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Chaotic itinerancy in a coupled-element multistable optical chain

Kenju Otsuka
NTT Basic Research Laboratories, Musashino-shi, Tokyo, 180 Japan

(Received 15 August 1990)

Self-induced wandering among local attractors, that is, chaotic itinerancy, and the chaotic
search of coexisting periodic or chaotic local orbits have been discovered in a nonequilibrium opti-
cal system with distributed nonlinear elements (Otsuka-Ikeda model system). It is shown on the
basis of numerical simulations that spatiotemporal chaos in this system is interpreted as unstable
motions which dynamically connect destabilized spatial structures via a chaotic itinerancy process.

Spatiotemporal dynamics in high-dimensional non-
equilibrium systems are important current issues in non-
linear physics. In general, such systems possess coexisting
equilibria as stationary solutions. The motivation of our
recent studies is to extract generic phenomena from such
multiequilibria systems, paying special attention to the
dynamics appearing when coexisting equilibria become
dynamically unstable. With this motivation, we have in-
vestigated this general issue for years, and recently
discovered a self-induced switching between local equili-
bria resulting from chaotic motions created within them-
selves, i.e., chaotic itinerancy, in some high-dimensional
chaotic systems including coupled laser systems, ' mul-
timode Maxwell-Bloch equations, and complex time-
dependent Ginzburg-Landau (TDGL) systems. The non-
linearity responsible for the self-induced escape from the
local attractors changes from one system to another.
However, local chaos self-created within the local attrac-
tor, which is closely correlated with the past evolution
(memory) of the system, commonly plays an inevitable
role in chaotic itinerancy phenomena. Indeed, when real-
izing an escape from a local attractor by an externally ap-
plied random force in these systems, the local attractor is
severely damaged, resulting in a complete blackout of
memory.

The purpose of this Rapid Communication is to present
another example of chaotic itinerancy, which is expected
in the Otsuka-Ikeda bistable chain model. In the
above-mentioned systems which exhibit chaotic itineran-
cy, however, coexisting equilibria can be defined by simple
successive winding numbers easily determined by bound-
ary conditions. In addition, self-induced switching has
been found to take place only between adjacent winding-
number states having similar basins of attraction. In
short, chaotic itinerancy occurs in these systems in the
form of a simple successive topological change to an adja-
cent winding-number state. On the other hand, the
Otsuka-Ikeda model system ensures the existence of a
variety of local attractors which possess different charac-
ters and cannot be expressed by winding numbers, result-
ing from its inherent multistable nature. Therefore, the
spatiotemporal dynamics connecting these attractors is
expected to show richer features than seen in previous sys-
tems.

In the Otsuka-Ikeda model shown in Fig. 1, nonlinear

refractive index elements are arranged in an optical ring
cavity and individual elements are coupled via counterpro-
pagating light beams (AF and A8) that are introduced
through the mirrors which separate the elements. If we
neglect the refractive-index grating effect due to interfer-
ence and assume lossless media, then the dynamics of the
two fields Ep~ and Eq are governed by the following
simple equations, within the limit of large dissipation:
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FIG. 1. Conceptual model of a multistable optical chain with
coupled nonlinear elements. (Otsuka-Ikeda model system. )

Here, pk is the nonlinear phase shift, po is the linear phase
shift, 8 is the coupling coefficient between the adjacent
cells, and i is the medium response time.

Let us briefly summarize spatial patterns created in this
system. When input intensity AF z is small, a variety of
spatial heteroclinic structures born from stable period-two
cycle fixed points are realized as dynamically stable
equilibria. As the input intensity is increased up to the
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multistable domain, interheteroclinic structures, which
connect different coexisting period-two cycle solutions, as
well as chaotic patterns, which make rounds between an
extremely large variety of diff'erent fundamental periodic
structures, exist stably in time. These coexisting spatial
patterns are categorized into several classes in terms of
the norm from the period-two cycle solutions. Needless to
say, the number of coexisting patterns increases with in-
put intensity P =AF+Aq as well as with system size N.
When P is increased further, these patterns become
dynamically unstable and spatiotemporal chaos (STC)
develops.

The question then arises: What kind of spatiotemporal
dynamics takes place in the process ~here these coexist-
ing patterns become dynamically unstable and develop
into STCAM The main issue of this study is to provide an
answer to this question. From extensive numerical simu-
lations, the following scenario has been found to exist
when P is increased. Some of the stable chaotic spatial
patterns become dynamically unstable and exhibit period-
ic pulsations, reflecting the diAerent dynamical stability of
each pattern. The number of destabilized patterns in-
creases with P. In some cases, periodic pulsations come to
be modulated by intermittent bursts and lead to chaotic
pulsations around local attractors as P is smoothly in-
creased, resulting in local chaos, while some local chaotic

' 1/2

D = Q Icos—(pt, ) —cos(pt, 2) P

is plotted to classify and distinguish periodic patterns.
Note that periodic patterns (a) and (b) have the same
time-averaged norm, as also do (c) and (d).

In Fig. 3, the temporal evolution of the local Lyapunov
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FIG. 3. Chaotic itinerancy in high-P regimes for different ini-

tial conditions. P=23 and other adopted parameters are the
same as those of Fig. 2. Trigger pulses are applied in the period
10 & t/r & 20. p denotes a periodic orbit and SC means stable
local chaos, where different unstable chaotic orbits are dis-
tinguished by numbers. aL is the time-averaged local Lyapunov
exponent.

FIG. 2. Chaotic search of periodic orbits for different initial
conditions. N=9, 8=0.3, P=18, and &0=0. Trigger pulses are
applied in the period 5 & t/r & 10 to po of all cells. D is the
norm from the fundamental period-two cycle pattern.

orbits often appear suddenly. (A detailed characteriza-
tion of local chaos by power-spectrum analyses is now un-
der investigation ) . This implies that a variety of stable
fixed points, periodic, quasiperiodic orbits as well as
chaotic orbits belonging to different attractors (spatial
patterns) coexist at fixed P values. Which state is realized
during the course of temporal evolution critically depends
on the initial values of each element.

Figures 2 and 3 show typical examples of temporal evo-
lutions of pt, for different initial values, where N=9,
B=0.3, and po =0 are assumed. In these simulations, the
system is initially set on the same orbit and then perturba-
tions of diff'erent strengths are applied in the form of
trigger pulses to po. In Fig. 2, the norm from the funda-
mental period-two cycle solution,
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exponent defined as

aL(r)=-,' ln g Byk(r)', (3)

averaged over ht/r =5 is also shown. Here, 8&k(t) is cal-
culated by the variational equation

~~4k ~tt'k +fF (Pk —I )~0k —]+f8 (4k + I )~Ok + I . (4)

This quantity denotes the measure of stability of each pat-
tern. When P is relatively low as in the case of Fig. 2
(P=lg), there are many coexisting periodic orbits in

phase space. After some transients, the system is attract-
ed by one of the coexisting periodic orbits whose long-time
average of local Lyapunov exponents is zero, depending on
initial conditions. As P is increased, some of these period-
ic orbits are chaotized and turn out to be local chaotic or-
bits. In these regimes, as shown in Fig. 3 (P=23), the
system exhibits self-induced switching among diA'erent
unstable local chaotic orbits indicated by numbers, i.e.,
chaotic itinerancy, and finally finds one of the periodic
(like p in Fig. 3) or stable chaotic orbits (SC1 and SC2),
from which the system cannot escape. There are other
coexisting orbits, although they are not shown in Fig. 3.
The stable local chaotic orbits mean that the system can-
not escape from these orbits eternally, resulting in local
chaos. Note that Lyapunov exponents for these stable lo-
cal chaotic attractors are smaller than those for unstable
ones in which the system cannot stay for a long time as
can be seen in Fig. 3(c) and 3(d). This implies that there
exists a threshold az th for the system to escape from the
local chaotic attractors. If one increases P further, the
system can hardly find periodic or stable local chaotic or-
bits and chaotic itinerancy persists and leads to global
STC. This strongly suggests that STC in the present sys-
tem is interpreted as unstable motions which dynamically
connect destabilized spatial structures via a chaotic
itinerancy process. As the system size N increases, the
number of local attractors, among which chaotic itineran-
cy takes place, increases. In addition, it should be noted
that dwell time within the local attractor decreases with
the increase in local Lyapunov exponent in a chaotic
itinerancy regime as shown in Fig. 3. This tendency has
been confirmed by a statistical analysis of numerous ex-
perimental data. As P is increased, local Lyapunov ex-
ponents become to distribute at higher values and results
in the decrease in dwell times within unstable local chaotic
attractors.

What is the origin of the self-induced switching among
diAerent local attractors? This is the key for understand-
ing chaotic itinerancy in this system. To investigate this
problem, we calculate the evolutions of field intensities
Ek~ =—~EF~ ) +~EB" ( which provide the on-site non-

linearity giving rise to nonlinear phase rotation. This
quantity expresses the phase rotation speed of individual
elements, as is seen from Eq. (1). A typical example near
the switching point of Fig. 3(a) is depicted in Fig. 4. It is
apparent from the figure that the electric field of
k =fourth cell, i.e., ~E4 decreases at first (see point a in
the figure) and this information is transferred to adjacent
cells successively as shown by arrows, due to the mutual
coupling between adjacent cells. As a result, all the cells
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FIG. 4. Temporal evolutions of field intensities for cells near
the switching point of Fig. 3(a) (90 & t/r ( 130).

cooperatively escape from the local attractor 1. When
state values of the majority of the cells enter the basin of a
new attractor, the system switches to this attractor and
the self-induced switching to local attractor 2 is estab-
lished at point b. It should be noted that, in the case of
Fig. 4, k=1, 8, and 9 cells are fluctuating around the
same state values even after the switching, while other
cells fluctuate around difIerent state values. This results
from the fact that switching will take place favorably be-
tween structures that are nearby in terms of the norm,
where some of the cells have the same state values. In
such cases, successful switching can be attained by chang-
ing the spatial structures locally. However, a switching
path is not unique in the present system, as shown in Fig.
3. This is a sharp contrast to the previous itinerant sys-
tems in which chaotic itinerancy always take place be-
tween adjacent winding-number states and the easy path
for switching is uniquely established. The connectivity be-
tween diff'erent attractors, which may depend on the
norm between spatial patterns, and the identification of
switching paths of chaotic itinerancy in the present system
are interesting problems for future study.

In conclusion, chaotic itinerancy among coexisting local
attractors has been discovered in a multistable optical sys-
tem which possesses a variety of spatial patterns. The
creation of field inhomogeneity and a cooperative phase
rotation are found to be the origin of the self-induced
switching according to numerical simulations. This mech-
anism is very similar to that for chaotic itinerancy in
weakly coupled complex TDGL systems, although
diA'erent switching paths exist in the system discussed in
this paper.
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