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Quantum dynamics of the parametric oscillator
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We present dynamical calculations for the quantum parametric oscillator using both number-
state and coherent-state bases. The coherent-state methods use the positive-P representation, which
has a nonclassical phase space —an essential requirement in obtaining an exact stochastic represen-
tation of this nonlinear problem. This also provides a way to directly simulate quantum tunneling
between the two above-threshold stable states of the oscillator. The coherent-state methods provide
both analytic results at large photon numbers, and numerical results for any photon number, while
our number-state calculations are restricted to numerical results in the low-photon-number regime.
The number-state and coherent-state methods give precise agreement within the accuracy of the nu-
merical calculations. We also compare our results with methods based on a truncated Wigner rep-
resentation equivalent to stochastic electrodynamics, and find that these are unable to correctly pre-
dict the tunneling rate given by the other methods. An interesting feature of the results is the much
faster tunneling predicted by the exact quantum-theory methods compared with earlier semiclassi-
cal calculations using an approximate potential barrier. This is similar to the faster tunneling found
when comparing quantum penetration of a barrier to classical thermal activation. The quantum
parametric oscillator, which has an exact steady-state solution, therefore provides a useful and ac-
cessible system in which nonlinear quantum eA'ects can be studied far from thermal equilibrium.

I. INTR&)DUCTION

The steady-state behavior of the parametric oscillator
has been extensively studied. For the degenerate para-
metric oscillator (DPO), spontaneous switching between
the two above-threshold steady states due to thermal
noise' and tunneling due to quantum noise have been
considered. In this paper we present calculations of the
mean time taken to tunnel between the states due to
quantum noise effects. These results are interesting for
several reasons. Quantum systems driven to a steady
state far from thermal equilibrium are a subject of much
current research. As well as given predictions for tunnel-
ing behavior in this environment, our results show that
good agreement is obtained between methods using a
number-state basis and those using coherent states.

The degenerate parametric oscillator has two regions
of operation. When the input laser field (pump) of the
fundamental mode is weak, the subharmonic (signal)
mode has a zero average amplitude. This is called the
below-thI"eshold regime. If the pump is sufticiently
strong, there are two possible states of the subharmonic
Geld. These have equal intensities but opposite phases.
This is the above-threshold regime. It is the tunneling be-
tween these above-threshold phase states that we consid-
er in this paper. It is important to note that the tunnel-
ing considered here is not coherent tunneling, often called
quantum coherence. The quantum tunneling considered
here is similar to that in quantum jurnp experiments, and
is due to quantum effects in a nonequilibrium system.
Any coherent tunneling effects in the system we consider
will be strongly suppressed by the cavity losses.

The earliest calculation of phase switching in the de-
generate parametric oscillator was that of Woo and Lan-

dauer. ' This classical analysis only considered thermal
noise sources. The calculation was based on an electrical
circuit model, but it is directly analogous to the optical
case. Next, Graham's pioneering study of quantum
noise analyzed the system using the Wigner representa-
tion. This representation uses symmetrically ordered
operators, and gives equations that are more "classical"
in appearance than the coherent-state representations
that we use. After introducing approximations which
effectively truncate the exact quantum-mechanical
Wigner equation into a semiclassical form, a mean tun-
neling time result was obtained that was similar in form
to the classical result. The only difference was that the
noise coef5cient included symmetrically ordered vacuum
Auctuation terms in the subharmonic mode reservoirs,
while neglecting fundamental mode vacuum fluctuations.

Recently, we have obtained analytic results for the
mean quantum tunneling time that are significantly
different ' from the previous calculations. We use a
coherent-state basis for the density operator, which leads
to an exact Fokker-Planck equation on a nonclassical
phase space, whose tunneling eigenvalue is then obtained
asymptotically. In this paper we expand our earlier work
and include new calculations using a number-state basis.
The number-state calculation gives results that agree
with the coherent-state (positive-P representation) analyt-
ic theory. However, the number-state calculation does
require substantial computational effort to obtain results
with even a small photon number.

In addition we have performed a series of numerical
simulations using stochastic equations equivalent to the
exact positive-P Fokker-Planck equation. As expected,
we find that these simulations are in good agreement with
the number-state calculations. We have also carried out
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numerical simulations using the truncated Wig ner
Fokker-Planck equations. This was done both for equa-
tions that neglect noise in the fundamental mode, and
also for a more complete set of equations that included
the fundamental mode noise. Neither of the truncated
Wigner theories agrees with the exact quantum-
mechanical results, except near threshold. Thus the trun-
cated Wigner technique, which is equivalent to stochastic
electrodynamics, cannot describe true nonlinear quan-
tum processes. Of most interest is the agreement among
all the exact quantum-mechanical equations, which pre-
dict much shorter tunneling times well above threshold
than given by the earlier semiclassical theories.

(g t)2
2y2
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2y2

(2.2)

The two-photon pump strength is ~e/2y2 and the
two-photon damping rate is ~ ~/4y2. This Hamiltonian
can be represented as in Fig. 1(b). The equivalence of this
Hamiltonian to the full Hamiltonian in the adiabatic lim-
it will be shown in Sec. IV. We therefore call the Hamil-
tonian for this system the "adiabatically equivalent Ham-
iltonian. "

Either model described above can be used to obtain a

II. PHYSICAL MODEL

The behavior of the degenerate parametric oscillator
may be formulated in terms of a simple model consisting
of an optical cavity and two quantized field modes, one at
frequency co and one at frequency 2', which interact via
a second-order nonlinearlity. These modes are called the
subharmonic and fundamental modes. Both modes are
taken to be resonant with the cavity. Losses at the cavity
mirrors for both modes are included, the damping being
modeled by using reservoir modes with operators f'; and
f'";. The input pump field has frequency 2' and is treat-
ed classically. The interaction Hamiltonian for this two-
mode system is

fundamental mode

subharrnonic mode

,'iA[x*&—,a ~
.—~(a, ) & 2]+i%(ea 2

—a*&2)

+a, f",+e', f', +e,f",+e,'f', . (2.1)

Here & „a, and 82, & 2 are the annihilation and
creation operators for the two modes with frequencies co

and 2', respectively, and ~ is the intermode coupling
constant. The first term in the Hamiltonian describes the
interaction between the two modes. The classical pump
amplitude injected into the fundamental mode at frequen-
cy 2' is e, while the remaining terms describe the losses
for the two modes at the cavity mirrors, with decay rates
y, and y2 for the subharmonic and fundamental modes.
The processes described by this Hamiltonian are di-
agrammatically represented in Fig. 1(a).

When the fundamental mode decays rapidly compared
with the subharmonic mode, an alternative and simpler
model Hamiltonian can be used. This contains just one
quantized electromagnetic field mode at frequency co,
with the annihilation and creation operators 8'& and &,.
The Hamiltonian includes both a two-photon coherent
pump and a two-photon decay process for the subhar-
monic mode, in addition to the usual one-photon damp-
ing process with a damping rate of y&. The coefficients
employed are specified by the criterion that the correct
classical results must be regained in the classical limit of
large numbers of photons and also by comparison with
the two-mode model given above. The Hamiltonian for
this simple model is then

X /2' X/2'

subharmonic mode K vJ4y2

FIG. 1. (a) A diagram representing the two-mode DPO Ham-
iltonian (2.1). The boxes correspond to the cavity modes. Each
arrow represents whether photons are being put into or taken
out of the modes, with pairs of arrows denoting pairs of pho-
tons. The classical pump puts photons into the fundamental
mode at a rate c. The decay processes remove single photons at
rates y& and y~ for the subharmonic and fundamental modes, re-
spectively. The nonlinear interaction simultaneously takes sin-
gle photons out of the fundamental and puts two photons into
the subharrnonic at a rate K. This process also occurs in reverse,
where two photons are taken out of the subharrnonic and one is
put into the fundamental. (b) A diagram representing the adia-
batically equivalent DPO Hamiltonian (2.2) ~ The same conven-
tions as for (a) are used. Here pairs of photons are put into the
subharmonic at a rate eK/2y2, and removed at a rate e K /2y2.
There are two decay processes, of both single and pairs of pho-
tons, at rates y& and K K/4y2.
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master equation for the time evolution of the density ma-
trix. From that master equation, a Fokker-Planck equa-
tion can be generated that describes the system in terms
of the coherent-state basis positive-P representation,

which will be treated later, in Sec. IV. In this paper we
mostly consider the simpler system that corresponds to
the Hamiltonian (2.2). Using standard methods" this
gives a zero temperature master equation of

d -=L = KE (- t)2
dtP P

2y2

[2~a 2qa~ t)2 (g 't)2g 2~ q~a t)2~ 2]
4y2

(2.3)

where L is the superoperator describing the time evolu-
tion of the density matrix. By selecting the relative
phases of the quantum states, and hence the phase of ~,
we can ensure that ~a=~'e* with no loss of generality. '

We also introduce the scaled variables

g =, p=
2/ )p2

(2.4)

Here, g is the coupling constant scaled by the geometric
mean of the mode decay rates. The limit g «1 corre-
sponds to the current experimental limits of large thresh-
old photon numbers. The time z is measured in cavity
lifetimes. Also, p is the pump amplitude scaled so that
the threshold condition of parametric oscillation is at
p= 1. Using these, the master equation reduces to

III. NUMBER-STATE EXPANSION

p(n, m)= &n ap~m ) . (3.1)

Thus, in the number-state basis, the time evolution is
given by

An obvious method for solving the master equation is
to simply expand Eq. (2.5) over a number-state basis.
The number states are an orthogonal, complete basis for
the harmonic-oscillator Hilbert space. In this basis the
master equation reduces to an infinite matrix equation.
However, as any physical system must have a finite ener-
gy, a suitable energy cutoA' will reduce the system to a
finite number of elements. The system can then be treat-
ed numerically.

We first expand p in terms of its number-state matrix
elements p(n, m). These are defined by

d d
p(n, m)= n p m) .

dt dt
(3.2)

+-,'g'[2~ ip(& i)' —(~ i)'~i@—p(~ i)'~ il-

This master equation can be treated by expanding in a
suitable basis, using number-state or coherent-state
methods. These are dealt with in Secs. III and IV, re-
spectively. Alternative techniques, using the Wigner dis-
tribution, are treated in Sec. V.

We note here that Eq. (2.5) describes the evolution of a
Hilbert-space operator on a phase space of infinite dimen-
sion. The nonlinear terms mean that Heisenberg equa-
tion methods would result in equations with noncommut-
ing operator products. Perturbation-theory techniques
are also difficult to utilize, as all the coefficients can be
comparable in size. Thus these relatively standard tech-
niques are not useful in this problem.

d Tnm
Pij ij Pnmdw

(3.3)

The supermatrix T;~ is defined by

The equation for dp(n, m)ldt can be written in matrix
form using the Einstein summation convention on identi-
cal indices. We write p(i,j ) as p; and introduce the
four-dimensional transition matrix T;" to describe the
time evolution of p; . Each element of this supermatrix
T;" is the rate of transition from the state p„ to the
state p, A positive rate implies that there is a flow of
probability into the state, and a negative rate means a
Row out of the state. The indices (ijnm) span the range
of possible photon numbers, zero to infinity. Using this
notation, Eq. (2.S) becomes

T;" =—'@&i(i —1)5,". ' + 'P&j (j —1)5,".'. +——2iP&(i + 1)(i +2)6,". ' —
—,'P&(j+ 1)(j +2)6,".'

—[(i +j)+g [i (i —1)+j(j—1)]I5",.' +2&(i+1)(j+1)5",.
+g v'(i + 1 )( i +2 ) (j + 1 )(j +2 )5,".

~ (3.4)

1 if i =n and j =m
gn;m

0 otherwise .

The behavior of the system can be characterized in
terms of the eigenvalues and eigenvectors of the transi-
tion matrix T. The eigenvector corresponding to the zero
eigenvalue is the steady state of the system. The tunnel-
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ing eigenvalue is the smallest negative nonzero eigenval-
ue. However, before the eigenvalues and eigenvectors
can be calculated numerically, the problem must be made
finite. That is, we must place some limit on the max-
imum photon number allowed. This type of approxima-
tion will be valid if the high-proton-number states that
are ignored play no significant role in determining the
evolution of the system. Thus, by choosing the parame-
ters and a photon number cuto6'X to suit these require-
ments, accurate calculations can be performed.

In addition to this truncation, we must reduce the
four-dimensional matrix T to two dimensions so that
standard eigenvalue and eigenvector software routines

I

pe

Tripp

p (3.5)

The new transition matrix is given by

can be used. As a consequence the two-dimensional den-
sity matrix p is also reduced to one dimension. The
reduction in dimensions is achieved by stacking the
columns of p on top of one another, thus converting it
into a column vector. A similar process transforms the
transition matrix T into a two-dimensional matrix. Using
Greek indices to indicate the change, we can now write
(3.3) as

T~ = 'pv'i (i——1)5&+ + + ,'pv'j (j——1)513+ —,'p+—(i+ 1 )(i +2)5& ——'pv'( j+ 1)(j +2)5&

—I(i +j)+g [i (i —1)+j (j —I)]]5)+2&(i +1)(j+1)5& '+g &(i +1)(i +2)(j+1)(j+2)5&
(3.6)

where

a=(N+1)n+m ( O~n, m~N),

P=(N+1)i+j, (O~n, m ~N) .

Here 6& is a Kronecker delta, but care does not have to
be taken to ensure that the (ijnm) used to calculate a and
P are in the range 0 N. The no—nzero elements of the new
two-dimensional transition matrix form seven bands
parallel to its diagonal. This new matrix is not Hermitian
(i.e., not symmetric, since its elements are real) because of
the one- and two-photon damping terms. The eigenvec-
tors of nonzero eigenvalues do not on their own corre-
spond to physical states of the system, any physical state

p (r)= g Akexp(l, kr)p'"' .
k&0

(3.7)

I

being a combination of the ground-state eigenvector with
a sum of other eigenvectors. Thus, as time passes, the
contribution due to the decaying eigenvectors becomes
zero, leaving just the ground-state eigenvector. In addi-
tion, not all of the numerically calculated orthogonal
eigenvectors are symmetric (Hermitian) in the (nm) basis.
However, these occur in transpose pairs with equal eigen-
values, so that Hermitian eigenvectors can be construct-
ed.

We label the kth eigenvalue by A, I, and its correspond-
ing eigenvector by p' ' so that

(a) (b)

(D

o)—1
C:
Q)

bJ

C3

C:
(D

1 1.2 1.4 1.6 1.8 2

Pump strength p,

0.4 0.8

Noise strength g

FIG. 2. Graphs of the eigenvalue spectra obtained from the transition matrix T. In (a), the pump strength p is varied while the
noise strength g =0.25, and in (b) the noise strength g is varied while the pump strength p=2.00. Only the smallest few eigenvalues
are shown.
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Here the coefficients Ak define the initial state. We or-
der the indices k by the size of the real part of the eigen-
value, so that Re(A, &))Re(A, k+, ). Thus A,o is the stable
eigenvalue (AD=0) and p' ' is the stable state. We call k&

the tunneling eigenvalue. Higher indices, k ) 1,
represent the other dynamics of the system that charac-
terize Auctuations on shorter time scales.

Specific results from these numerical calculations are
compared with results obtained using coherent-state basis
methods in Sec. IV. Typical results are presented in Fig.
2, where the smallest few eigenvalues are plotted as both
pump strength p and coupling (noise strength) g vary.
They demonstrate the characteristic of quantum tunnel-
ing, that there is an isolated eigenvalue near the ground-
state eigenvalue, with all other eigenvalues much larger
in magnitude. Unlike coherent tunneling, these eigenval-
ues are real rather than imaginary. This is due to the
presence of decay processes modeled by the reservoirs,
and rejects the fact that we are treating the dynamics of
an open rather than a closed quantum system.

We denote the mean tunneling time obtained from
these numerical procedures as T&. Here T& is defined as
the mean switching time of a two-state random telegraph
signal that has the same decay rate of amplitude as the
tunneling eigenvector. Thus T& is related to the dimen-
sionless tunneling eigenvalue 11 to

2
1TN

1

(3.8)

Details of the numerical procedures used are given in
Appendix A. More than one software package was em-
ployed to ensure software reliability, and a number of
checks on precision and accuracy were used. This
method was successful for relatively large coupling g and
small pump strength p, where there are small numbers of
photons involved. This allowed truncations with around
%=40 photon number states, giving transition matrix
sizes of 40 elements or less. However, the diagonaliza-
tion method is not useful for the typical photon numbers
of N =10 found in many current experiments. The scal-
ing is even less favorable for multimode situations, where
the transition matrix has N elements for m modes.

In summary, the number-state expansion method is
only useful for treating small numbers of photons, due to
the memory limitations of computers —and this is unlike-
ly to improve quickly since the size of the transition ma-

trix grows explosively with increasing maximum photon
number.

IV. COHERENT-STATE
POSITIVE-P REPRESENTATION

Because the number-state methods are less useful at
large photon numbers, it is necessary to use alternative
techniques to study the parametric oscillator in this re-
gion. An obvious alternative is to use a coherent-state'
basis. These states are especially of merit in the classical
limit of electromagnetic fields, as pointed out by
Glauber' and by Sudarshan. ' The fact that operators
acting on coherent states have particularly straightfor-
ward representations in differential form allows for the
resulting equations of motion to be solved even in non-
classical regions. Here, due to nonclassical photon statis-
tics, an off-diagonal expansion of p in terms of coherent
states is used. Generalized P representations are normal-
ly ordered representations of this type. They have been
widely and successfully used' ' ' to predict the quan-
tum behavior of the parametric oscillator, as well as that
found in four-wave mixing, where squeezing was first
observed. '

The positive-P representation is defined by

a&(a '
f JP(a a )

I I d ad a'
(a"*Ia&

From this expansion, the master equation (2.5) can be
transformed into an equivalent Fokker-Planck equation
for the quasidistribution function P(a, a ), by using par-
tial integration. We note that the boundary terms are
normally assumed to vanish in transforming to the
Fokker-Planck equation form. However, Smith and Gar-
diner have pointed out the existence of anomalous re-
sults for the case of large nonlinear damping, in a master
equation similar to ours. These involve diverging trajec-
tories that occur for the coupling (noise strength) g ) I,
leading to non vanishing boundary terms. For these
values of g, nonlinear effects dominate even when the
mean photon number is less than 1. This requires non-
linearities many orders of magnitude above those current-
ly achievable in experiment. Accordingly, we restrict our
results to g & 1, where trajectories are always stable.

With the assumption of vanishing boundary terms, we
obtain

a2
P(a, a, r)=L&P(a, a, r) = [a—a (p —g a )]+ [at a[@ g2(at)2]] +— —(p —g2a2)

a2+ [p —g (a ) ] P(a, at, r) .
B(at) (4.2)

The complex variables o. and a are independent as a
consequence of the positive-P representation. Since p is
related to P by a time-independent mapping, all the
eigenvectors of the Fokker-Planck operator L~ that cor-
respond to nonzero operators must have eigenvalues

identical to those of the superoperator L and transition
matrix T.

Equation (4.2) is in turn equivalent to a pair of Ito sto-
chastic differential equations for the a and a coordi-
nates,
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is, for pump strength p) 1) the steady-state probability
distribution Pss(a, a ) has two peaks, corresponding to
the two "phase states" the device is most likely to be in.
Figure 3(a) shows a typical steady-state probability distri-
bution.

It is useful to transform the equations so that the
diffusion or noise terms become constant. Simultaneous-
ly with this we rotate the directions of the axes by 45' so
that one axis lies along the line between the two steady-
state probability distribution peaks. New variables u and
U are defined in terms of o. and o.~ by A'(u, v)= I ~u~+~v~ (~; u, v realI (4.10)

How these new variables relate to the original variables
can be seen in Fig. 3(b). Referring back to the original
variables a, o. it can be seen that in the new variables u
and U the line U =0 is equivalent to the line a=0. *. This
line represents the classical subspace of the phase space.
Thus the variable v is a nonclassical dimension which al-
lows quantum-mechanical e6'ects to occur.

The bounded manifold A(a, a ) has a counterpart in
the new variables u and v. It is

u =sin '

U =sin

+sin

sin

g O.'

vp
1

g(X

v~p

(4.9)

This manifold exists for noise strength g (&2, the al-
tered noise bound being caused by the change of vari-
ables. The Fokker-Planck equation and Ito stochastic
differential equations in the variables cx and o.~ can be
transformed into the new variables. The new Fokker-
Planck equation is

u+v u UP'(u, v, r) = — ~ p sin(u) —o. tan +tan
Bv Bu 2 2

u +U—p sin(v ) —o tan
BU 2

u U—tan
2

.+ g + g P'(uvr),
Bu Bv

(4.11)

where o.=1—g /2.
The corresponding Ito stochastic diIterential equations

are

du = p sin(u) —o. tan

ables are found where the gradient of the potential is
zero. In the case where the noise strength g is small,
o. (1, and the pump strength is above the threshold level
(p) 1), the critical points are found along the line v =0.
They are located at

(u„v, )=(o,o),
(4.15)

(4.12)
(uo, vo)= +2 sin , 0

dv= . —@sin(v) —o. tan
u +U

2

u U .dr+&2gdZ, .

Here, as for the a and at variables the (0,0) critical
point is a saddle point and the other two are potential
minima. This is shown by calculating the second deriva-
tives of the potential in the variables u and U

From the Fokker-Planck equation (4.11) an expression
for the tunneling time can be developed. Note that,
despite appearances, these equations are not periodic in u
and v due to the trigonometric functions. Their range is
restricted from —vr/2 to +~/2 by the definitions of u
and v in terms of the inverse sine function. The
transformed Fokker-Planck equation has the potential
solution

U(u, v) = —2o' in~ cos(u)+cos(v) ~+p cos(u) —p cos(v),

(4.13)

and the steady-state probability distribution is given by
the equation

U„„(u,v)= U(u, v)
Bu

r

u+U, 2 u U=—o sec
2 2 2

,
+sec

—p cos(u),

U„(u, v) = U(u, v)
BU

r

u +v u U

2 2
=—'o. sec +sec

2

+icos(v) .

(4.16)

Pss(u, v)=X'exp[ —U(u, v)/g j . (4.14)

The critical points of the potential in the u and U vari-

Thus, above threshold, the potential has the form of
two wells, each about one of the potential minima. These
wells have a "valley" connecting them over the saddle
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point. The difference between the value of the potential
U(u, v) at the saddle point and the minima is called the
potential barrier height. An important feature is that if
the noise strength g is not too large and U =0, the second
derivative in the v direction U„(u,0) is always positive.
Thus the classical subspace is at a minimum of the poten-
tial with respect to variations in the nonclassical variable
U. This "valley" along the line U =0 between the two po-
tential wells is the most likely path for a stochastic trajec-
tory to take when tunneling from one well to the other.
The tunneling rate between them will be dominated by
the rate due to trajectories traveling along this route, just
as it is for the corresponding classical system driven by
classical phase space noise sources. However, the actual
potential is now substantially different from the classical
case.

The stationary-state probability distribution in the new
variables u and U now remains zero on the boundary of
the manifold for noise strength g & &2 rather than just
for g (1 as in the case of the a and a variables. This is
a result of the change of variables, as can be seen from
the Jacobean of the variable transformation

Ba Ba
8zl BU

8cx Bcx

BQ BU

1( 2 2)1/2[ 2( $)2]1/2 (4.17)

The two probability distributions are related by

So these new variables u and v not only provide constant
diffusion, but also give a finite probability distribution
over a larger range of the noise strength g than previous-
ly.

The tunneling time for a symmetric bistable potential
in two dimensions can be calculated using an extension of
the Kramers method developed by Landauer and Swan-
son. Here we call this method the "potential-barrier
approximation. " This name arises from the fact that it is
valid in the limit where the potential barrier is large. The
result for the potential U(u, v) and diffusion g when the
saddle point is at (0,0) and the minimum is at (uo, v o ) is

1 /2
U„,(0,0)

T=27T
U„,(uo, v 11)U„„(0,0)U„„(uo, v11 )

X exp
U(uo, vo) —U(0, 0)

(4.19)

For the case considered here the potential terms are

U(0, 0) = —2cr in~2~,

U(uo, vo)= —2cr in~2~ —2 p —cr —o ln
0

(4.20)

Pss(u, v) =JP$$(cc,a )

(pg 2~2)[pg2(cct )2] I
1 /g1 /2exp(2cccct )

(4.18)

The potential curvature terms are

U„„(0,0)= —p+ o. ,

U„,(0,0)=p+cr,
U„„(uo,vo ) =2(p —o ),
U„,(uo& vo)=2p .

(4.21)

p+ o.

'Y1 p(p —cr )' exp
2

[p —cr —o. 1n(p/cr )]

(4.22)

This is the average time taken for the oscillator to switch
from the region of one state (the uo )0 state, for example)
to the other due to the inhuence of quantum noise in the
limit of small g. It is inversely proportional to the tunnel-
ing eigenvalue ki,

(4.23)

These calculations using the analytic potential-barrier
approximation are strictly valid only in the small-g lim-
it. This is the limit of small noise strength and large
threshold photon number. Thus these results are valid in
the region of most experimental interest. However, it
would be useful to have a computational method valid for
the whole range of the noise strength g & 1 rather than
only for g (&1. This is provided by the direct simula-
tion of the relevant stochastic equation, i.e., Eqs. (4.12).
The eigenvalue is then obtained by fitting an exponential
to the decay of the mean amplitude. The size of any pos-
sible boundary terms can a1so be checked during these
numerical simulations. Since no trajectories crossed the
boundary of the manifold in our simulations, we can say
that the boundary terms are zero to within numerical ac-
curacy. Details are given in Appendix B.

Figures 4(a) and 4(b) show an excellent agreement be-
tween the number-state calculations, the positive-P sto-
chastic simulations, and the corresponding potential-
barrier approximation theory. The simulation results
have error bars, which result from the use of a finite sam-
ple of trajectories. In the region where the potential-
barrier approximation is invalid (small pump strength p,
or large noise g), the predicted tunneling time diverges
and no longer agrees with the exact methods. This is due
to the reduced size of the potential barrier. The time tak-
en to do either the number-state calculations or the sto-
chastic simulations grows much larger as the mean tun-
neling time increases. This is because the number-state
calculations typically require larger matrices, while the
simulations require a much longer run time so that
enough of the increasingly rare tunneling events occur to
give a good average.

In the experimentally attainable region of relatively
large photon numbers, only the coherent-state methods
give results —the simulations being more useful in the

Using the formula (4.19), the tunneling time in the
potential-barrier approximation using the positive-P rep-
resentation is therefore

' 1/2
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critical region in threshold, where the pump strength
p= 1, and the analytic theory being applicable for slow
tunneling far above threshold, with pump strength p ))1.

V. WIGNKR REPRESENTATION

An alternative representation in common use is the
symmetrically ordered Wigner representation. Again, all
the nontrivial eigenvectors of the superoperator L and
the positive-P Fokker-Planck operator LI, should have

the same eigenvalues as the spectrum of the Wigner time
evolution operator L~, since the Wigner distribution is
obtainable by transforming the I' distribution. ' The
time evolution equation for the Wigner function is given
by Graham. An approximate equation is obtained by
first truncating the third-order derivative terms from the
coupled-mode equation to get a standard Fokker-Planck
equation for the behavior of the fundamental and subhar-
monic modes:

d
wT(p„p2, t ) =

dt (y,p, ~p*, p—2)+ (y,p*, ~p, p—
2 )+ (y g~ e+,'—~*p, )

ap*, 2

a2 a2+ [y2PP 6 + K(PI ) —]+ (y I )+ (y2) W7-(PI, P2, t)
ap,* ' ap, ap', ap, ap,*

This Fokker-Planck equation is equivalent to a sto-
chastic process and can be written in terms of stochastic
differential equations. These equations have a simple
physical interpretation in terms of classical phase-space
behavior. They are exactly equivalent to a classical de-
generate parametric amplifier that is being driven by
a coherent pump field and vacuum noise corresponding
to half a thermal photon in each external reservoir.
This can be considered equivalent to a stochastic
electrodynamics-type calculation, which uses this as-
sumption to simulate vacuum fluctuations. Despite the
approximations, these equations have the useful feature
that they can be readily simulated, and have behavior
very similar to the classical parametric oscillator in the

presence of finite temperature reservoirs. They also give
correct results for small linear Auctuations, when they are
compared to previous predictions. ' '

It has been noted by one of us ' that the effect of drop-
ping of higher-order derivative terms in Fokker-Planck
equations is highly dependent on the choice of represen-
tation. Although it is often a good approximation for
linear fluctuations, it can change switching times by
many orders of magnitude, so this approximation is in-
herently problematic. However, it is necessary for the
Wigner case if standard Fokker-Planck or stochastic
methods are to be used. This is because the Wigner time
evolution equation, with its third-order derivatives, has
the possibility of acquiring negative values. By compar-
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FIG. 4. Comparisons between the number-state and positive-P calculations. In (a), the pump strength p is varied while the noise
strength g =0.25, and in (b) the noise strength g is varied while the pump strength p=2. 00. The potential-barrier (PB) approxima-
tion curve is the tunneling time predicted by Eq. (4.22), and the stochastic simulation points are obtained by numerical integration of
Eqs. (4.3).
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ison, the positive-P representation only gives second-
order derivatives.

In the limit of large damping in the fundamental mode,
an equation is obtained describing just the behavior of the
subharmonic mode. This can be written in the scaled
variables as

we restrict the problem to one dimesion, namely the q
axis. One-dimensional Fokker-Planck equations always
have a potential solution. This procedure is far from ex-
act, but we note that the p component of the drift always
points towards p =0, the q axis. The resulting Fokker-
Planck equation in this approximation is

T

W(P, r)= [P—P*(p—g P )] d7 W, D(q, r)=
Bq

[q (1+g'q' —
V ) l

+ . I
p* —p[p —g'(p')'] j

a2+,(1+2g PP*) W(P, r) .
apap*

(5.2)

a2+ — [1+2g q ] W, D(q, r) . (5.5)
4 Bq'

This also generates a corresponding Ito stochastic
differential equation, which is

The phase space of the Wigner distribution is a sub-
space of that of the positive-P distribution. The Wigner
phase space is a single complex plane, and this is
equivalent to the subspace of the positive-P phase space
given by the relation a =a~*. Because of the presence of
the bounded manifold in the positive-P phase space re-
stricting the dynamics to real o, and a, this means that
the Wigner phase space is orthogonal to the positive-P
bounded manifold. This does not imply any distinction
in the physical behavior of the oscillator, since these rep-
resentations simply provide a different computational
technique. In either case, the relevant physical expecta-
tion values are obtained by averaging appropriate func-
tions over the entire phase space. These will be identical
in either representation, provided commutators are
correctly taken into account when calculating the opera-
tor moments from the phase space moments.

We now separate p into its real and imaginary parts by
writing p=q+ip, and so obtain the truncated Wigner
Fokker-Planck equation and the corresponding set of Ito
stochastic differential equations

d
WT(q, p, r) =

d7.
a

Bq
Iq[1+g (q +p ) —p]j

+ Ip[1+g'(q'+p')+p]]a
Bp

1 a' a'+— + [1+2g (q +p )]4 Bq' Bp'

X WT(q, p, r), (5.3)

dq= —q[l+g (q +p ) @]dr-
+ —[1+2g (q +p )]'~ dZ

1

dp = —p[1+g '(q '+p')+p]dr

+ —[1+2g (q +p ) j'~2dZ1

(5.4)

This truncated Wigner Fokker-Planck equation (5.3)
does not have a potential solution, which makes analytic
calculation of the tunneling time di%cult. The effect of
the quantum noise from the fundamental mode on the
tunneling time can be included in a qualitative fashion if

dq = —q(1+g q p)dr+— —(1+2g q )'~ dZ
1

(5.6)

The one-dimensional approximation gives the mean tun-
neling time in the potential barrier approximation as

1/2
2r +1

1D

X exp [(2r + 1)ln~2r + 1
~

—2r ], (5.7)
1

2g

where

r=p —1 —g

Figures 5(a) and 5(b) show comparisons between these
two types of stochastic equations, in addition to the
number-state result and the one-dimensional truncated
Wigner potential-barrier theory. In the range where the
potential-barrier approximation is valid there is good
agreement between the potential-barrier theory and the
corresponding one-dimensional simulations. The full
two-dimensional truncated Wigner simulations give con-
sistently slightly shorter mean tunneling times than the
one-dimensional simulations. This is expected since the
two-dimensional simulations have an extra degree of free-
dom. The details of how the stochastic simulations were
performed are given in Appendix B. As before, there is a
divergence as the potential-barrier approximation fails
near threshold, as the pump strength p~1 or as the
noise strength g~ 1 [Figs. 5(a) and 5(b), respectively].

More interesting is the fact that both the truncated
Wigner methods (one and two dimensional) give results
that are inconsistent with the number-state method.
Since the only extra approximation used by the two-
dimensional simulations over the number-state results is
the truncation of the third-order derivative terms, it is
clear that these act to suppress the tunneling in this sys-
tem. Thus, when they are removed, the tunneling time is
artificially decreased. We emphasize that this must be an
artifact of the truncation approximation. The eigenval-
ues of the full Wigner eequation necessarily agree with
the other methods. Since the truncated Wigner equations
are equivalent to stochastic electrodynamics, we conclude
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that there is a fundamental inequiualence between this
theory and the complete nonlinear quantum theory.

A two-dimensional potential solution to the truncated
equations can also be obtained that is valid near thresh-
old. Here the noise contribution 2g (q +p ) is small

since both q and p are small. This term corresponds to
vacuum Auctuations in the fundamental mode coupling
through to the subharmonic mode. In this near-
threshold approximation, this is neglected, leaving only
the subharmonic noise. The Fokker-Planck equation and
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FIG. 5. Comparisons between the number-state and approximate Wigner calculations. Pump strength p is varied in graphs (a) and
(c) while the noise strength g =0.25. In graphs (b) and (d) the noise strength g is varied while the pump strength p =2.00. (a) and (b)
show results obtained when the third-order derivative terms are truncated from the Wigner representation equation: the two-
dimensional (2D) simulation and 1D simulation points are obtained by numerical integration of Eqs. (5.4) and (5.6), respectively. The
potential-barrier (PB) approximation curve is given by Eq. (5.7). (c) and (d) show results when both third-order derivatives and noise
from the fundamental mode are neglected, as in the near-threshold approximation. These simulation points are obtained by numeri-
cal integration of Eqs. (5.9), and the potential-barrier approximation curve is given by Eq. (5.11).
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Ito equations are

&
I q(1+g'(q'+p") V—) I

Bg

+ Ip(1+g'(q'+p')+V ) I

a
Bp

a' 8'
4 g 2 g 2 W'Nr(q, P, 7 ),

dq= —q[1+g (q +p ) p)dr—+ —dZ1

dp= —p[l+g (q +p )+p)dr+ —dZ1
P

(5.8)

(5.9)

= 2I'»(q p»)=, Ig'q'+g'p'+ ,'(g'q'+g—'p')'
(5.10)

—v(g'q' —g'p')) .

Here TNT is normalization constant. Above threshold
the potential has two minima, at gq =+(p —1)' . In the
limit of large threshold photon numbers (small noise
strength g), these minima are very close to those obtained
using the positive-P representation. After taking the
different operator cor resp ondences into account the
near-threshold theory and the positive-P theory predict
identical results for small linear Auctuations near thresh-
old. From the approximate Wigner distribution
WNT(q, p) we obtain the tunneling time by using the po-
tential barrier approximation to be

1/2
p+1 1

TNT exp (p. —1)
'V i Iu(p —1)' g' (5.11)

Figures 5(c) and 5(d) illustrate the tunneling-time re-
sults obtained using the near-threshold approximation.
As in the previous graphs, we see good agreement be-
tween the stochastic simulations and the corresponding
potential-barrier theory. This agreement breaks down
when near threshold as the pump strength p~1, or for
large noise strength g, as the large potential-barrier ap-
proximation fails. From Fig. 5(c), it is clear that near
threshold (pump strength p= 1 ) the simulations agree
with the number-state result, which is expected, since in
this region the effects of the approximations are small.
Far above threshold (pump strength p)) 1), or for small
noise g, these approximations give much longer tunneling
times than the exact number-state results, because the
neglected fundamental mode noise terms have a larger
effect than the truncation approximation.

The exact quantum result in Eq. (4.22) scales as
exp(2p/g ) for pump strength p)) 1, while the result of
(5.11) scales as exp(p /g ). This is similar to the
difference between quantum tunneling through a barrier

With all the above approximations, the steady-state ap-
proximate Wigner distribution function WNT(q, p) and
potential VNT(q, p) are

~N (Tq P) +NT xp[ &NT(q, P))

of height p and thermal activation over a barrier of the
same height. In both cases, the difference becomes
greater at large potential-barrier heights. This can be un-
derstood as being due to the extra approximations used to
obtain (5.11), which e6'ectively replace the quantum-
mechanical problem by a classical thermal activation
problem with an equivalent near-threshold behavior. The
inclusion of the fundamental mode noise improves the
theory somewhat, but even Eq. (5.3) is unable to repro-
duce the tunneling rate given by the quantum theory.
However, if the third-order derivative terms are included
by deriving the Wigner time evolution equation directly
from the single-mode master equation (2.5), as has been
recently done by Risken and Mortimer, then agreement
with the quantum results of Secs. III and IV can be re-
gained.

VI. CONCLUSIONS

We have demonstrated good agreement between two
exact methods of calculating the tunneling dynamics of
the degenerate parametric oscillator. Both the number-
state and coherent-state basis methods include the Hamil-
tonian nonlinearity exactly. Of course, either method is
only applicable in regions where the original Hamiltonian
is valid. Calculations using both analytical Fokker-
Planck and numerical stochastic methods agree with the
numerical solutions of the density-matrix master equa-
tion in the number-state basis. This serves to verify the
accuracy and reliability of these different expansion tech-
niques. The number-state and coherent-state methods
are complementary from the computational point of
view, with number-state expansions being more useful for
low photon numbers, and coherent-state expansions be-
ing more useful in regions of large photon number.

In addition to this we have compared our results to
those obtained using the Wigner representation, which
should give exactly equivalent results. However, the use
of the Wigner representation is accompanied by the in-
troduction of extra approximations, to give more tract-
able equations. The first approximation is the truncation
of third-order derivative terms from the time evolution
equation. This results in a second-order Fokker-Planck
equation, which is equivalent to stochastic electrodynam-
ics. It gives shorter mean tunneling times than the exact
methods, evidently due to the effect of the truncation ap-
proximation. When noise from the fundamental mode is
also neglected, as in the near-threshold approximation, a
classical potential problem is obtained giving longer mean
tunneling times than the exact methods. This difference
can be compared with the quantum penetration of a po-
tential barrier, which is much faster than classical
thermal activation at large barrier heights.

A summary of the results from Secs. III—V is shown in
Fig. 6, where all the stochastic simulations are compared
with the number-state calculations. These graphs show
the difference between the results from the simulations
and the number-state results. The positive-P stochastic
simulations agree with the number-state calculations.
The truncated Wigner (stochastic electrodynamics) simu-
lations always give shorter mean tunneling times than the



6206 P. KINSLER AND P. D. DRUMMOND 43

number-state or positive-P results. The simulations using
the near-threshold approximations usually give longer
tunneling times than the number-state calculations, be-
cause the extra noise from the fundamental mode is
neglected. Very near threshold (pump strength p= I ), all
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FIG. 6. Comparisons between the number-state results and
all types of stochastic simulation. The points are plotted as
ln(T/T&), where T~ is the number-state tunneling time. In (a),
the pump strength p is varied while the noise strength g =0.25
and in (b) the noise strength g is varied while the pump strength
p=2. 00. Error bars are only shown on the positive-P results for
clarity, but the errors for all the stochastic results are of similar
magnitude. The positive-P stochastic simulation points are ob-
tained by numerical integration of Eqs. (4.3). The truncated
Wigner and 1D truncated Wigner simulation points are ob-
tained by numerical integration of Eqs. (5.4) and (5.6), respec-
tively. The near-threshold approximation simulation points are
obtained by numerical integration of Eqs. (5.9).

the methods tend to agree, as is shown in Appendix C.
This is expected from known-general results on the repre-
sentation invariance of tunneling near critical and turn-
ing points.

We note an intriguing subtlety in the interplay of these
different results. The quantum equations of the
coherent-state positive-P representation have an exact po-
tential solution. Solutions for nonequilibrium quantum
problems are rare: this model is therefore a useful test
for investigating nonequilibrium quantum effects. On the
other hand, the truncated Wigner equations have no ex-
act potential solution. Thus the effect of restricting this
quantum problem to a classical phase space destroys an
essential symmetry in the equations. The nonclassical
phase space of the positive-P distribution allows the equa-
tions to have an exact potential solution. This potential
solution is not the same as that previously obtained using
semiclassical methods by eliminating the noise in the fun-
damental mode, even though it does predict similar be-
havior near threshold.

Above threshold, the potential solution in the positive-
P representation predicts much faster tunneling than that
obtained previously. This is a quantum effect, which is
obtained here through off-diagonal coherent-state expan-
sions of the density matrix. It might be thought that the
correct result could be regained by inclusion of the funda-
mental mode noise in the Wigner representation
equations —but this is not the case. The neglect of
third-order derivative terms occurring in the Wigner rep-
resentation means that even this does not give correct
tunneling rates. The third-order terms are associated
with negative valued Wigner functions and quantum in-
terference. Thus the fact that they suppress tunneling
suggests that these represent destructive quantum in-
terference of the noise terms, with no classical counter-
part.

Despite the well-known nature and experimental
significance of the quantum parametric amplifier, all
these results are unprecedented, except for those in
Graham's original work. In the case treated here, there
is only one mode involved, although it is coupled to reser-
voirs. More complicated multimode cases are even less
well known. Thus non equilibrium quantum systems
remain the least-well-understood quantum systems. The
exact quantum theory gives shorter mean tunneling times
than previously obtained —and longer mean tunneling
times than a full stochastic electrodynamics theory. With
recent developments in Josephson-junction parametric
amplifiers this should become testable in the near fu-
ture.

APPENDIX A:
NUMERICAL NUMBER-STATE TECHNIQUES

The tunneling eigenvalues are found by calculating the
eigenvalues of the transition matrix in double precision
using FORTRAN software. These numerical routines
first balance the transition matrix, reduce it to upper
Hessenberg form, and then find its eigenvalues and eigen-
vectors. As an independent check on the software, we
compared some of the results with those obtained using
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different hardware and an alternative software library.
All the sets of results could not be compared in this way
because of time and memory constraints. The compar-
isons that were made produced good agreement.

To check the numerical accuracy of the answers, we
also tested for convergence. That is, we calculated the ei-
genvalues for a particular maximum photon number X,
and then recalculated the data using N+1. If there was
no significant change in the eigenvalue, then clearly the
truncation of the transition matrix had little effect. These
changes were typically kept to much less than 1%. An
extra accuracy check was performed by multiplying the
steady-state and tunneling eigenvectors with the transi-
tion matrix and comparing it with the expected result,
which is the eigenvalue times the eigenvector. The
difference is a measure of the error. In all cases we en-
sured that this error remained less than one part in 10,
and in most cases it was orders of magnitude smaller. Al-
though only 15-decimal, double precision arithmetic was
used, the reproducibility of the results using different
software persuades us that round-off error was negligible.

a trajectory) as a Poisson process. Given this assump-
tion, the relative error in the eigenvalue is proportional to
n ', where n is the number of tunneling events. Typi-
cally we calculated many trajectories in parallel, allowing
sufFicient time for at least 256 of the 1024 trajectories in
the ensemble to tunnel. The error estimate for the sto-
chastic simulation results is thus about 6%, as is indicat-
ed in Figs. 4—6. We tested this by calculating the stan-
dard deviation of an ensemble of eigenvalues that had
been obtained for a particular set of parameters. The
standard deviation of the ensemble of eigenvalues was in
agreement with our error estimate.

APPENDIX C:
NEAR- THRESHOLD COMPARISONS

In this appendix we compare the near-threshold poten-
tial barrier heights in the limit of large photon number
for each of the three potential solutions. The potential-
barrier height for the positive-P representation using the
constant diffusion variables u and U is given by

APPENDIX B: STOCHASTIC CALCULATIONS
b, U= tp cr o in(p j—o )]—.=2

g
2 (Cl)

In order to solve the Ito stochastic differential equa-
tions, which are differential equations with randomly
varying coefficients, an iterated central difference method
was used. ' The tunneling eigenvalue is equivalent to
the slowest decay rate of the amplitude o. in the subhar-
monic mode. To obtain the required data, a FQRTRAN
program that calculated the evolution of a large ensemble
of trajectories in parallel was written. The Gaussian
noises were generated by means of an appropriately
weighted and scaled pseudorandom number generator.
At intervals during execution of the program, the ensem-
ble averaged amplitude (a), together with the elapsed
time, were saved. All of the trajectories were started at
the classical stable state specified by the pump strength p,
with no initial spread. This corresponds to an initial
coherent state with g a =p —1+g in the case of the
positive-P representation. However, the exact details of
the initial distribution have little effect on the decay of
the ensemble averaged amplitude, since the relaxation of
the initial 6 function to the single-well distribution occurs
on a much shorter time scale than tunneling between
wells. The exponential decay of (a) meant that the tun-
neling eigenvalue could be extracted from the data by us-
ing logarithmic regression.

To check the convergence of these stochastic simula-
tions we used the standard technique of varying the time
resolution. If the change in the calculated eigenvalue was
less than 1% when the time step was doubled, then the
simulation result was considered to be accurate. Typical
time steps used were y, /128 and y, /256. In order to test
convergence it is essential that each trajectory and its
lower-resolution counterpart are driven by Gaussian
noise sampled from identical underlying noise trajec-
tories, as is described elsewhere. The errors in the re-
sults were estimated by treating each tunneling event (of

We take the near-threshold limit by putting the pump
strength p= 1+/, and taking tg~ ((1. The classical,
large-photon-number limit is taken by letting the noise
strength g —+0. Using these, the potential barrier height
1s

b, U= Ig —in(1+/)] .=2

When the logarithmic term is expanded for small g, we
get

hU= ( — g+
g 3g

(C3)

The one-dimensional truncated Wigner potential gives a
barrier height of

b. ViD = [(2r + 1)ln(2r + 1)—2r],1

2g

=1b, VN~ = (p —1) (C6)

which reduces in the near-threshold and classical limits
to

where r has been defined in Eq (5.7). U.sing the same lim-
its as above, this reduces to

1 2 2~ViD=, s'—,0'+ (C5)

However, note that the g4 term in (C5) is diff'erent from
that for the positive-P representation. For the near-
threshold potential, we have the potential barrier height
equal to
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So, to leading order, all these calculations for the
diferent potentials give equivalent near-threshold behav-

ior in the large-photon-number limit. The near-threshold
potential barrier expansion has no term in g due to the
omission of the fundamental mode noise. This directly
results in the slower tunneling above threshold, as is ex-
plained in the text.

~J. W. F. Woo and R. Landauer, IEEE J. Quantum Electron. 7,
435 (1971).

~R. Graham, in Quantum Statistics in Optics and Solid State-
Physics, edited by G. Hohler, Springer Tracts in Modern
Physics, Vol. 66 (Springer, New York, 1973), p. 1.

A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 374
(1983).

"R.J. Cook and H. J. Kimble, Phys. Rev. Lett. 54, 1023 (1985).
~E. P. Wigner, Phys. Rev. 40, 749 (1932).
P. Kinsler and P. D. Drummond, Phys. Rev. Lett. 64, 236

(1990).
"P. D. Drummond, and P. Kinsler, Phys. Rev. A 40, 4813

(1989).
3P. D. Drummond and C. W. Gardiner, J. Phys. A 13, 2353

(1980).
T. W. Marhsall, Proc. R. Soc. London, Ser. A 276, 475 (1963).

See also the review by T. H. Bayer, in Foundations of Radia
tion Theory and Quantum Electrodynamics, edited by A. O.
Barut (Plenum, New York, 1980).
P. D. Drummond, K. J. McNeil, and D. F. Walls, Opt. Acta
28, 211 (1981).

~'W. H. Louisell, Quantum Statistical Properties of Radiation
(Wiley, New York, 1973).

'2H. Carmichael and M. Wolinsky, in Quantum Optics IV, edit-
ed by J. D. Harvey, and D. F. Walls (Springer, Berlin, 1986),
p. 208.
E. Schrodinger, Naturwissenschaften 14, 644 (1927).
R. J. Glauber, Phys. Rev. 130, 2529 (1963).

5E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).
K. J. McNeil and C. W. Gardiner, Phys. Rev. A 28, 1560
(1983).
M. D. Reid and P. D. Drummond, Phys. Rev. Lett. 60, 2731
(1988}.

SM. D. Reid and P. D. Drummond, Phys. Rev. A 40, 4493
(1989).

9P. D. Drurnrnond and M. D. Reid, Phys. Rev. A 41, 3930
(1990).
M. D. Reid and D. F. Walls, Phys. Rev. A 33, 4465 (1986).

2 R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F.
Valley, Phys. Rev. Lett. 55, 2409 (1985).

22A. M. Smith and C. W. Gardiner, Phys. Rev. A 39, 3511
(1989).

23L. Arnold, Stochastic Differential Equations: Theory and Ap
plications (Wiley, New York, 1974); C. W. Gardiner, Hand-

book ofStochastic Methods (Springer, Berlin, 1983).
24I. K. Mortimer and H. Risken, Phys. Rev. A (to be published).
25M. Wolinsky and H. J. Carmichael, Phys. Rev. Lett. 60, 1836

(1988)~

H. A. Krarners, Physica 7, 284 (1940); R. Landauer and J. A.
Swanson, Phys. Rev. 121, 1668 (1961).
H. Haken, Rev. Mod. Phys. 47, 67 (1975).
M. Hillery, R. F. O' Connell, M. O. Scully, and E. P. Wigner,
Phys. Rep. 106, 121 (1984).

2 S. Reynaud, C. Fabre, and E. Giacobino, J. Opt. Soc. Am. 8 4,
1520 (1987).

3 Ning Lu, Shi-Yao Zhu, and G. S. Agarwal, Phys. Rev. A 40,
258 (1989).
P. D. Drummond, Phys. Rev. A 33, 4462 (1986).

32L. Wu, H. J. Kimble, J. L. Hall, and H. Wu, Phys. Rev. Lett.
57, 2520 (1986).
B. Yurke, L. R. Corruccini, P. G. Karninsky, L. W. Rupp, A.
D. Smith, A. H. Silver, R. W. Simon, and E. A. Whittaker,
Phys. Rev. A 39, 2519 (1989).
The calculations were carried out on an Apollo DN10000, us-

ing 64-bit real arithmetic with a 52-bit mantissa (IEEE stan-
dard). The software subroutines for calculating eigenvalues
and eigenvectors were obtained from the public domain net-
work source "Netlib. " We used the EIspAcK routines, origi-
nally developed by the NATS project at Argonne National
Laboratory. These in turn are identical to those algorithms
described in Ref. 35.

3sJ. H. Wilkinson and C. Reinsch, Handbook for Automatic
Computation (Springer, Berlin, 1971),Vol. 2.

3 These calculations were carried out on a Digital Equipment
Corporation Vax 11/750, using DEC 64-bit real arithmetic
with a 55-bit mantissa. The software subroutines for calculat-
ing eigenvalues and eigenvectors were obtained from the Nu-
merical Algorithms Group, Wilkinson House, Jordan Hill
Road, Oxford OX2 8DR, United Kingdom. These are identi-
cal to those algorithms described in Ref. 35.
P. D. Drummond, Comput. Phys. Commun. 29, 211 (1983).

3 P. D. Drummond and I. K. Mortimer, J. Comput. Phys. 93,
144 (1991).

3 A pair of real Gaussian random numbers s&, s2 can be ob-
tained from a pair of real random numbers r &, r2 in the range
( —1, + 1) by using the Box-Mueller formula s; = r;z where

z =
I [ —2 ln( 1 —r, —r 2 ) ]/ r,(+ r 2 ) )

'


