so small that we may as-
sume the cavity to be excited by a monochromatic field of
frequency co, entering the resonator through the backside
of mirror M, . In addition, we assume that M, and M2
move very slowly with respect to co '. Under the latter
assumption, the field inside the cavity can be represented
by the superposition of two opposite traveling waves,
whose complex amplitudes are denoted by u' '(r, t)e' '

and u' '(r, t)e' ', respectively, for those traveling for-
ward and backward from mirror M

&
to M2 and vice ver-

sa.
Solving Maxwell equations for a field confined between

moving boundaries is a formidable task, which admits ex-
act analytic solutions only in a few cases. Approximate
solutions can be found when the walls change their posi-
tions by much less than a wavelength during the photon
lifetime. In this case recourse can be made to the slowly
varying approximation (SVA). If we indicate by II, and
H2 the surfaces of M& and Mz located at the respective
reference positions, in the SVA the fields relative to H&

and II2 are represented, respectively, in the form

u', —z'(r„t)e' '=u +—(r, 2, t)e' '

(r, being the transverse ray vector), where u' —' are slowly
varying functions of time, such that we neglect their
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u (
—)

( t) —e
—ikd +ik5x (t)g( /2)

—iksx )(I)

X I u2 '(t)K, 2dS2

(+)(t) e
—tkd tk5»' —'(t)g(r/2)eik5»' '(t)

u2

X I u', +'(t)K2, dS', ,

(2)

having omitted the dependence of the fields and the aber-
ration functions on the transverse coordinates y and z.
5x" ' represent the axial displacements of M& 2 from
H, 2. The aberration functions 8', 2 of MT 2 measure the
deviations of the surfaces of M, 2 from those of perfectly
aligned mirrors (see Fig. 2). exp( i k T, ) r—epresents the
dephasing undergone by the input beam in passing
through the mirror 1. t „r„r2 stand for the generally

complex transmission and reAection coefficients of M&
and M2. b, (r/2) is a shift operator which transforms

f ( t) into the time-delayed function f ( t r l2 ),—while
r =2d lc is the round-trip time interval. In particular,

1
uln (o;„e

+2Z, P

6;„representing the electric field of the input beam mea-
sured on the front surface of a perfectly aligned and
aberration-free mirror M, . P and Zo stand for instan-

second time derivatives, when needed. Under this as-
sumption, the u' —' are related to the input u;„(r, )e'"'
(relative to II, ) by the string of equations

(+) 2ik)I )(t) ( ) i2k5xt(t) —ikTI
u, t =r, e u, te t, e u;„,

( )
i2kW2(t) —i2k5»2(t) (+ )u2 t =r2e u2 t

being k =co/c, together with the Fox-Li integral equa-
tions

taneous intensity (in watts) of the laser beam and the
free-space impedance (120vr 0). +2PZO is a normaliza-
tion factor such that the power carried by u;„ is equal to
unity. The integrals on the right side of (2) are extended
to the whole plane (yz). As a consequence of the simple
form of these integrals, we pay the penalty of neglecting
the diAraction eff'ects due to the finite mirror sizes.

The kernel K,2 of the system of Fox-Li integral equa-
tions (2) is given by

K,2(y ),z);y2, z2 ) =K (y, ,y2 )K (z, ,z2 ), (4)

1/2

K(u, u)= exp i —(g, u +g2v —2uu), (5)

g; = 1 —d/R; being the so-called g parameters of the cavi-
ty.

Before discussing the significance and utility of the
above vector relations, we comment on their generality.
They have been derived by using the SVA. Accordingly,
they hold true when the coherence time of the laser field
is much longer than the photon lifetime ~ in the cavity.
In Eq. (2) the assumption that the bandwidth B of the
field u' —' is so small that the error introduced by using a
propagator relative to a perfectly monochromatic field is
negligible is implicit. This amounts to assuming
Bd /c ~ 1. We can estimate B by observing that a wave of
frequency co undergoes a Doppler shift 6cu=~v/c when it
is reAected by a wall moving at speed v. Since a wave
bounces the FP mirrors back and forth a number of times
equal to the finesse 9' of the resonator, then B is approxi-
mately given by B =clou V/c. Accordingly, the SVA holds
true subject to the inequality

r Pku =~ kU &&~,

T =rV being the photon lifetime. In particular, for a
sinusoidal motion of the walls of amplitude 6x and fre-
quency co, the SVA can be used only if the mirror dis-
placement during an interval w is much smaller than a
wavelength.

w (y) w (y)
A. Modal representation of the field

r

tw

W 1 1
u, (y, z) =

W ~2 + I T. yyz T.

1/2

A simple way to solve the system (1) and (2) makes use
of the field representation in terms of the orthonormal
functions u I

I

M2
Sx2

XH
V'2z y'+z'

exp
w w

FIG. 2. Geometry of the mirrors. The field traveling from
mirror 1 to mirror 2 is indicated by u'+', while u' ' represents
the wave propagating in the opposite direction.

—= u, (y)u (z),
with H& the Hermite polynomial, and w a generic pa-
rameter. Accordingly, we represent the fields relative to
M& and M2 as superpositions of modes uI"', uI' ' obtained
by setting w equal to the spot sizes relative to the two
mirrors respectively. To this end, we introduce the vec-
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tors E defined by the series expansions

g(+) — ~ E(+)I g(1)
1 +1m

I, m =0

(+ ) ~ E(+ )lm (2)
2 ~ 2 &Im

l, m =0

(8)

(9)

E' '(t co)= 1

r1I"2
@( )

iksx( )(i)

X g —ikSx( )( t) E( )(t '
)

EI+'(t;cu)=r, U, (t;co).E(( )(t;co)+t)T,(co) e,
E2 '(t;co)=r 2U2(t;co).E(2+'(t;co),

elm&())
l, m =0

(10) E (+ )(t;co) = 1
2

T17"2

—iksx (t)

and the matrices U1, U2, T„

i2kW& (1)
Im ~ 1,1m I'm'

I', m'

where

iksx (t) E(+)(t. ), CO

q&l'm'(
) +I

I

i(l+m)/+IX/2g
Im m Pe ll' mm' &

(14)

(15)

2 (2) ~ Ul'm'
& (2)

+Im ~ 2 lm +I'm'
I', m'

—ikTl (1) ~ I'm' (1)
+1m ~ T1,1m ~I'm'

I', m'

Now, exploiting the integral identities

zg( ) ——ei( + + )& g( )~
m lm 12 2

u' )=e'™ +I'~ u"'~ dg~Im J ~1m 21 1

where

w»ie Ipl = Ir) r2I ~ the phase of p is y=2p —cur +2/, and
the phase of r, r2 is 2g. In the following we will find it
worthwhile to express the matrix @ and related quanti-
ties in the form

42=%@,

with 4 the diagonal matrix
@I'm' —~ (

i2(l+m)(I )gIm e ll' mm '

and R (A, ) the scaling operator transforming a functionf (p) into f (Ap).
Next, solving with respect to E'1 ' yields

P =cos Qg (g2

we recast the system (1) and (2) in the matrix form

(13) E', )(t;co)= X,(t;co) T, (co).e,
I"

1

where

(17)

X(t;co)= g 8",(t;co).U*, (t;co),
n=1

g (t.~) @(co)eiksx (t)Qe —(2ksx (t).U (t.~) @(~)geiksx (t) U (t.~)

On the other hand, it is easy to show that the field E1 reAected from the entrance mirror M1 is given by
2 2

—i 2k6x (t)E ()t;co)= T((co) X()t;co) + e ' " '" T)(co).e .
T1 1

(19)

Similar expressions can be derived from (14) for E(2+' and X2.
X)(t;co) depends parametrically on the frequency of the incident beam and on time due to the presence in (18b) of the

phase factors exp[ik5x" '(t)] and the matrices U, 2, which represent generally time-dependent mirror misalignments.
When the mirrors are at rest, the delay effects disappear and 6 reduces to unity.

In general, X, satisfies the delay equation

X,(r) U, (t) =%(t)[1+X,(t r) U, (t —r) ],—
where

ik [sx( (t) —25x (t —r/2)+sx (t —r)]c
1

(20)

For a perfectly aligned cavity (U( 2=1, b, = 1, 5x" '

=0), (18a) reduces to
In some cases it is worth expressing X' ' by means of

either the matrix % or the projectors Pl over the modes
lm,

X= ~~@=(1—W) '@—:X''.
1

n=1
(21) X(o)—@X(o)— I yP

lm n = —oo ~ ~nlm
(22)
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where X' '=p/(1 —p) and [see (15)]

res'„i' =i—Q~!r, r2~+2~n +2(l +m +1)P+2$,

with

&=~V'lrirpl/(1 —lrir2I)

(23)

eral less than 6X10 (see Ref. 4). Consequently, ~e~ is
smaller than 10,a value consistent with the SVA.

If we consider the modes ui as the eigenfunctions ~1)
of a harmonic oscillator, the matrix U, will represent the
displacement operator D( i—e) introduced by Glauber'
for generating a coherent state of generally complex am-
plitude a starting from the ground state 0)

the finesse of the resonator (see Ref. 15, p. 172).

III. ABERRATION MATRIX U FOR MIRROR TILTING

(a )', = t u,'"(y)a u,'"(y) d=y&l+15i i+i,
(24)

In the paraxial optics limit a generic mirror misalign-
ment can be decomposed in the superposition of a rota-
tion by an angle n around an axis tangent to the mirror
vertex and a displacement 5x along the optic axis of the
cavity. For example, a rotation by an angle P around an
axis crossing the optic axis at a distance l from the mirror
vertex can be decomposed into a rotation by the angle
a=(1+l/R)P plus a displacement 5x =(IIR —1)lP /2,
R being the curvature radius of the mirror. Similarly, a
transverse displacement d, along a horizontal direction
perpendicular to the optic axis can be obtained by super-
imposing a rotation around the vertical axis by the angle
a =d, /R and a longitudinal displacement 5x =d, /2R.

In view of the above property we will limit ourselves to
considering the contribution to the aberration function
due to the rotation around an axis tangent to the mirror.
To this end, we introduce a coordinate system with the x
axis coincident with the optic axis of the cavity and
pointing from M1 toward M2. The z axis is upward
oriented parallel to the suspension axis, while the y axis is
horizontal.

With the above choice of coordinates, for a rotation by
an angle a around a vertical axis (a) 0 corresponds to a
counterclockwise rotation for an observer looking at the
mirror from the top), the aberration function is given by
W(y, z, t) =a(t)y If we .consider the Hermite-Gauss
modes (7) as the eigenfunctions of a harmonic oscillator,
we can conveniently represent y as the sum of the
creation and annihilation operators a and a, respective-
ly, whose matrix elements are given by

U, =D( —ie) . (27)

aa~ —a*aIn general, D (a) is defined as D (a) =e ' '. When ap-
plied to ~0), it gives

(28)

The most general mirror motion can be represented as
a superposition of oscillations at different frequencies. In
particular, the damping or the amplification of these per-
turbations are accounted for by adding imaginary com-
ponents to these frequencies. In the following, we will
show that X1 factorizes into the product A.X' ' of the
alignment matrix A by X' ' (relative to the perfectly
aligned cavity). Accordingly, all the information about
the cavity misalignment (longitudinal detuning and tilt-
ing) is contained in A. In addition, it turns out that A
can be represented as the product A, A& of the matrix
operator A, relative to the tilting by the scalar operator
A& representing the longitudinal detuning. The combina-
tion of tilting and detuning at several frequencies leads to
an alignment matrix represented by a suitable product of
the matrix and scalar operators relative to the single fre-
quencies.

A. Tilting oscillations

When mirror 1 undergoes tilting oscillations around
the vertical axis, 6x'"=6x' '=8'q=O, U~=1, and in
view of (24), (18a) reduces to

For typical operating conditions e is so small that
D( —ie) coincides with 1 —ie(a +a). However, for the
sake of generality we will develop the theory for arbitrary
values of e.

IV. ALIGNMENT MATRIX A

Accordingly, we put

W(y, z, t)=a(t)y =wa(t)y Iw =wa(t)(a +a )/2 .

Eventually, for a rotation of M, the matrix U1 reads

X,= g [@b(r)D( ie)]"D(ie)—.
n=1

Since

e a~=e'&a~. e, e.a=e '&a-e

(29)

(30)

—e
—ie(a+a ) I ie(a+at) (a+at)2+E

1 2
(25)

we can displace each factor @,occurring in (27), to the
far right by multiplying the argument of each operator D
on its right by the phase factor e' ~, thus getting

where
8".U*, =D (a, )D (a2). . . D (a„,)N ",

where

(31)

e(r):—a"'(r)kw"' (26)

To be consistent with the SVA, e must satisfy the con-
dition ~e~corV&&1. For typical values of r (20 @sec), V
(30), and co ( & 10 kHz), the SVA holds true for

~
e~ &&0.2.

In the interferometers used as GW antennas, a is in gen-

a (t)= ie (t)e' ~~, —

E (t)=A ~e(t)=e(t qr) . —

Since the commutator [a,a "]= 1 is a c number, apply-
ing iteratively the Baker-Hausdorff theorem yields
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D(a, )D(az) . . D(a„,)=D(a, +a2+ . +a„,)exp —, g a;aj* —c c.

=exp g a;a exp —g a,*a exp —
—,
' ga; + —,

' g (a;aj*—a,*aj ) (32)

In particular, when e ~ e ' ', 62, and e reduce, respectively, to A =e '"' and A~a, and

n —1

a, = ieO—„(A+),
i =1

I =1 J=I+1

O„(A+A )
—A+O„(A )

I J A —1+

o,;a*—c.c—pa, '= +~a;~' —2 g a, a,*=a'
I I I,J

i~j

A+A +A+ —A —I
O„(A+A )+2 O„(A+)

(A+ —1 )(A —1)

(33)

where

0 (A)= —, A+=Ae —' ~ .

(35)

where the tilting contribution A, to the alignment matrix can be represented in the form

e2(t) O(A ) A+ O(A )—
A, (t) =D( if(t)O (A—+ ) )exp C. C.

We shall adopt throughout this paper the convention of leaving unchanged the functions e' ' and e ' " under complex
conjugation. Accordingly, we will use the symbol c.c. for indicating the complex conjugate obtained by leaving these
quantities unchanged. Finally, by inserting (33) into (32), and relying on (A5), we obtain

O„(A+A ) —A+O„(A )
X = $ D( iEO (—A ))exp — —c.c. 4 "—= A -X' '= A .%X' ',

1 n +
n=1 +

~2 A+A +A+ —A —1 A
=exp[ —ieO(A )a+]exp[ —ieO(A )a]exp —— -O(A )+e O(A )

2 (A+ —1)(A —1) A —1
(36)

Now, using the scaling operator R (k), we can split D( —ieO(A+ )) in the product of two displacement operators, thus
representing A, as

R (A+) A+ O(A )(A —A+)/2+A R (A+) A+R (A )—
A] D lE D lE exp

(A+ —1)(A —1)
(37)

The above representation of A, contain exponential functions of the scaling operator R (k), which can be dealt with
by exploiting the frequency representation (22) of X' ' together with Eq. (Bl) based on the conAuent hypergeometric
function. In several cases, e is so small that we can expand the displacement operator and the exponentials occurring in
the above equations in power series, thus obtaining, with the help of (A3),

X, = I 1 i e[O (A+ )a—+0 (A )a]+0 (e )] X' '

=sr"'(Z) —i'd[a' er"'(I )r'"(ZA+)+a er"'(I )r"'(I A )]+O(e') . (38)

When 5x' '=8', = 8'2=0, 8", reduces to

B. Longitudinal oscillations

n —1

8", =exp i +i g 5y +i +2n
7 (39)

where 5y=2k5x'"(t) and

5y =2k5x"'(t rq) . —
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In interferometers locked on a given fringe, the detuning 5y is subject to the condition ~5y~ 2'/P. In view of this,
in Ref. 13 the quantity 5g is replaced by y =5yV/2~. In addition, for a detuning oscillating with angular frequency co,
the use of the SVA is conditioned by the inequality re@ ((1 [see Eq. (6)].

In particular, for 5y ~ e ' ', X
&

reads

oo
~ 5Xr, = g exp i (A+1)[1+O„(A)] e'"=—a,z{')=ex,r{'),

n=1

which is

Hi=exp i (A+1)[1+O(A)] =exp —5y
. 5X R(A) —1

2 2 tan(re@/2)
(42)

The above equations generalize those obtained in Refs. 10—14 to a cavity with spherical mirrors.

C. Combination of rotation and displacement at several frequencies

When e and 5y correspond to the superposition of oscillations at diA'erent frequencies,
K

(t) y {k) im{k)t

k=1

5g(t) =g& (5g q'e' '~", we must replace a in (31)—(33) with gka'"'. A rather long but straightforward calculation of
the alignment matrix yields A= A, 3& with

A(i) A(2). . . i((k(K)ex
'

y e(i) (j)O(i,j) '

t t
l, J
j &i

K O (A")A(i') —A',"O (A, —"')
&(k)O (

A(k) ) exp ( y &(i)&(j )
+ 2 (0k=i ij =1 A+ —1

A = A'" A'~'=exp —y 5y'q'
q i 2 tan(re 'q'/2)

C. C.

(43)

20('j'=(I+y)I [O(A"A'~)) —O(A( )]A", /(A',"—l) I+O(A"))O(A(g)) —c c.

Q being the index exchange operator.

V. LONGITUDINAL DKTUNING DESCRIBED BY A GENERIC FUNCTION OF TIME

Using the Fourier transform

5y(t)= f 5y e' 'des,

(43b) can be extended to a generic function 5g(t) of the longitudinal detuning,
r

— R (e '"")—1
A =exp —f 5y e'"' den =R (e ' ~'")

2 tan(res/2)

where the function 5f(t), introduced by Deruelle and Tourrenc, ' satisfies the delay equation (20), namely,
—isx(i) )y(0)( )

e(i/2)(si'(&)+sr(& —r)][ I +R (
—isx(& —r) )]y(o)(

For 5y su%ciently small we can approximate the exponential with the first two terms of its series expansion,
—i&r

3 X' '-X' ' 1+1. 5g —i cur1 —pe

(44)

(45)

(46)

On the other hand, when the spectral range of 5y is smaller than the distance 2'/r7 of co from the closest pole of
X( ', we can expand R (e '"") in power series of D = —p()/()p=ir '8/()co,

oo (n —1)
A(=exp i g —D"

nI
(47)
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where

q)= f 5y e' '[ror/2 tan(d'or/2)]den

and q)(") =r "d "q)/dt". Next, expressing g as a series in g(")=r "d "5g/dt",
oo (2) (4)

+(2q) —g++ X X
12 720

we obtain,
j(m +1)/2] (2

A(=R (e ' ~)exp i— D m+1 —2q(I + 1 —2q)l

(e52)exp'(1)(D2+))+(2)
6

—R ( (~x)R (
((~r sx))

having indicated by [a] the largest integer no greater than a. Since D "X' ' is independent of r, the operator at exponent
of the term on the right-hand side (r.h.s.) of the above equation represents a series in the cavity round-trip delay r. In
particular, at the zeroth order in r the response of the cavity follows adiabatically the evolution of the resonator length,
as assumed in the work by Meystre et aI. The delay eAects appear with the first-order correction with a term propor-
tional to the time derivative of the cavity length,

A, =R(e ' r) 1+p
(1 —p)

(50)

in view of the relation

D X' '=(1+p)/(1 —p) X' ' .

VI. FUNDAMENTAL M@BE

When the beam entering the cavity coincides with the fundamental mode, i.e., T, e is proportional to the vector coo
[=(1,0, . . .)], and M, undergoes oscillations, we have

X,(t) e00= g C((t)e,(),
1

where

1 —A +A —A+ A
Ct(t)=exp — 0(A )+2 0(A+)

2 (A+ —1)(A —1) A —1
(.

In general the function

exp[@ [A /(A —1)]0(A+ )]X' '

( i e)'0 (A+—)'

(51)

(52)

can be calculated by using the expansion of Appendix C. However, for small tilting angles it is worth expanding the ex-
ponential in series.

In particular, for a steady-state tilting the relative amplitude Co of the fundamental mode reads
T

C() =exp i —+—. 0(e' ~) X
0(1) e

2, tang sin(()

. e 0(1)
exp l

2 tan(t(

~2 —i/ g2
X(0)( (2$) X(0)( ) 1+ P

2 sin(t 4 sin2y 1
—((E'/2 (any)

Expressing e and P by means of the g parameters, we
have

e /2 tang=a kdg2(1 —g, g2)

eu)("/2 tan(t =adg2(1 —g(g2 )

( 2kd )
) /2g ( /4g ) /4

( 1 g g )
( /4

I

For typical cavities used in GW interferometers, mirror 1

is plane (g, = 1), d = 3 km, A, =O. 5 pm, and

e=6X10 a(R2/d —1)

Accordingly, if we compare the phase of Co with the de-
phasing due to a longitudinal displacement, we see that
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the tilting is equivalent to a detuning 5y=e /2tan(t,
which in turn corresponds to a factor

h:—5d/d =a g) /(1 —g, g2) .

with P=E/2 taniI). Since

~X' '/R (e —' ~)X' '~ =2V~si nP~/vr,

Then, for achieving an antenna sensitivity h, the
misalignment a must be less than Qhd /(R 2

—d).
If we represent A, by Eq. (37) and neglect the round-

trip delay (A = 1), with the help of the Jacobi expansion
(Bl) we obtain

X).e00=D e. —R (e' &) D i D— . e~X,
2 sin 2 2 sin

for %sing))vr for F sufficiently large, we can ignore the
operator R (e' '~) in the above equations. In conclusion,
we observe that when the mirror is tilted, the field inside
a cavity with infinite finesse is a Gaussian centered on the
intersection with the optic axis. In other words, the
beam follows adiabatically the intersection with the optic
axis. For a finite finesse higher-order modes appear as a
result of the presence of the scaling operator R (e' ~).

QO +2is /4tang y ~ sI
2sin P

—i2spR (
i2sp —(ia l2 tang) )X(0) (54)

—ip a
X,.e00= exp —e . R (e' ~) P+—

2 sing BP

XQo X,
2 tang

(55)

D (e/2 tan(())e00 represents the fundamental Gaussian
mode displaced by ew("/2 tang [ =adg2(1 —g)g2) ]
from the mirror vertex. A simple geometric analysis
shows that this displacement coincides with the distance
of the vertex of M, (see Fig. 3) from the optic axis of the
cavity. On the other hand, D (i e/2) represents a rotation
of the beam by the angle a [see (27)]. Accordingly, we
can drop this operator from the above equation by refer-
ring the beam to a plane forming an angle a with II&.
For what concerns D( ee '~R—(e' ~)/2sing), we rely
on the relations a~a) =a~a), a ~a) =(()/t)a)~(x) for
writing

VII. ALIGNMENT ERROR

In order to design a closed-loop system for maintaining
alignment of the FP resonator it is necessary to measure
the deviation of the actual configuration of the cavity
from the ideal one. For example, the error can be provid-
ed by some spectral components of the signal obtained by
combining in a suitable way the outputs of a detector ar-
ray. This multielement signal is given by

e .T, .X,(t).P X,(t).T, e
X( )0. e/2

(56)

where P=gkdkPk Pk represents the pupil matrix of the
kth element of the polyelement detector (see Appendix
D) and dk a set of coefficients. The adjoint of X is calcu-

(a( 'tlated by treating the parameters A') and e' ' as real
quantities with respect to complex conjugation. The sig-
nal s depends on (i) the modes present in the optical beam
(vector e) and (ii) on the mirror alignment (matrix X)).
Consequently, a suitable set of coefficients dk and pupils
Pk can provide useful information about the mismatching
of the laser beam and the misalignment of the cavity mir-
rors.

In particular, for a single element detector with a unit
pupil matrix and a TEMOO mode, the signal s reduces to

s(t)=~X, (t) e
~

/~X( 'e

FIG. 3. Variation of the optic axis of the cavity induced by a
tilting of M&. As a result of the tilting, the center of curvature
of M& moves from 0& to 0& while the y axis transforms into y'.
The cavity Geld is still represented with good approximation by
a Gaussian centered on the intersection V& of the mirror with
the optic axis.

In some current prototype interferometers the align-
ment error is sensed by modulating the relative alignment
and coherently detecting the intensity change. For a cav-
ity, such a modulation is achieved either by varying the
orientation of the cavity mirrors or the position and angle
of the input laser beam. Using this control technique on
their 10-m prototype GW antenna, Ward' succeeded in
keeping the cavities accurately aligned over periods of
hours.

In the above situation, when M& undergoes oscillations
of amplitude e at frequency co, s (t) is a periodic function

containing only even harmonics of co. In case a steady-
state tilting e is overimposed, odd harmonics of co appear
in the spectrum of s. In fact, from (43a) we have for e
sufficiently small,
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X, e =X' 'e —i[eO(e' ~)+e e' 'O(A )]X' 'e,

,'—Ee—e'"' [O(e ' ~)O(A+)+c.c. ]

O(A) e—&2&O(e
—(20) O(A) A+O—(A )+ + C. C.

A+ —1
y{0)e (57)

Consequently, for the superposition e(t) =e+2e cos(tot) of a steady-state tilting e and an oscillation of amplitude e at
frequency co, the signal s obtained by using a single-element detector and a unit pupil matrix contains an harmonic at
frequency 6 of amplitude ee e' 's where for real p,

—i2$
s =X' '(pe ' ~)X' '(pA )+ . X' '(pA )

X(0)( —(2((t)
A+ A —1 X' '(pA)+c. c. +O(e ) .

A+ —1 (e ' ~ —1)(A+ —1)
(58)

A noteworthy feature of the above expression is the dependence of the error signal on the mechanical frequency, as
shown for a typical cavity in Fig. 4.

Earlier work centered on a system that used auxiliary phase modulation to monitor the amplitude of higher-order
modes in the cavity present due to misalignment. When the laser beam is modulated at frequency 0, s (t) contains two
harmonics s& and s2&, namely,

m iQt m 2i Ots(t)=s0+ Re e' 'sn+ —e ' 's2n (59)

where

e X,(p) P X,(pe ' ") e+e X,(pe' ") P X,(p).e
s = =s' ' —ies +O(E' )

i

X(0).ei 2 0 0

In particular,

X .e =X' '(p)e00 ieX' —'pX' '(pe' ~)e)0+O(e ),
so that, for real p,

{0)—X(0)( —

iver)

e«P.e«,
(p)

(() P [X(0)( i2$) X(0)( —(2$)+X(0)( i2$ —iver) X(0)( —i2$ —i2nr)]e pn X(0)( )p
pe pe pe pe e«. .

e&0 .

(60)

(61)

(62)

By combining in a suitable way the outputs of the different detectors, we can obtain a signal proportional to sz' and
free of the contributions s(n). Equation (62b) clearly shows that s(n" exhibits a peak for 0=2(t)/r Then, b. y imposing
sidebands at the appropriate frequency (2$/r) onto a resonant nominally aligned input beam, one can measure the in-
phase and in-quadrature components of the error function by measuring either the reflected or transmitted beams. In
this way, the alignment and mode-matching errors are obtained in real time and may be inserted into a closed-loop con-
trol system designed to maintain alignment. Anderson was the first to suggest this approach for monitoring the depar-
ture of the mirrors from their ideal positions.

VIII. RADIATION PRESSURE

As a result of the radiation pressure produced by a laser beam of intensity P(t), mirror 1 is acted upon by a force f (t)
given by

(63)

where

P =PiX' 'ei it /

represents the power circulating in a perfectly aligned cavity, while s is defined by Eq. (56) with a unity pupil matrix.
When the mirrors are at rest and the cavity field coincides with the fundamental mode, s reduces to unity. Since at
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equilibrium Bf/Bd must be negative, then the phase X of p [see (15)] must satisfy the condition 0)X) —m. (mod2sr).
On the other hand, X' ' is different from zero for IXI (m. /X Hence, eventually, combining these two conditions,

0)X) ——( mod2vr ) .v
In case M, changes its position in time, Eq. (50) yields

(64)

f(t)= It) I [ Ix' '(pe ' «).el +r5x Re[e x' ' (pe ' «) T(pe ' «).e

f '"(&—X)+r oXf ' "(&X),

where

&(p) =+(1+p)/(I —p)'X' '(p) .

When M& is tilted, its illumination becomes slightly asymmetric, thus producing a mechanical torque X,

N(t)= lr, I dy dzyluI 'I =—lr, I

w"'E', '* (a+at).EI
2

C oo c

(65)

w"'n (t),
c

(66)

where

n(t)=( x)T, e) ~ (a+a ).x, T, .e/lx' 'el

=e( n 0
' i corn ',

"
)sinl3—,

with P=2$+X and

2lpl
e(2$I2

2lpl(1 Ipl )

(2/I
4

(67)

(68)

For T&.e coinciding with the fundamental mode and
A, = 1 i@A', "—

, (66) specializes into

Im[X' '*O(A )X' ']
n(t)=en")=—2e

IX(0)I2

Alpl
1 —A~pl

IX. MIRROR INSTABILITIES

When the lifetime of the photons in a plane-parallel
cavity becomes comparable with the periods of oscilla-
tions of the mirror distance, Deruelle, Bel, and Tourrenc
et a/. ' ' have shown that for a laser power exceeding a
threshold value (depending on the masses of the suspend-
ed mirrors and the damping times of these oscillations),
these oscillations increase and the system is unstable. All
these authors have represented the cavity modes by sim-
ple plane waves by ignoring the finite cross sections of the
actual fields. Using the formulas developed above, we
can reexamine this problem for a cavity with spherical
mirrors. In so doing, we discover a diferent type of in-
stability connected with the tilting of the mirrors which
occurs when the resonance peak of the fundamental
mode overlaps that relative to the first excited one. In
the following we will discuss first the conditions for the
onset of the latter type of instability and, subsequently,
we will reexamine the case of longitudinal instabilities.

A. Torsional oscillations

0.8
a: g=03

b: g=05

Regarding torsion around the vertical axis, the motion
is determined by the combined action of the mechanical
restoring torque and the radiation force torque, i.e.,

s„l
Is/

0.6
e'+ —+Q,e= n (t),c I (69)

0.4

0.2

I being the moment of inertia of the mass holding the
mirror and Q, the frequency of torsional oscillations,
while (see Ref. 15, p. 475)

0.0
10 15 20

k (w(1))2

c

1/2

(70)

Frequency (kHz)

FIG. 4. Plot of Is I/Isol vs the mechanical frequency [see
Eq. (58)] for g, = I, r =20 @sec, and F =40.

Approximating n with en'", the above equation is
satisfied by e ~ e ' ' with 6 solution of the characteristic
equation
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—
CO +l—+Q =r. CO

7

g2
1/2

Alplsinp
I 11 —A+pl'

(71)

X7
x7+ +&2(11+2h)x, —02(5+h)x, =0,

xj+ +0 ( —3+2h+2j)x

For cur suKciently small, we can use the approximate
expression (68b) of n"',

CO +lCO +l"
'T

1/2 '
n', "sinp

+Q2 ' n,"'sinP=0 .I (72)

A solution of the above equation with Imago)0 corre-
sponds to an unstable equilibrium point. When sinp(0,
the term proportional to co vanishes when the laser power
reaches the threshold value P,h,

—0 (j+h —1)xj+,—(j+h —2)x. , =0,
(75)

Xixi+ +& hx, —0 hx2=f(t)/M,
7

where the r.h.s. of the last equation represents the radia-
tion pressure due to the laser field stored in the cavity.
The dots represent derivatives with respect to time with
0=v'g/I, 1 being the distance between two consecutive
masses of the composite pendulum. If we approximate
f (t) with the r.h.s. of (65), we can recast the last equation
of the above system in the form

r

x, + ——2kr (2kx, ) x, +0 hx, —0 hx2

1/2
=f' '(2kx, )/M . (76)

I
rW g2

X (1—p)(1+e' ~p)

tip
1 1

lpl(1 —
lpl ) sinp

(73)

Now, if we approximate f ' '(2kx, ) with
f' '(0)+2kf' 'x, and f'"(2kx, ) with f"'(0), we obtain
a linear system which admits solutions of the form
x~(t)=X e' ' In. pa.rticular, we have X2=X,H(co), wi—th
H(co) a rational function of co. Accordingly, we have for
the last mass

I 1

2 lt. l2 P

5

X[1+(y+P') ] y+ (74)

having put y =XV/~, p'=2$P/~, with X (lXl ~sr) the
phase of p. The factor I/r r represents the power dissi-
pated by the mirror mass when it rotates at the angular
speed 1/r.

For P) P,h the torsional oscillations of the resonator
mirror become unstable.

When the laser frequency is within a resonance peak of
the fundamental mode, in view of the condition p(0, a
necessary conditions for observing this instability is that
vr) 2/V, that is, the peaks relative to the fundamental
and first excited modes must overlap.

For p sufficiently small (/=+1 —g, g2), the threshold
power reads

+hQ —hQ H(co) [f' '(0)]'=—0 . (77)
M

The last equation can be immediately generalized by
including the effects of an electronic feedback system
with the addition of a rational function of co, which
represents the response of the feedback network.

The roots of Eq. (77) depend parametrically on the
laser power through the functions f' ". For P exceed-
ing a certain value, some roots have negative imaginary
parts, thus signaling the onset of the instability. For
studying the evolution of this instability, the dominant
reduction technique can be used, as was done by Bel,
Boulanger, and Deruelle, ' for obtaining an ordinary
differential equation whose general solution is conjec-
tured to approach the general solution of the retarded
equation of motion of the pendulum asymptotically.

X. CONCLUSIONS

B. Longitudinal oscillations

In order to reduce the seismic noise, the mirrors are
sustained by multiple pendula. In a simple case they are
made of equal masses M suspended to each other at a dis-
tance I, except for the last one whose mass is a fraction h
of M. If we indicate by xj the transverse displacement of
each mass, we have'

We have discussed the main characteristics of pendular
Fabry-Perot resonators used in GW antennas by focusing
attention of the dependence of the fields on the mirror
misalignment. For solving the electromagnetic problem
with time-dependent boundaries, we resorted to the slow-
ly varying approximation in conjunction with a represen-
tation of the fields in terms of Hermite-Gauss modes. By
introducing a suitable scaling operator, we have obtained
close expressions of the time-dependent field on the sur-
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faces of mirrors undergoing longitudinal and tilting oscil-
lations at several frequencies. Combining this result with
Fourier transform, we have obtained an expression of the
field for a generic law of motion of the longitudinal de-
tuning. Capitalizing on this result, we have obtained a
nonlinear equation of motion for the longitudinal detun-
ing exhibiting the effects of the cavity finite delay. This
result extends the analysis of Refs. 10—14 to a cavity with
spherical mirrors. In addition, we have also considered
the mechanical torque produced by the radiation pressure
in case of mirror tilting. We have derived, analogous to
the longitudinal motion, an equation of motion for the ti-
lting oscillations by including the effects of radiation
pressure. In particular, we have shown that under cer-
tain conditions these oscillations can become unstable.
Finally, we have obtained the expressions of some error
signals used for controlling the cavity alignment.
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APPENDIX A: OPERATOR 0 (A,)

Let us indicate by F(M) an entire function of an
infinite order matrix M,

The introduction of the operator 0 (A, ) allows us to es-
tablish for the matrix X' ' [see (21)) the following rela-
tion:

b, [(ilr)ink, j —1,

A, —1
(A8)

being the shift operator. Accordingly, 0 (A) and
0 (A+) can be rewritten as

0(A+)=
b, (

—co+2/ /r ) —A+

A~ —1

o(A)=
A —1

= —1+p + —res 1 —p p +0((d'or) ) .l 8 8
Bp 2 Bp Bp

(A9)

Consequently,

e~ ' '=e Pb, ( iP/r)—

0„(li) 0„(Aq)C& "=0(ii) . . 0(A, )X' ', (A7)
n =1

0„(A,) being defined by (34).
If we consider p ~ e ' ' as a function of the frequency

~, it is immediately shown that

F(M) = g F„M"

and by 0 (A, ) an operator acting on F as follows:

0(~)F(M) F(AM) —AF(M) R (s(, ) —1 F(M)
A,

—1 k —1

(A 1)

X 1+i—res 1 —p p +.p a a
2 ap ap

APPENDIX 8: JACOBI EXPANSION

(A 10)

O (X)r"'=r"'R (X)r"' . (A3)

(A2)
R (X) being the scaling operator [R (A, )f (M) =f (&M)j.
In particular, when F(M) reduces to the scalar function
&' '=p/(1 —p),

In analogy with the Jacobi expansion of the function
exp(iz sing) in terms of phase factors exp(is/), we can
prove by series expansion the relation

—i2PR ( i2$) i2$R (
—i2$)

exp P
2E

Accordingly,

O (X)r"'=er"'R (X)r"' .

Combining two operators,

(A4)
J (p)e

—i2spR (el2sp) (Bl)

with J, the Bessel function of order s. In particular,

0 (A. i )0 (A,2)F(M )

F(A, ,A2M) —
A, ,F(A2M) —

A, ,F(A, ,M)+A, ,A2F(M)

(A. ,
—1)(A2 —1)

(A5)
we verify that they commute with respect to the product
operation

0 (k, )0 (A2) =0 (A2)0 (A, , )

~1~2 1

(A. ,
—1)(A2 —1)

A R (A+) —A+R (A )

(A+ —1)(A —1)

AR (A)
(A+ —1)(A —1)

—i2sPR ( r2sg)

APPENDIX C: REPRESENTATION
OF exp[PR (e ' ")]X' '

BY MEANS OF THE DEGENERATE
HYPERGEOMETRIC FUNCTION N

(B2)

0 (A,2) — 0 (A, , ) . (A6) If we represent X' ' in the form suggested by Eq. (22),
we have (see Ref. 19, Eqs. 8.354 and 8.351)
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q

exp[pR (e ' ")]X( '= —g g, q! co+qn —co'„'~

e~ g @(1,1+y„;—P),1

rQ „y„
(C 1)

where y„=(co—co'„o'c)/0, while @ is the degenerate hy-
pergeometric function

C&(1, 1+y; —P) = 1 — P+1 1 p+. . .
y+ 1 (y+2)(y+ 1)

(C2)

APPENDIX D: PUPIL MATRIX
OF AN ELEMENT OF AN ARRAY DETECTOR

A single element of a multielement detector can be
represented by a squarish pupil extending along the y and
z axes from ay z to &y z The relative pupil matrix factor-
izes into the product of a matrix P, coupling the modes
ut(y) times a matrix P, relative to the modes u (z).
Both matrices can be calculated by introducing the gen-
erating functions of the Hermite polynomials. After
lengthy calculations, we obtain

21+I'l llil 1/2Pl 2 I.I .
l' X (l k)l(li k)lk l

I+I' —2k —1

v'2a „2/ 2
e

W

V 2b 2b2/ 2

e
M

1/221+I' —2

+ l!l!' v 2b
(l —k)!(l' —k)!k! '+ ' to

&2a—erf
N

(D 1)

'M. E. Gertsenshtein and V. I. Pustovoit, Zh. Eksp. Teor. Fiz.
43, 605 (1962) [Sov. Phys. —JETP 16, 433 (1963)].

2R. Weiss, Quarterly Progress Report, Research Laboratory of
Electronics, MIT (1972), Vol. 105, p. 54.

R. W. P. Drever, G. M. Ford, J. Hough, I ~ M. Kerr, A. J.
Munley, J. R. Pugh, N. A. Robertson, H. Ward, in Proceed-
ings of the Ninth International Conference on General Re!a
ti Uity and Graviation, Jena, 1980, edited by E.Schmutzer
(Deutscher Verlag der Wissenschften, Berlin, 1983).

4A. Giazzotto, Phys. Rep. 182, 365 (1989).
5R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M.

Ford, A. J. Munley, and H. Ward, Appl. Phys. 31, 97 (1983);
H. Ward, J. Hough, G. A. Kerr, N. L. Mackenzie, J. B.Mau-
gan, B. J. Meers, G. P. Newton, D. I. Robertson, N. A.
Robertson (unpublished).

See, for example, D. Z. Anderson, Appl. Opt. 23, 2944 (1984);
D. Fattacioli, A. Boulharts, A. Brillet, and C. N. Man, J.
Opt. 17, 115 (1985).

S. Solimeno, F. Barone, L. Di Fiore, L. Milano, and G. Russo,
in Genera/ Re/acuity and GraUitationa/ Physics, edited by M.
Cerdonio, R. Ciani, M. Francaviglia, and M. Toiler (World
Scientific, Singapore, 1989).

A. Dorsel, J. D. McCullen, P. Meystre, E. Vignes, and H.
Walther, Phys. Rev. Lett. 51, 1550 (1983).

P. Meystre, E. M. Wright, J. D. McCullen, and E. Vignes, J.
Opt. Soc. Am. B 2, 1830 (1985).
N. Deruelle and P. Tourrenc, in Gravitation, Geometry and
Relativistic Physics (Springer Verlag, Berlin, 1984).
P. Tourrenc and N. Deruelle, Ann. Phys. (Paris) 10, 241
(1985).
J. M. Aguirregabiria and L. Bel, Phys. Rev. A 36, 3768 (1987).
L. Bel. J. L. Boulanger, and N. Deruelle, Phys. Rev. A 37,
1563 (1988).

' B.Meers and N. MacDonald, Phys. Rev. A 40, 3754 (1989).
~5S. Solimeno, B. Crosignani, and P. Di Porto, Guiding,

Diffraction, Confi nement of Optical Radiation (Academic, Or-
lando, 1986).
R. J. Glauber, Phys. Rev. 131,2766 (1963)~

H. Ward (private communication).
C. Bradaschia, R. Del Fabbro, L. Di Fiore, A. Di Virgilio, A.
Giazotto, H. Kautzky, V. Montelatici, and D. Passuello,
Phys. Lett. 137A, 329 (1989).

'9I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series
and Products (Academic, New York, 1966)~


