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A general technique for modeling the behavior of an atom in the presence of a laser field is de-
scribed. This involves the integration of the time-dependent Schrodinger equation in the Kramers-
Henneberger frame. Results are presented for a one-dimensional calculation for a model hydrogen
atom across a range of frequencies and intensities. The resultant peaks in the photoelectron spectra
produced are shown to be partly the result of Stark-shifted bound-state multiphoton resonances.
The spectra also contain rainbow features due to interference between the electron amplitude gen-
erated on the rising and falling edge of the pulse. These rainbow features are a purely time-
dependent effect that can only be easily reproduced in time-dependent calculations.

I. INTRODUCTION

With the advent of higher-intensity subpicosecond
lasers, the picture of an above-threshold-ionization (ATI)
spectrum, consisting of simple, well-defined peaks, each
separated by the photon energy, has had to be modified.
Instead, it has been found that satellite lines to the main
peaks occur and the positions of the main peaks them-
selves vary with intensity.! 3 Since the intensities in-
volved in the experiments exceed those that would allow
treatment using finite-order perturbation theory, much of
the theoretical study of these features has had to rely on
numerical calculation.

Much theoretical work has been undertaken in an at-
tempt to explain the features of ATI spectra,* but the
time-dependent structure of the laser pulse has in the
main been ignored. In depth analyses of the ATI struc-
ture have been performed that rely on Floquet theory and
deal precisely with the internal structure of the atom and
these have then been compared with experimental data.’
These results are based on time-independent methods and
the spectra are composed of independent components re-
sulting from different intensities. Such methods cannot,
however, reproduce some characteristics of the observed
spectra that arise specifically because of the time-varying
electric field. In particular, the interference between am-
plitudes produced at different times in the pulse cannot
be easily included. The aim of our work is to overcome
the restriction of this time-independent work and present
the results of time-dependent numerical calculations. Us-
ing these results, various characteristics of the spectra
will be explained, including those that do not occur in the
time-independent picture. Experimentally, the observed
spectra will depend on both the temporal and spatial
structure of the laser pulse. In this paper, the role of the
time-varying nature of the electric field is examined. The
part that averaging over the spatial extent of the laser
beam plays is quite distinct from the role that the time
dependence of the pulse plays. We are not, at present,
concerned with this spatial averaging, but are limiting
ourselves solely to looking at the characteristics of the
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ATI spectra that arise due to the time-varying electric
field.

There have been several time-dependent numerical cal-
culations performed to date, which have yielded various
results across a wide range of experimental parame-
ters.*"® The techniques employed rely on some method
of solving a time-dependent Schrodinger equation. The
nature of the problem, however, imposes a restriction on
the calculations that can be performed in the time
domain: as the atom ionizes, it produces fast-moving
electron wave packets that must be tracked in time and
the calculation therefore necessitates the use of a large
amount of superconducting time. Our method, which
makes use of the Kramers-Henneberger (KH) frame to
minimize this difficulty, is compared in Sec. II with those
used by other workers. It has been found that the KH
frame offers significant advantages compared to the labo-
ratory frame. To our knowledge, ours is the first calcula-
tion to take place in the KH frame. We have previously
used it to study long-pulse ATI spectra,® over-the-barrier
ionization,® and the suppression of ionization in ultrain-
tense laser fields.” The KH frame has been also used to
facilitate the physical interpretation of high-field ioniza-
tion suppression'®!! and to study time-independent
scattering phenomena.'?

In Sec. III, results of the calculation are outlined for
regions of parameter space where there are no resonances
in the coupling from the ground state to the excited states
of the atom; instead the atom ionizes by passing through
virtual levels. In this case, provided the total ionization
of the atom is small, subpeaks are observed in the elec-
tron energy spectrum. These subpeaks are interpreted in
terms of interference between the ionization amplitude
produced on the rising and falling edges of the smooth
laser pulse that is used.

Section IV deals with ionization when excited levels of
the atom are resonant, or nearly resonant, with the
dressed ground state. Various multiphoton resonances
that occur are identified and the effect of these on the
structure of the ATI spectrum is examined. For decreas-
ing laser frequency, the number of resonances that can

6217 ©1991 The American Physical Society



6218

occur in the laser pulse increases and for a pulse of low
frequency compared to the atomic frequency, a typical
ATI peak is examined. In an experiment, both the in-
terference and resonance structure of the ATI spectrum
will be affected by the spatial extent of the laser beam. It
is not, however, the aim of this paper to examine the role
of the spatial structure of the pulse, but only the effect of
the time variation of the pulse.

Finally Sec. V deals with the conclusions that have
been drawn from the calculations and outlines various
avenues of investigation that could be pursued further.

II. THE NUMERICAL CALCULATION

Finite-order perturbation theory and other approxi-
mate analytical studies are inadequate to address many of
the issues relevant to ATI. This has led to an increasing
amount of interest in direct numerical integration of the
Schrodinger equation, and such time-dependent work has
been pursued both in one and three dimensions.®”° In
numerical calculations that rely solely on the direct in-
tegration of the Schrodinger equation, correctly modeling
the ionized electron wave packet presents problems: the
evolving wave packet is still in the presence of the exter-
nal laser field and it must not be allowed to ‘“hit” the edge
of the grid of integration. This imposes a severe restric-
tion on the calculation. If a wave packet reaches the
boundary, it will be reflected back and undergo further
interaction with the core of the potential in the presence
of the field. To avoid this, the grid must be made large
enough so that the fastest moving wave packet never
reaches the edge. Even for relatively short pulses this
means an extremely large grid must be used. The stan-
dard calculation involves matrix inversion at every time
step, resulting in an approximate N> dependence for the
amount of CPU time needed, where N is the number of
grid points. Hence increasing the pulse length in the cal-
culation will drastically increase the computer time need-
ed.

To reduce the severity of this problem, one can use the
Kramers-Henneberger frame.!»!'* This is the frame of
motion of a free-electron wave packet in the applied elec-
tric field. The KH frame has been used previously in
time-dependent Floquet calculations,!> but, to our
knowledge, we have performed the first time-dependent
calculations to actually take place in the KH frame. We
have already carried out calculations in the KH frame to
examine the transition to over-the-barrier ionization® and
also to study ionization suppression in ultraintense laser
pulses.9 In addition, the KH frame has been used to in-
terpret how ionization suppression occurs.!®!! The wave
function in the laboratory (lab) and Kramers-
Henneberger (KH) frames are related by the unitary
transformation

Sxu(r,1)=U Uyip(r,1) , 2.1

where ¥,,,(r,¢) is in the p- A gauge. U, and U, are given
by

-2
U,=exp ?lgﬁfiwdT A%T) (2.2)
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and

_ —q (¢

U,= dr A(1)-V |, 2.3
2=exp | — f _dr (7) (2.3)

where A is the vector potential of the laser field.

The Schrodinger equation in the p- A frame with an
applied electric field is given by

LN #?
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Vzwlab(r)t)_" A’V'l/}]ab(r,t)
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(D V(O(rt) . 2.4

Application of the KH transformation to this equation
produces the following version of the Schrodinger equa-
tion:

. a¢KH _ ﬁz 2
i# 31 (r,t)= %V dxulr,t)
+V(r+a(t))dgu(r,t) . (2.5)

Hence U, is a phase-transformation operator which re-
moves the A2 term from the Schrédinger equation and
U, represents a shift to the accelerated frame of refer-
ence. U, can be written in the form

U,=expla(t)-V], (2.6)
where a(t) is given by
an=—=L " A(r)ar. 2.7
m —

Examining the transformed Schrodinger equation, one
sees that the effect of the laser pulse now appears as a
time dependence of the potential. The potential now os-
cillates at the frequency of the applied laser pulse and
with an amplitude given by a(¢), which is the classical
displacement of a free electron in the laser field.

This localization of the effect of the laser field is the
most important feature of the KH frame in these calcula-
tions. Once an electron wave packet is outside the range
of the potential, then it is no longer in the electric field
and can be described as a simple plane wave. Such a
free-electron wave packet can therefore be allowed to
travel to the edge of the grid, reflect from the boundary,
and travel back up to the edge of the range of the poten-
tial. This reduces the size of the required grid by almost
a factor of 2, which, for an N3 time dependence
represents a reduction of nearly a factor of 8 for the
length of the calculation. Hence calculations can be per-
formed for correspondingly longer pulses than is possible
in the laboratory frame.

The calculation that we have performed involved the
direct time integration of the time-dependent
Schrodinger equation in the KH frame. The electric field
is treated classically within the dipole approximation as a
coherent pulse with no phase or amplitude fluctuations.
At present the calculation is in one dimension, but the
technique is, of course, not limited to one dimension only.
However, such calculations are particularly rapid.

At the beginning of the pulse, both the A and E fields
are zero and the initial bound state of the system is found
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by solving the field-free time-independent Schrodinger
equation (in atomic units), i.e.,

2
Wex=—~LE () + Vg, 2.8)
2 dx

which, because of the zero field, is the same in both the
laboratory and the KH frame. The wave function £(x) is
found by a Numerov method,"® and initially Wg the
ground-state energy of the potential is found.

The potential used is given by’

-1
Vix) FERENV (2.9)

This was chosen because it has a Coulombic tail and pro-
duces a Rydberg series of bound eigenstates. For the size
of the grid used for most of the following calculations,
the ground state has a binding energy of —0.6698 a.u.
(18.41 eV) and has 71 bound states. In addition, parity is
a good quantum number for this potential.

The laser pulse is modeled by the electric field given by

Tt

E(t)=Esin(ot )sin’ T

> (2.10)

where T is the length of the pulse and w is the angular
frequency of the applied laser field. This corresponds to a
pulse length of 27N /w, where there are N cycles of the
laser field in the laser pulse. Using a smooth pulse such
as this reduces the “switch-on” effects that populate the
higher bound states of the atom.

The time-dependent Schrodinger equation that is
solved at each time step is the one-dimensional version of
Eq. (2.5) in atomic units,

. 9dxy _ 1 a2¢KH
i x,t)=——
ot 2 ax?

+V(x +(Z(t))¢KH(x>t) ’

(x,t)
(2.11)

where the displacement of the potential, a(?), is calculat-
ed analytically from Eq. (2.7).

The time evolution is performed using a Crank-
Nicholson finite-difference iterative method!® on a Con-
vex C120 vector processor, operating at approximately
one-eighth the speed of a Cray 1S computer. The partic-
ular routine used is accurate to second order in both Ax
and At, which are the grid spacing and time step, respec-
tively. At the end of the pulse, the evolved wave function
is transformed back to the p- A frame using the inverse
KH transformation. As the vector potential is zero at
the end of the pulse envelope for a pulse symmetrical in
E, then the p- A and d-E frames are coincident, so no
transformation to the d-E frame need be applied.

To find the energy spectrum of the ionized photoelec-
trons, the evolved wave function is overlapped with the
continuum-energy eigenstates. The continuum is
modeled by an infinite, but discrete, set of eigenstates,
which are solutions of Eq. (2.8) with positive eigenener-
gies. The continuum is discretized by the boundary con-
ditions imposed by the edge of the grid, but for large
enough grid sizes, this imposes no restrictions on the cal-

culation. The energy spectrum is defined, following
Javanainen, Eberly, and Qichang Su,” according to the
formula
Wn—1+Wn+Wn+1+Wn+2
4

CE O, TP €6, 1(x)e(x,T))|?
W, +1_Wn—1 Wn+2_Wn '

n

(2.12)

This formula takes account of the large differences in
population between adjacent states of opposite parity in
the continuum.

The spacing between grid points is chosen to ensure
that the eigenenergy-finding routine can adequately pro-
duce eigenfunctions up to the highest energy in the con-
tinuum that is required for the energy spectrum. The to-
tal size of the grid, and hence the total number of grid
points used, is chosen so that the pulse is finished before
the fastest moving electron wave packet reflects from the
grid boundary and travels back into the region of interac-
tion with the time-dependent potential. The time step is
chosen so that there are enough time steps in one cycle of
the oscillation of the highest energy free-electron wave
packet to adequately follow its motion.

III. INTERFERENCE STRUCTURE
IN THE ATI PEAKS

For sufficiently high frequencies, there are ranges of
frequencies where the Stark shifts of the bound levels do
not sweep any of the higher bound levels of the atom into
multiphoton resonance with the ground state. In these
regions, the positions of the main peaks in the energy
spectra produced are given, to good accuracy, by the for-
mula

W,=W,(0)+no+W,(T/2).

Here W,(T /2) is the maximum Stark shift of the ground
state, with respect to the continuum states. This is given
approximately by the expression —(E,/2w)? and W, (0)
is the zero-field ionization energy of the atom.

In our calculation, the position of these peaks in the
energy spectrum is independent of the length of the pulse;
a longer length pulse merely has the effect of decreasing
the width of the line. However, in addition to these main
peaks, there occurs immediately to the right of the main
peaks in the spectrum, a series of peaks of decreasing
height with increasing energy that have positions which
are dependent of the length of the pulse. The pattern of
these subpeaks is similar for each of the main peaks in
the spectrum.

These subpeaks only occur when a time-varying elec-
tric field is used. For square pulse calculations, there are
subpeaks observable,’ but they are due to ionization from
higher bound states populated during the sharp “switch-
on” of the pulse. The subpeaks observed with the smooth
pulse are due to interference between the photoelectron
amplitudes produced at the same laser intensity on the

(3.1)
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rising and falling edge of the pulse. The use of any
smooth pulse that results in a time-varying ground-state
energy will produce such interference. To verify the na-
ture of these peaks, a simple theory can be formulated
that gives an estimate of the separation of these subpeaks.

For a nonresonant ionization process, the system, in
the dressed-state picture, can be thought of as consisting
of solely a ground state and a continuum. The intermedi-
ate states simply give rise to the slowly varying coupling
between the initial and final states. For an n-photon ion-
ization process from a pulse with an electric-field en-
velope defined in Eq. (2.10) above, the dressed ground-
state energy will be

W,(1)=W (0)+ W, () +na .

g (3.2)

Here, W,(0) is the zero-field ground-state energy, n is the
number of photons absorbed during the ionization pro-
cess, and W,(¢) is the time-dependent Stark shift of the
ground state with respect to the continuum. At the in-
tensities that we are concerned with, the Stark shift can
be approximated by the expression for the ponderomotive
energy of the electron: for the case when the electric-field
envelope is approximately constant over one oscillation
of the laser field, then this can be written using Eq. (2.10)
as

W,(t)=— £O—sin4

(3.3)
e 40*

Hence the energy of the electron liberated will vary as a
function of time, depending on the laser intensity at
which it ionizes. The ionized electron amplitude of a par-
ticular energy is produced both on the rising and falling
edges of the pulse at the same value of the electric
field—providing that ionization is not completed in the
first half of the pulse. The two amplitudes can then inter-
fere and produce a pattern, the constructive peaks of
which are the subpeaks in the energy spectrum.'®

The nonresonant rn-photon interaction that results in
the emission of the electron from the ground state to a
state of energy W in the continuum can be approximated
by a constant Vee- Again, it is assumed that the amount
of ionization in the pulse is low. (Decay can be included
and does not affect the qualitative conclusion until it is
very large, when it reduces the “fringe” contrast.) The
two equations that determine the ground and continuum
state amplitudes can then be taken to be

(3.4)
(3.5)

i, (1)=W,(t)a, (1) ,

W(tay(t)+ Vay(t) .

iay(t)=
Because of the slowly varying nature of the ground-state
shift, the solution of Eq. (3.4) can be approximated by
ag(t)=exp [—i ['W,(har' | . (3.6)
Substituting this into Eq. (3.5) and solving it produces an
expression for the probability amplitude at the end of the
pulse at an energy W in the continuum given by

ay(T)=—iVgexp(—iWT) f explig(t)]dt , (3.7
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where

t ’

$)=We—i [ Wt (3.8)
The integral in Eq. (3.7) can be approximated using the
method of stationary phase. This method relies on the
fact that for each value of the variable W, the energy in
the continuum, there are two points during the laser
pulse, ¢, and T —t;, which dominate the ionized wave
amplitude at a given energy. These stationary phase
points are in effect the local resonance points determined
by

W=W,(0)+no+W,(1,) . (3.9)

The ionization from these two points interferes and an in-
terference pattern is produced that is a function of the en-
ergy of the continuum state; these are the subpeaks in the
ATI spectrum. Thus Eq. (3.7) can be written in the form

ap(T) < 1+expl{i[¢(T—1t,)—¢(t,)+m/2]} . (3.10)
Because of the dependence on intensity of the ionization
rate, the spectrum is dominated by the ionization that
occurs at, or close to, the peak of the pulse. This fact al-
lows Eq. (3.3) to be rewritten, close to the peak of the
pulse, as

2

, (3.11)

EZ
42

T
2

Tt
T

Ej
W= sin* +B

where B=FE3} o/(8N 2). Equation (3.10) can then be rewrit-
ten as
—4 T } T
ay(t) exp 1l | — B |t 2 5 ] (3.12)

This gives a total probability of ionization into the con-
tinuum state of energy W of the form

372
lay(T)|* = 14cos i%[i —% (3.13)

B
Here, AW is the difference in energy between W, the
continuum-state energy, and the energy of the electrons
ionized at the peak electric field. Thus the maxima in the
spectrum are predicted to be at the energies
2/3

37 Blam +1)2/3

E”
W= Wg(OH-na)—m—i— -é—B“

(3.14)

where m =0, 1,2,3, . .. and the minima at the energies

2/3

37 pag—127,

E2
W=W,(0)+ ——+
(0O)+rnw 8/3

(3.15)

where ¢ =1,2,3, .. ..

Hence the dependence of the subpeaks on the length of
the pulse and the electric field arises through 5. Howev-
er, B is independent of the angular frequency and thus the
peak separation is also independent of this.
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FIG. 1. Energy spectra from pulses with angular frequency »=0.182 (0.25 um) and peak electric field, E,=0.053 ( =~ 10"W/cm?),
with pulse lengths (a) 64 cycle (53 fs), (b) 128 cycle (106 fs), (c) 240 cycle (200 fs). The vertical dashed lines represent the predicted po-
sitions of the interference minima from Eq. (3.15) with the maximum ground-state Stark shift adjusted.

The magnitude of the subpeaks will depend on the po-
sitions of the stationary-phase points with respect to the
peak of the pulse. The ionization amplitude is a max-
imum at the peak of the field where t,=T /2 and the two
points of stationary phase coincide. At this point the
stationary-phase method will be invalid. Away from this
maximum, the magnitude of the peaks in the photoelec-
tron energy spectrum decreases with increasing energy,
because the peak magnitude is inversely proportional to
the rate of change of slope of the pulse envelope, hence
giving large magnitudes towards the peak of the pulse.

A range of parameters has been used to test the validi-
ty of this theory with angular frequencies between 456
and 145 nm, and intensities in the region of 10'* W/cm?.

Intensities in this region have been chosen because the
electric field is large enough to produce a noticeable
quantum-interference pattern, but small enough that ion-
ization over the resultant potential barrier of the atomic
and laser fields is negligible.*!” For our potential, over-
the-barrier ionization is possible from the ground state at
an intensity of approximately 5X 10'* W/cm?.

Figures 1(a)-1(c) are a series of plots of the first ATI
peaks for pulses of identical angular frequencies and in-
tensities, but varying pulse lengths. It can be seen that
the vertical lines on the plots, which represent the pre-
dicted minima of the interference patterns, correspond,
to good precision, to the observed ones for all the
different pulse lengths. The pattern of the subpeaks for

TABLE 1. Table of results obtained from a plot of position of minima in the interference pattern

against (4g—1)?/3, where ¢=1,2,3,...
E =0.053 and varying pulse lengths.

, pulses of angular frequency w=0.182 and electric field

Cycles in pulse Gradient, G GN?73 W, (max)
64 (5.06+0.13)X 1073 0.081+0.002 0.0325+0.0005
128 (3.25+0.07)X 1073 0.081+0.004 0.0325+0.0007
240 (2.06+0.11)X 1073 0.080+0.004 0.0322+0.0005
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TABLE II. Table of results obtained from a plot of position of minima in the interference pattern

against (4g —1)*/%, where ¢=1,2,3, . . ., for pulses of angular frequency »=0.182, a pulse length of 64

cycles of the laser field, and for varying electric fields.

Electric field Gradient, G GE;?*"?
0.048 (4.87+0.20)x 1073 0.037+0.002
0.053 (5.06+0.13)X 1073 0.036+0.001
0.060 (5.30+0.15)x 1073 0.036+0.001
0.064 (5.53+0.14)x 1073 0.035+0.001
0.068 (5.84+0.14)X 1073 0.035+0.001

the higher ATI peaks (not shown here), is similar, as ex-
pected at this intensity. If the value for the maximum
Stark shift is taken simply as —(E3 /4w?) as suggested by
Eq. (3.3), with t=T /2, then it is found that the above
theory predicts maxima and minima at points that are
displaced by a small amount (of the order of w/50) with
respect to the observed maxima and minima. This dis-
placement is constant for each subpeak and is the same
value for each of the main peaks in the energy spectrum.
This small discrepancy between theory and observation
arises because of the approximation involved in using
—(E3/40°) as the maximum Stark shift. It has been
pointed out by many authors'® that this expression is
only an approximation to the maximum Stark shift in the
field and so it is no surprise that a small discrepancy
arises between the theoretical prediction and the ob-
served positions. However, this does not invalidate any
of the predictions for the relative positions of the sub-
peaks for each main peak, because the separation of the
subpeaks is dependent only on the small time-dependent
variation of the Stark shift near the peak of the pulse and
not on its absolute magnitude. Hence adjusting the abso-
lute value of the maximum Stark shift is justified and
does not affect the relative positions of the subpeaks.
Table I gives the values of the maximum Stark shift of
the ground state obtained from the plots and the results
show that the value of this shift is independent of pulse
length, as expected. Table I also shows the gradient G of
a plot of the positions of the minima of the patterns
against (4g —1)?/3 for the three pulses of Fig. 1. As can
be seen, the values of GN2/3 yield consistent results that
are very close to the predicted value of 0.079. If a log
plot of the ATI peak is examined, it can be seen that, for
values of g approximately greater than 6, the theory pre-
dicts a subpeak separation that is slightly more than that
observed. This is to be expected as the approximation of
Eq. (3.11) becomes less valid as the time from the center
of the pulse increases.

The subpeak positions also show a dependence on the
peak electric field of the pulse that is consistent with the
theory developed above. The results of calculations for
varying peak electric fields and identical angular frequen-
cies and pulse lengths are summarized in Table II. The
value for GE; ?/? for the various electric fields is compa-
rable with that of 0.0348 predicted by the theory. As we
said earlier, the simple theory that we have developed is
only valid for fields below the critical-field intensity
where over-the-barrier ionization cannot occur. We have

analyzed quantum-mechanical interference spectra for in-
tensities up to this critical-field intensity and, close to this
intensity, the agreement with the predictions is good for
the higher-order peaks (one or more extra photons ab-
sorbed). However, for the first or second ATI peaks,
there are some discrepancies. It has been pointed out
that there are many different mechanisms in strong fields
by which the continuum population can be modified.!’
Our model assumes that the continuum is populated
directly from an isolated bound state. If other competing
processes exist at high-field strengths that populate the
lower part of the continuum, then there would be consid-
erable deviations from the predicted pattern.

Figure 2 is an example of the large number of interfer-
ence peaks that are obtained for smaller frequencies. The
width for which peaks are visible is over half the main
peak separation. There are no noticeable resonances
occuring in this spectrum. This is the lowest angular fre-
quency at this intensity for which there is a clear interfer-
ence pattern. We will explain the existence of this lower
limit in Sec. IV.

As stated, the theory developed above applies to re-
gions of parameter space where there are no resonances
in the spectrum to affect the interference pattern. When
resonances exist, they modify the ATI spectrum as we
will show in Sec. IV.
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FIG. 2. Energy spectrum from a 64 cycle (97 fs) pulse of an-
gular frequency w=0.100 (456 nm) and peak electric field,
E;=0.053 (=~ 10" W/cm?).
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IV. THE INFLUENCE OF GROUND TO BOUND-STATE
MULTIPHOTON RESONANCES

When a plot of the ionization yield as a function of an-
gular frequency is examined, for a specific peak intensity
and number of laser cycles per pulse, then in addition to
the discontinuities arising from the change over from n to
(n +1) photon ionization, there are also peaks in the total
ionization that correspond to an enhancement of the ion-
ization rate due to the occurence of a bound-state reso-
nance (Fig. 3).

Because of the time-varying electric field, the Stark
shifts of the various bound levels in the atom are also
time varying. This leads to transient multiphoton reso-
nances occuring at various points in the pulse and the
theory outlined in Sec. III becomes invalid near them be-
cause of the angular-frequency dependence of the cou-
pling factor ¥V, , which was previously taken as constant.

For the higher frequencies (=5 photon resonance or
less), the transient resonances are isolated, i.e., at most
only one identifiable resonance occurs in a pulse at the in-
tensities that have been used in this paper, and these reso-
nances can be easily observed by their effect on the ATI
spectrum. In Fig. 4, the effect of a multiphoton reso-
nance in the ATI spectrum is illustrated. A 32-cycle,
10'* W/cm? pulse is examined and because of the short
pulse length, any interference structure to the main peak
is small. When the pulse is tuned to below the resonance
[Fig. 4(a)], then a second small peak can be seen to the
right of the ATI peak with a long tail on its right-hand
side. This second peak is an interference peak, but the
long tail is due to the resonance in the spectrum at this
energy in the continuum. As the angular frequency of
the laser is increased, the position of the resonance in the
energy spectrum remains approximately constant, but its
magnitude increases. The ATI peak position is, however,
angular-frequency dependent and moves closer to the res-
onance peak [Fig. 4(b)]. Then as the detuning of the laser
decreases still further, the main ATI and resonance peaks
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FIG. 3. Graph of total ionization yield as a function of angu-
lar frequency for a 32 cycle pulse, with electric field 0.053. Each
cross represents a calculated yield and the dashed line marks the
changeover from three- to four-photon ionization.
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begin to merge [Fig. 4(c)]. As the angular frequency is in-
creased still further into exact resonance, the ionization is
significantly enhanced and only one peak is visible [Fig.
4(d)]. At this point, one of the higher bound states of the
atom is exactly in multiphoton resonance with the
ground state at the peak of the pulse. Examining the
spectrum on a log plot, one can still see the interference
structure to the right of the enhanced peak, but it is
negligible in magnitude compared to the resonantly
enhanced main ionization peak. With increased detuning
above the bound level, the two peaks separate. The mag-
nitude of the resonance peak drops rapidly and the in-
terference pattern becomes comparable in size to the res-
onance peak [Fig. 4(e)]. With further detuning, the reso-
nance peak size further decreases until it disappears alto-
gether.

Obviously, the peak ionization rate occurs when the
laser is tuned exactly to resonance and this allows for the
determination of the bound state that is in resonance. In
the model atom that has been used and for the intensities
being dealt with here, the Stark shift of the bound levels
with respect to the continuum is small for all the bound
levels except the ground state. The unshifted energies are
therefore reasonable approximations to the true energies
in the electric field and using expression (3.9) for the
ground-state shift, one can identify the resonant levels.
Justification for using these unshifted excited levels of the
atoms can be found in the close correlation of the ob-
served resonance positions with those predicted by this
zeroth-order approximation. If the excited levels are
only very slightly shifted by the electric field, then the po-
sition of the resonant peak in the energy spectrum would
be independent of the degree of detuning and only the
magnitude of the peak would vary. This is found to be
true to a good approximation and hence justifies the use
of the unperturbed energies.

Table III shows four of the most dominant resonances
detected by increases in the ionization yield and merged
peaks in the ATI spectrum. The angular frequencies at
which these resonances occur are compared with those
predicted by using unshifted excited states of the atom
relative to the continuum and describing the shift of the
ground state of the atom by Eq. (3.9). It can be seen that
the correlation of the predicted and observed positions is

TABLE III. Table of positions of the observed maxima in the
plot of total ionization as a function of angular frequency,
which correspond to the occurence of multiphoton resonances
between the Stark-shifted ground state and the excited states of
the model atom. The observed values of the angular frequencies
are compared with those predicted using unshifted excited
states and a ground-state Stark shift given by Eq. (3.3).

Quantum n-photon Predicted w Observed w
number resonance

4 3 0.198 0.196+0.001

6 3 0.213 0.211£0.001

3 2 0.264 0.262+0.001

5 2 0.307 0.306+0.002
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good and the assignment of specific levels to the reso-
nances is justified. Of course, the validity of assigning
quantum numbers to the bound-state resonances is limit-
ed by the intensity of the incident field. At the intensity
that we have employed here, the ac Stark shift of the
ground state with respect to the continuum is adequately
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described by the expression for the ponderomotive shift
and the shifts of the higher bound states are small.

A further complication can exist because the width of a
bound state in an external field is increased by the field.
When this width is comparable to the spacing between
adjacent levels we must consider these levels to be strong-
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FIG. 4. Energy-spectrum graphs showing the effects of resonances in the ATI spectrum for pulses of peak electric field E,=0.053
(=~10'" W/cm?) and 32 cycles. Angular frequencies are (a) 0.188 (242 nm), (b) 0.190 (240 nm), (c) 0.192 (237 nm), (d) 0.197 (231 nm),

(e) 0.205 (222 nm). The arrows mark the positions of the resonance peak.
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ly mixed. Such mixing occurs initially in the higher lev-
els of the atom, where the level spacing is smallest, but as
the incident electric-field strength increases, the region of
the mixing moves lower.

When an atom ionizes nonresonantly at low field inten-
sities, the electron passes through a series of virtual ener-
gy levels. At higher fields, when one of these energy lev-
els lies within the region of mixing, then the level can be
considered as real and the resultant ATI spectrum can be
affected because the energy conserving points in the spec-
trum are now decided by the intermediate excited states.

This bound-state mixing also contributes to the break-
down at low frequencies of the theory presented earlier
for the production of a quantum-mechanical interference
pattern. At a given intensity the energy levels of an elec-
tron in a low-frequency field are obviously closer together
than those in a high-frequency field. Therefore at low
frequency, one of the energy levels will always lie within
the mixed-level region of the atom. This, together with
the fact that at smaller angular frequencies the larger
ponderomotive shift will sweep more of the bound states
into resonance, means that at lower frequencies, the pho-
toelectron spectra are considerably more complicated.

At the electric-field strength considered here, the
sharpness of the resonances in Fig. 3 indicates that high-
level mixing plays little part in the ionization. It is also
noticeable that the most dominant resonances that occur
are those where parity conservation is observed. This is a
rather surprising result because one might expect parity
to be no longer a good quantum number in fields of this
intensity. We would point, out, moreover, that our re-
sults compare well, in the relevant region, with those of
Sundaram and Armstrong who use an implicitly parity-
violating potential.!® Parity conservation is therefore not
an overriding consideration in the problem: it does, how-
ever, give a good indication of those routes that will dom-
inate the ionization.
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FIG. 5. Plot of the first ATI peak in the energy spectrum
from a 150 cycle (0.285 ps) pulse of angular frequency 0.08 (570
nm) and peak field intensity E,=0.053 (~10'* W/cm?). The
dotted lines mark the predicted positions of the rainbow peaks
and the arrows mark where peaks from bound-state resonances
would be expected.
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As the angular frequency decreases, the shift in energy
of the ground state for a particular electric-field strength
becomes larger and so more of the excited levels can be
swept into resonance during a pulse. This makes the
identification of the various peaks in the field more
difficult. For short pulse lengths, the rainbow structure
of the spectrum is still very noticeable but as the pulse
length increases, the resonances increase in magnitude
and the spectrum appears to be a mixture of various reso-
nances and structure that corresponds to that produced
by quantum-mechanical interference (Fig. 5).

As can be seen from Fig. 5, not all the peaks in the
spectrum can be attributed to resonances and the oc-
curence of quantum-mechanical interference must be
considered when interpreting the spectrum. In an actual
experiment, the spatial extent of the beam must be taken
account of and this may lead to some degree of averaging
of the spectra produced at the varying intensities across
the width of the laser beam. Such averaging would possi-
bly lead to a “smearing” of the interference pattern.
However, it is not the purpose of this paper to investigate
the effect of the spatial dependence of the electric field,
but instead to point out that there are effects arising be-
cause of the time-varying electric-field envelope that must
be included in the full treatment of the phenomenon.

V. CONCLUSION

It has been shown that both multiphoton resonance
ionization and quantum-mechanical interference play a
part in determining the detailed shape of peaks in ATI
spectra. Depending on the exact frequency and structur-
al details of the atom, either of these two effects may be
dominant, or for longer wavelengths, both may play a
part. The analysis of actual spectra obtained by experi-
ment must therefore contain elements of both to
represent all the effects of a time-dependent laser pulse.

For spectra from the higher-frequency regime where
resonances either do not occur or only occur in isolation,
the analysis becomes easier and each aspect of the spec-
trum is readily identifiable. For the lower frequencies,
where more resonances can occur in one pulse, the pat-
tern of the energy spectrum becomes more complicated
and includes elements both of the interference pattern
and resonance peaks.

The spectra presented in this paper are all produced by
a single smooth electric-field envelope. In an actual ex-
periment obviously the spatial variation of the electric
field across the beam, and temporal fluctuations of the
pulse, cause the actual spectra produced to be some aver-
age of a series of spectra. But it can be imagined that be-
cause of the width and magnitude of the interference pat-
tern, then some remnant of the smeared pattern may still
be noticeable. The effect of this spatial averaging would
not be as noticeable on the resonance peaks, because of
the weaker dependence on the electric field of the posi-
tion of these peaks.

Further work is at present being carried out on the
effect of spatial averaging on the pattern. Recent experi-
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ments producing ATI spectra from atomic hydrogen?
have yielded spectra of a similar type to that of Fig. 5,
and work has been carried out to identify the peaks in
this experimentally obtained spectrum using time-
independent Floquet theory.® It will be interesting to see
whether using time-dependent calculations will introduce
further effects into the spectrum.
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