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Adiabatic amplification of optical solitons
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We study the adiabatic evolution of the fundamental nonlinear Schrodinger soliton under a gen-
eral integro-diff'erential perturbation. This perturbation is shown to model a saturable bandwidth-
limited amplification of an optical soliton with a nonresonant carrier wave. We use the soliton per-
turbation theory to calculate the evolution of the amplitude, frequency, group velocity, and phase of
the pulse. The perturbative analytical steady-state solution is obtained and its stability is studied us-
ing the phase-plane formalism.

I. INTRODUCTION

Optical pulse propagation, for which material disper-
sion, gain dispersion, and nonlinearity all contribute
significantly, is attracting considerable attention. For in-
stance, let us mention the works of Martinez, Fork, and
Gordon, ' Diels et aI., and Haus and Silberberg on the
effects of group-velocity dispersion and self-phase modu-
lation in mode-locked lasers, those of Blow, Doran, and
Wood, Grigor'yan, Maimistou, and Sklyarov, Hook,
Anderson, and Lisak, Belanger, Gagnon, and Pare,
Pare, Gagnon, and Belanger, and Petrov and Rudolph
on the evolution and stabilization of solitary waves in an
amplified and absorbed nonlinear Schrodinger equation,
the experimental works of Gouveia-Neto, Gomes, and
Taylor' that led to the theoretical analysis of Blow,
Doran, and Wood" on the suppression of the soliton
self-frequency shift by bandwidth-limited amplification,
and the works of Ainslie et a/. ,

' Krushchev et aI. ,
'

Nakazawa et aI. ,
' and Agrawal" on the amplification of

very short optical pulses in erbium-doped fiber amplifiers.
Under restrictions to second-order dispersion and as-

sumption of instantaneous variation of the nonlinearity,
the mathematical model that describes the normalized
field envelope u (z, t) of such systems is

iu, +(a
&

—iyz)u«+(a2 —i y„)ulul —i you =0,

where all parameters are real and u (z, t) is complex.
Equation (1.1) is known as the complex Ginzburg-Landau
equation and is of major interest in many branches of
physics and mathematics. It is continuously a subject of
studies in many different contexts. For instance, see
Refs. 16—24 and references therein for various discus-
sions on exact solutions, dynamics, and stability.

In this paper, we study a somewhat generalized version
of (1.1), that is,

iu, + ,' «u+ l—uul =(t, i/3, )u«—, +iyzu„+Au, +iyou+iy„u ul +(t, —i132)(ulul ),

+(t4 —iP3)u(lul ), +(8+iC)u f lu dt+(D+iE)u, f lul dt, (1.2)

which takes into account simultaneous contributions of
third-order material and gain dispersions, gain satura-
tion, nonresonant carrier wave, and higher-order non-
linear effects.

In a first analysis, we restrict ourselves to the case
where the right-hand side of (1.2) is a perturbation of the
nonlinear Schrodinger (NLS) equation and study the adi-
abatic evolution of the fundamental NLS soliton. In par-
ticular, this permits us to apply the results of the pertur-
bation theory of the inverse scattering transform (IST)
method ' and obtain analytical expressions.

The paper is organized as follows. In Sec. II, we
present the optical model that motivates the present
analysis from general considerations about dispersion and
amplification. In Sec. III, we calculate the adiabatic evo-
lution of the amplitude, frequency, group velocity, and

phase of the fundamental NLS soliton and obtain a per-
turbative analytical solution for the steady-state pulse.
Finally, in Sec. IV, we present some examples of
amplitude-frequency phase portraits in order to enlighten
the dynamics and stability of the equilibrium solution.

II. THE PHYSICAL MODEL

We propose a physical model of soliton propagation in
optical fiber amplifiers' ' that is governed, under ap-
propriate assumptions, by Eq. (1.2). The procedure we
use is not formal but based on standard arguments.

First, we denote k =k (co, l@ ) the nonlinear dispersion
of the medium in absence of amplification, where

6(g, ~)= V(g, r)exp(ikon —iso~)
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]+— (cp —cop) +
I
VI

6 a' ' aIvI'
a'k,

+ (cp —cop) I VI
a~a v' (2.1)

where the coeKcients of the Taylor expansion are evalu-
ated at co=cop, V=O, and kp=k(cop, O). For the moment,
the nonlinearity in (2.1) is assumed to vary instantaneous-
ly with the field (i.e., no explicit time dependence on

I VI ). This assumption will be removed later.
Second, let us model the frequency and nonlinearity

dependence of the amplification with the standard homo-
geneously broadened complex Lorentzian line shape,
that is,

gp
—g2I VI'

1+lTp cp co&
(2.2)

where gp )0 is the small-signal gain, Tp = —2/b. co, b,co is

is the electric field and g, ~ are the true physical space and
time coordinates. As usual, we expand it around the car-
rier frequency cop, the wave number kp, and zero ampli-
tude to obtain

ak, ~ a'k,
k(co, VI )= kp+ (co cup—)+— (co —cop)

—( 1+3iTp5cp ) Tp ( co —
cop)

+(i 4Tp5—cp)Tp(cp —cop) ]

—
g2 [ 1+iTp5cp (i 2—Tp5co—) Tp(cp cop) ] I

V— (2.3)

The simultaneous contribution of material dispersion
(2.1) and gain dispersion (2.3) leads to the general disper-
sion relation

IC ( co, I VI ) = k ig .— (2.4)

Using the standard operator equivalences K kp~—i8&, co —cop~ i8 and operating E on the amplitude
V(g, r) of the electric field yields the resultant equation

the gain bandwidth parameter, and co is the gain-center
frequency. For now, we also assume that the gain non-
linearity varies instantaneously, that is, g2I V has no ex-
plicit time dependence. This rather phenomenological
assumption will also be removed later.

We now suppose that the carrier frequency cup, which
becomes the reference frequency of our model, is slightly
nonresonant, that is, co =5co+cop. We follow the same
procedure in the obtention of (2.1) and expand (2.2)
around mp, gp„and V =0 with the assumptions
Tp(co cop) —«1+Tp(5cp) and Tp(5') «1. We then
obtain

g =gp[1+iTp5cp (i ——2Tp5co)Tp(cp —cop)

i V~ =—
gp ( Tp 5' i ) V +i (—k p

—
gp Tp —2ig p Tp 5co ) V, —( —,

' k p' 3g p Tp
5—co +ig p Tp ) V„

r

l kp +gp Tp +4lgp Tp5co V~~~+
ak,
av' g2 TQ5cp+ ig2

I

+i
2 +g2Tp+2ig2Tp5co (VI VI ),+iapv iazv—

I VIav' (2.5)

where np)0 and a2) 0 have been included to take non-
linear absorption into account.

At this stage, it is particularly convenient to include
the noninstantaneous variation of the nonlinearity. First,
following Gordon, we assume a quasi-instantaneous
Raman response of the medium by making the substitu-
tion

t =(r kpg+gpTpg)T— (2.8)

with gzI VI WO and cc2I VI %0 because of their potential
interest in other contexts than optics. '

Finally, we normalize (2.5)—(2.7) in terms of the re-
duced time

Bkp Bkp

avI' av', [I vI' —(@+i~)( I vI').], (2.6)

where T is a measure of the initial pulse width, and

g=Ikp —6gpTp5coI 'T z, kp' —6gpTp5cp&0, (2.9)
where p and o. are positive constants that represent the
part of the nonlinearity with a delayed response.

Second, because of the gain (loss) saturation, the gain
(loss) nonlinearity is time dependent with a long relaxa-
tion time and approximately governed by the integral of
the field intensity. ' ' ' We then make the substitutions

Ikp' —6gpTp5cpI

(ak /aI VI ) gT 5co 2g3T 5—co—
X T 'u (z, t)exp(igp Tp5cog), (2.10)

gpl VI'+g3 f' IVI'«,

~21 VI'~~21 VI'+~3 f I
VI'«,

(2.7a)
Bkp

2
—g2Tp5co —2g3Tp5co) 0 .

(2.7b)
The resulting equation is then (1.2) with
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go o 2 go &o z 2goT05co 2goTO5co
T

k,"—6g, T,'5~~ ~k ~

go To go To 4go To5~ 4go To 5'
Iko' —6go TO5~1 lko'

I

' ' ko' —6go TO5~1 Iko'
I

ko +go To
T

iko' —6goTO5coi

—'ko '+go To

o'2 gz g3 To

(ak, /a
I
VI')

2g2 Tp5COAT'
(ak, /a [

v(')

a(ak, /a( V[')
T CTT

(ak, /a~v~') —g T 5 —2g T,'5

g3 Tp5co g3 To5coB= T
2

T
(ak, /al VI') gp TO5 — 2g 3 T05 (ako/a I

VI')

A3 g3

(ak, /a( v]') —g, T,5~—2g, T', 5~ (ak, /a( v(')

2g3 Tp 5' 2g3 To&0

(ako/a~ V~ )
—g2TO5co —2g3T05co (ako/a~ V~ )

o'z g2 g3 To

(ak /al VI') —g, T 5~ —2g, T,'5~

2g2 To5'
(ako/a V~ ) —g2T 5' —2g T 5'

g T +(ak,'/al VI'), g, T, +(ak,'/al VI') T'
(ak, /a I

VI') —g, T,5 —2g, T,'5 (ak, /a
I
VI')

i (ak, /aJ v(')

(ako/a~ V~ ) —g2TO5co —2g3TO5~

(2.11)

g3To

(ak, /a I
VI') —g, T,5 —2g, T,'5

g3To

(ak, /a (
v(')

Nonresonance of the carrier wave is described, at this
order, by parameters 3, r„ t„Band D. Cxain (loss) satu-
ration is described by y„, B, C, D, and E.

QOi)= —Im f h(u, )u,*dx
g ' oo

g&+coi)=Re f h (u, )u,*„dx

(3.2a)

(3.2b)

X exp [
—ice(z) [t +~(z) ]+ia(z) ] (3.1)

where q, co, v, and n are the amplitude, frequency, group
velocity, and phase of the pulse.

The evolution equations for these parameters are ob-
tained from the perturbation theory of the IST
method. ' They are given explicitly by

III. ADIABATIC EFFECTS ON THE
FUNDAMENTAL NLS SOLITON

We now concentrate on Eq. (1.2) and consider the
right-hand side h (z, t) as a perturbation of the NLS equa-
tion. To study this eQ'ect on the adiabatic evolution of
the fundamental NLS soliton, we consider the general
form of the soliton solution with parameters depending
on the propagation coordinate z, that is,

u, (z, t) =g(z)sech[ g(z)[t +~(z)]]

Im f xh (u, )u,*dx
'g oo

2
Re f h (u, )(u,*+xu,* )dx

'g oo

K —Q)

a= —(co +vP)—1

2

—2, Im f xh (u, )u,*dx
'g OO

(3.2c)

(3.2d)

where x =ri(t +~) and a dot denotes a derivative with
respect to z. The erst two equations come from the evo-
lution of the discrete spectrum (a single eigenvalue here)
of the spectral problem or, equivalently, from the evolu-
tion of the first two conserved quantities of the NLS
equation, f ~u~ dt and fi(u, 'u u, u*)dt. —The last two
equations are calculated from the evolution of the pro-
portionality factor between the Jost functions of the
discrete spectrum.
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q=2rt(t, co yz—co —Aco+yo)+2g (C D—co)

+2g [(t, ——,'t, )co+ ', y„———,'y2 —
—,'E],

co=2' [t,co 32y2c—o+—,'Eco+——,'(B —A)]

'
, ri—'D—+,', r)4—(7t, 6t.—4td —),

(3.3a)

(3.3b)

+g2(p, —
p~

——', p3)+3p, co —C+Dco+Eri, (3.3c)

ci= ,'(co +—g ) 2' co—(P, + ,'P3)+—2P,co

B'g Cco+Dco (3.3cl)

Substituting (3.1) in (3.2) and integrating the right-
hand sides yields

Relations (3.3) describe the evolution of the four soli-
ton parameters g, co, K, and a as long as the hyperbolic-
secant-like amplitude assumption (3.1) remains valid.
After a long distance of propagation, the pulse reaches its
final steady state where the amplitude deformation can be
significant. To take this deformation into account, we
calculate the final perturbative steady-state solitary wave
by directly solving (1.2) under the assumption

uf (z, t)=rtf sech( t)fgf )[ 1 + U(rif gf )]

Xexp[ icof—gf+(i/2)(cof+gf+2(pf)z], (3.4)

where rtf, cof, vf, yf are constants, gf =t +cofz+vfz,
and U(qf gf) is the perturbative part. Solving the linear
differential equation for U, one obtains

uf rtf sech( r)f gf ) [ 1 +c, +cztanh( rif gf )In[sech( tif gf ) ]+ ic3 in[sech( elf gf ) ]+ ic4tanh( rtf (f ) ]

X exp [ i cof g—f + (i /2 )( cof +gf +2' )z], (3.5)

where gf and cof are given by g, =co, =0 in (3.3a) and
(3.3b) and

c, =cof(3P& ,P2)+ ,'D, ———

c,= ', (2t„+—3t, —6t, ),
c3 =—', [2y2 —y„E+(t, 6—t, )cof ], —

c4 =gf (3p, ——', p2 —p3),

Vf p ]7' +3p
& cof —C +D cof +Erif

tpf 2Pfrtf cof +2P,cof Bgf Ccof +Dcof

(3.6a)

(3.6b)

(3.6c)

(3.6d)

(3.6e)

(3.6f)

Coefficients c„c4,yI, and v& have been calculated first
in Ref. 30 for B =C =D =E =0 (see also Ref. 31) using
an infinite-dimensional extension of the Birkhoff theory
of normal form expansion. Coefficients c2 and c3 are
given here for the first time.

Let us conclude this section with few comments.
(i) The stationary solution (3.5) —(3.6) shows explicitly

how the final parameter values of the NLS soliton are
affected by the perturbation term in (1.2). It is valid as
long as constant solutions qf and cof exist for (3.3a) and
(3.3b). The simplest counterexample is the case where all
parameters vanish in (1.2) except td%0. There is, the fre-
quency co is a linear function of the variable z that leads
to a self-frequency shift and to a different steady-state
solution.

(ii) A comparison between equations (3.6e), (3.6f) and
(3.3c), (3.3d) shows that the former provide a uniform
description of the evolution of ~ and a only if

le=co+ ,'g (7P, —6P2——4P3)+3P,co~,

a= —,'(co +g )+ —,', q co(3P, 4P2 6P3)+2P,—co—
(3.8a)

(3.8b)

which coincide with (3.3c) and (3.3d) only when (3.7) is
satisfied. This last procedure has been applied with suc-
cess in Ref. 11 because P, =P2=P3=B=C =D =E =0.
However, the above observation shows that it does not
lead, in general, to the same result as the IST perturba-
tion theory.

dition (3.7) is satisfied and all other parameters are zero,
Eq. (1.2) becomes the second member in the NLS equa-
tion hierarchy and is completely integrable. Then, it
has multisoliton solutions and the fundamental one is
precisely given by (3.5) with c; =0.

(iii) The relations (3.2) obtained by a perturbation of
the exact IST theory is the standard way to calculate the
adiabatic evolution equations (3.3) of the soliton parame-
ters g, co, ~, and o.'. An apparently different approach is
sometime used to obtain these evolution equations. It
consists in multiplying (1.2) by u* and iu,* and integrat-
ing over time to obtain two complex equations. Accord-
ing to the IST perturbation theory, the imaginary part of
the first equation and the real part of the second provide
the evolution of the first two conserved quantities of the
NLS equation which lead to (3.2a) and (3.2b), respective-
ly. Furthermore, the real part of the first equation and
the imaginary part of the second yield evolution equa-
tions for lc and a that can be similar to (3.3c) and (3.3d).
For example, when B =C =D =E =0 we have

p, = —p~= 6p, . — (3.7) IV. AMPLITUDE-FREQUENCY PHASE PORTRAITS

The physical implication of this is not clear. However, it
is interesting to note that relation (3.7) is a familiar one in
the theory of integrable NLS-type equations. When con-

In order to get more information on the solitary wave
evolution given by equations (3.3), it is useful to solve
them using the phase-plane formalism. This will also per-
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mit us to give a simple qualitative picture of the dynam-
ics and stability properties of the steady-state solution
(3.4).

We concentrate on the system (3.2a) and (3.2b) which
gives the more physically relevant information and
present three particular cases. For all of them, we take
y2=0. 056 and yo=0. 025. In the framework of the opti-
cal model of Sec. II, these values correspond to
To/T =2.25, a0=0, goT /~ko'

~

=0.025 and were used
in Ref. 11 to model experimental results of Ref. 10. In
addition, we set y„=t, =B =C =D =E =0 (that is,
a2=gz=a3=g3=0) in order to emphasize the effect of
the nonresonant terms. In any case, the gain (loss) satu-
ration terms do not change the main features of the phase
portraits and are very small for amplification of the fun-
damental NLS soliton in optical fibers. '

For generality, we will not restrict ourselves to the
phase-space trajectory compatible with the normalization
introduced in Sec. II, that is, for initial values g, =1 and

co; =0. This will permit us to have a generic representa-
tive phase plane for (1.2). In fact, one can always find a
set of parameters I a, b, c, . . . ,f I that transforms (1.2)
into another similar equation under

u (z, t) =au'(z', t')exp(ibt +icz),
(4.1)

z'=dz, t'=e(t+fz) .
The coefficients of the new equation are generally
different from the original ones. In particular, the new
equation for u'(z', t') can have nonresonant-type terms
that may be absent in the original one. The effect of
transformation (4.1) is to move up or down and scale the
axis of the phase plane. The initial point Ig; =a, co, =b

I

in the original system is then transformed into the point

I 1,0I in the new one, and evolves according to similar
trajectory. The explicit determination of Ia, b, c, . . . f I

in (4.1) is straightforward and will not be presented here.
First, let us examine the phase portrait of Fig. 1 for

t, = 3 =0 (the resonant case 5co=O) and td=0 (instan-
taneous Raman response p=O). The sketch is symmetric
with respect to co=0 and the nonvanishing equilibrium
solution has gf =1.16 and cof =0. A linear stability
analysis shows that it is a stable node of the system (3.3a)

and (3.3b) for yo) 0.
An interesting feature of Fig. 1 is the limited basin of

attraction of the steady-state solution. For example, ini-
tial conditions with g,. =0.5 and co,- =+1 rather evolve to-
ward the trivial solution gf =0 of (3.3a) and (3.3b). For
these initial conditions, the nonlinearity is not sufficiently
strong to balance dispersion and the pulse disperses away.
This differs from the NLS equation which predicts, be-
cause of its Galilean symmetry, nonvanishing solitary
waves of any frequency. In fact, the NLS equation is no
longer Galilean invariant when y2&0.

We did not calculate the limiting curves between the
different basins of attraction. Only approximate limits
are given by the dashed curves on Fig. 1. However, from
a perturbation analysis of (3.3a) and (3.3b) around r) =0,
one can show that these curves cross the g=0 axis at
co, =+0.67. Thus, for weak initial amplitudes, NLS soli-
tons grow up to gf =1.16 if ~co; ~

(0.67 and vanish other-
wise. The existence of a limited basin of attraction for
the nonvanishing stable solitary wave is a characteristic
in all calculations we have done.

Phase portrait of Fig. 2 shows the effect of td =0.05.
In view of the optical model of Sec. II, this shows how
the gain dispersion (y2 term) stabilizes the linear self-

frequency shift due to a noninstantaneous Raman
response. " (The perturbative analytical steady-state
solution for y2=yo=O can be found in Ref. 32.)

The mirror symmetry co~—co is no longer present and
the equilibrium solution has gf =0.99, cof = —0.35, and
is a stable sink of (3.3a) and (3.3b). For particular initial
conditions (for instance g; =co, =1), the pulse amplitude
evolves through successive minimum and maximum
values before reaching gf. Still here, the bassin of attrac-
tion of the steady-state solution is limited with

co, =+0.67.
The last phase plane shown on Fig. 3 is the result of

the values r, =0.034 and A =0.007 (that correspond to a
nonresonant carrier wave with (5co) TO=0. 01). Here,
there are three nonvanishing equilibrium solutions

I 7' i =0.56,cof i
= 1.15 I, [ gf2= 1.18,cofz=0. 023), and

7lf 3 2.29,cof3
=0.49 I . The first is an unstable node,

the second a stable node, and the third a saddle point.

FICx. 1. Phase portrait of (3.3a) and (3.3b) with y&=0.056,
y0=0. 025, and t, = A =y„=t,=td=B =C=D =E =0.

FICz. 2. Phase portrait of (3.3a) and (3.3b) with y2=0. 056,
yo=0. 025, td =0.05, and t, = A =y„=t, =B =C =D =E =0.
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FIG. 3. Phase portrait of (3.3a) and (3.3b) with y&=0.056,
y0=0. 025, td =0.05, t, =0.034, A =0.007, and y„ =t, =B
=C =D =E =0.

FIG. 4. Variation of gf(1) and cof(2) for the stable equilibri-
um solution of (3.3a) and (3.31) with ye=0. 056 &0=0.025, and
td =0.05 as function of X = A /0. 007 = t, /0. 034.

The initial field that is local to the first unstable solution
evolves toward the second one, toward q =0, or diverges,
depending on its amplitude and frequency. The critical
frequencies delimiting the basins of attraction at q =0 are
co, = —0.62, 0.81, and 1.47. Similarly, the initial condi-
tion local to the third unstable solution evolves toward
the second one or diverges for co; & 0.49 and co; )0.49, re-
spectively.

The final amplitude of the stable equilibrium solution
can be very sensitive to the variation of A and t, . For in-
stance, we plotted on Fig. 4 the variation of gf and cof as
functions of the parameter X = A /0. 007= t, /0. 034.
This parameter has been chosen to be compatible with
the physical model of Sec. II. The case X=1 corre-
sponds to the phase plane on Fig. 3. While cof behaves
smoothly, one observes that gf vanishes for X= —1.25
and diverges for X=1.35. This indicates that a relatively
strong nonresonant amplification can be devastating for
the transmission of optical solitons.

Finally, let up point out that the absolute stability of
the steady-state solution is limited by the growth rate of
the tail. This can be estimated from the amplitude of the
homogeneous solution (t independent) of (1.2), that is,

exp(2yoz)
iu (z)['= iu (O)i'y,

yo+ y „~u (0)
~ [1—exp(2yoz) ]

(4.2)

This exponential growth, which saturates to
~u (0)

~ yo/y„ for y„AO, tends to predominate over solu-
tion (3.4) for sufficiently long propagation length. On its
turn, constant solution can become unstable to long-wave

modulations. However, for parameter values used here
(ye=0. 02S, y„=O), the growth is negligible for propaga-
tion length z (SO. Furthermore, the initial pulse (3.1)
reached its equilibrium state at 0(z (50 in all our nu-
merical calculations.

V. CONCLUSIONS

We have studied a nontrivial perturbation of the NLS
equation that models the general propagation of a non-
resonant optical soliton in a dispersive saturable amplify-
ing medium. The IST perturbation theory was used to
obtain the adiabatic evolution of the amplitude, frequen-
cy, group velocity, and phase of the fundamental NLS
soliton. Amplification (including Raman effect) affects all
these parameters while higher-order material dispersion
terms change the group velocity and phase only.

An analytic perturbation solution was obtained for the
equilibrium solitary wave of the system. Its stability was
qualitatively analyzed by numerically solving the evolu-
tion equations for the amplitude and frequency in the
phase-plane formalism. We then observed the presence
of limited basins of attraction for the nonvanishing equi-
librium solutions and gave their approximate boundaries.
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