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Modulation instability in the region of minimum group-velocity dispersion
of single-mode optical fibers via an extended nonlinear Schrodinger equation
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Modulation instability in the region of the minimum group-velocity dispersion is analyzed by
means of an extended nonlinear Schrodinger equation. It is shown that the critical modulation fre-
quency saturates at a value determined by the fourth-order dispersion. Experimental results demon-
strate the viability of generating a train of femtosecond pulses with repetition rates of a few
terahertz in reasonable agreement with the theory.

I. INTRODUCTION

Recent investigations on the propagation of light
pulses through optical fibers' have aroused considerable
interest in the study of nonlinear effects described by the
nonlinear Schrodinger equation (NLSE). One of these
effects, known as modulation instability (MI), first pro-
posed by Hasegawa, is the generation of a train of ul-
trashort pulses from a perturbed cw radiation. It hap-
pens when a cw perturbed radiation experiences an insta-
bility that leads to an exponential growth of its amplitude
on propagation in optical fibers due to an interplay be-
tween the nonlinearity and anomalous dispersion. This
phenomenon has been first verified experimentally by Tai,
Hasegawa, and Tomita. MI of short pulses has also been
considered by Shukla and Rasmussen. The mathemati-
cal problem consists in finding periodic solutions of the
NLSE and exact analytic expressions for it have been ob-
tained by Akhmedieva, Eleonskii, and Kulagin. Also,
using an extended NLSE, Potasek and Vysloukh and
Sukhotskova have investigated the inhuence of third-
order dispersion on MI. Recently, there has been an
analysis of MI through a phase-matched four-photon-
mixing approach which takes into account dispersion
effects up to fourth order. This paper is devoted to the
investigation of MI, in the region of minimum group-
velocity dispersion, through an extended NLSE, taking
into account fourth-order dispersive effects. We will
demonstrate that this term dominates the critical
modulation-instability frequency when second-order
dispersion approaches its minimum value at the so-called
zero-dispersion wavelength A,d. Furthermore, experimen-
tal results will be presented, demonstrating the genera-
tion of a train of femtosecond pulses with repetition rates
given by the modulation frequency. This paper is organ-
ized as follows. In Sec. II we solve the NLSE for a per-
turbed cw pulse and investigate its behavior in the anom-
alous dispersive regime, in Sec. III we show experimental
results, and finally Sec. IV is devoted to the conclusions
and a discussion of the results.

II. MODULATION INSTABILITY

Consider a linearly polarized light propagating
through a dispersive nonlinear medium, such as an ideal

n (co,I)=no(co)+n2I, (2.2)

with I =
~
A ~, and no is the linear refractive index

whereas n2 is the nonlinear Kerr coe%cient. The propa-
gation constant that describes chromatic dispersion is ex-
panded in the Taylor series about coo and here we shall re-
tain terms up to fourth order, that is,

P(co) =n (co)(co/c)

= Po+Pi(co —coo)+ —,'P2(co —coo)

+ ( 1/3!)P3(co —coo) +—,'P4(co —coo) (2.3)

where

dnP„=, n =0, 1,2, . . . .
de ~p

It is convenient to introduce the retarded time

(2.4)

T=t —P,z . (2.5)

Substituting Eqs. (2.1)—(2.5) in the wave equation, we ob-
tain the following propagation equation for the envelope
amplitude:
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(2.6)

Here, y=n, 2coo/cS, ~ with S,z as the effective core area.
The steady-state solution of (2.6), corresponding to a cw
signal, is given by

single-mode fiber. The electrical field in the slowly vary-
ing envelope approximation, may be written as'

E(r, t) =
I U(p) 3 (z, t)exp[ i (coot ——Poz) j+c.c. }x,

(2. 1)
where I is the unitary vector of the polarization direc-
tion, U(p) is the field distribution, Po is the propagation
constant at the central frequency of the pulse coo, and c.c.
stands for complex conjugate. 2 (z, t) is the amplitude of
the envelope which is a slowly varying function of time
compared to the optical period. In the case considered
here, the refractive index of the fiber is given by
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3' = Aoexp(ig„i), Ao=+Po (2.7)
7.0

li'.( (IO" p '/~)
7.0 7.0 ?.1 7.4 1 2.0

where Po is the incident power at z =0. Substituting (2.7)
in (2.6) we find that (2.7) is a solution when

y„,=y W ~'z . (2.8)

Physically, Eqs. (2.7) and (2.8) show that the cw radiation
experiences only a power-dependent phase shift after
propagation through the fiber. Now we wish to test the
stability of such a steady-state solution. To this end we
add a small perturbation a(z, T) to the cw light and ex-
amine its evolution. Therefore, we substitute the follow-
ing expression in (2.6):

Po = 5.0W
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A =(Ho+a)exp(iP„&), a~ «(Ao~ (2.9)

and linearize it in a to find the propagation equation for
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(2.10)
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py, n' p2n'
(2.12)

We are looking for modulation frequencies Q less than a
critical frequency Q, corresponding to imaginary wave
number E, so that the modulation signal undergoes an
exponential growth in amplitude. The first thing we no-
tice from (2.12) is that the cubic dispersion factor p3 has
no inAuence on the modulation frequency, as pointed out
previously in Ref. 7. Also, it is clear that in the normal
regime of group-velocity dispersion, K is real for all
values of 0 so that the steady state is stable against per-
turbations. However, in the anomalous regime, K be-
comes complex for frequencies A (Q„which according
to (2.12) is defined by

24P20, 48Poy

4 4

We now have a linear equation which is readily solved,

a(z, T)=a, cos(Kz QT)+—ia2sin(K, AT), —(2.11)

with E and 0 obeying the following dispersion relation:

FIG. l. Critical modulation frequency as a function of the
second-order dispersion parameter. The upper axis is associat-
ed with the dashed line ((P2~ =0).

group delay dispersion tends to zero. Thus, by neglecting
P4 in Eq. (2.12) we obtain the critical modulation frequen-
cy as in Ref. 3. Near A, d we neglect p2 ending up with the
following dispersion relation:

p,n' n'(p, (

K = + [0"+sgn(P )0,]''
6 24

(2.14)

as is depicted in Fig. 2, where we have plotted the modu-
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It is now clear that for p2=0, the critical modulation fre-
quency saturates at a value 0, given by

48P y
(2.15)

Ip41

+(24) Roy =0. (2.13)
p2

To illustrate the effect of higher-order dispersion, we plot
in Fig. 1 the modulation frequency 0, /2m. at three re-
gimes obtained from Eq. (2.13). For fiber parameters
readily found in practice (A,0= 1.319 pm, kd —1.32 pm,
y=3.05 W 'km '), it is clear that for (pz()1 ps /km
the behavior of 0, is dominated by the group delay
dispersion. However, for (p2(& 10 ps /km the fourth-
order dispersion factor dominates and fL, saturates as
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FIG. 2. Critical modulation frequency vs group delay disper-
sion for various incident powers Pp with y =3.05 km
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FIG. 3. Gain spectrum of the modulation instability at four
power levels. Fiber parameters ~Pz~ =0, ~f14~ =7X 10 ps /km,
y=3.05 km ' W

g (0)=2 Im(K) = (0, —0 )'
12

(2.16)

where Q is the shift in frequency from the central initial
one coo. The maximum gain g is then produced at a
shifted frequency Q

lation frequency versus group delay dispersion for vari-
ous incident powers.

Let us now evaluate the gain spectrum g (0), which is
obtained by

gime, by operating in the region of the minimum second-
order dispersion, we have carried out an experiment as
follows. Rather than using a cw source modulated by a
small perturbation, we have injected into the fiber a long
pulse ( = 100 ps) compared with the expected modulation
period ( =500 fs), so that we have operated in a quasi-cw
situation and looked at stimulated modulation instability.

The light source was a cw mode-locked Nd: YAG laser
(YAG denotes yttrium aluminum garnet) operated at
1.32 pm, generating approximately 100 ps at a 100-MHz
repetition rate and an average output power of approxi-
mately 1.6 W. The fiber used was 500 m long, single
mode at 1.32 pm, 7-pm core diameter, and
had second- and fourth-order dispersion parameters
f32= —0. 1 ps /km and P4= —7.0X10 " ps /km at 1.32
pm, respectively. The second-order nonlinear parameter
was y =3.05 km ' W '. Temporal and spectral features
were measured by using a second-order autocorrelation
technique and a 0.5-m scanning spectrograph, respective-
ly.

Figure 4 shows the second-order autocorrelation trace
(a) and the corresponding power spectrum (b) for a 6.0-W
peak power coupled into the fiber. The frequency of the
sidebands (=2.0 THz) agrees reasonably well with the
measured period of the modulation ( =500 fs) inferred
from the autocorrelation trace. By raising the pump
peak power into the fiber to 8.0 W, a reduction of the
modulation period to 470 fs and a corresponding increase
in the sidebands frequency to 2.14 THz was observed as
shown in Figs. 4(c) and 4(d), respectively. This behavior
presented by the results agrees quite well with the theory
developed in Sec. II. For higher pump peak power cou-
pled into the fiber the Stokes sidebands undergo Raman
preferential gain and the modulation instability evolves
into a solitary wave as described in Ref. 11.

Q,0 =+
m —

&/42
(2.17)

In this way maximum gain g is given by

gm =2~o'V . (2.18) {b)
In Fig. 3, the gain spectrum is shown for various input

powers. Comparing this result with the gain spectrum
evaluated in the region far from A, d, where f32 dominates,
we find that although maximum gain is the same in both
cases, here the maximum frequency 0 (f34) (where max-
imum gain is achieved) is larger than the maximum fre-
quency Q (Pz) there by a factor of 2', as expected,
once P~ is associated with high frequencies.

To consider the eftect of fiber loss' on the critical fre-
quency 0, one must replace it by A, exp( —az/4), where
a is the attenuation factor. Comparing this expression
with the critical frequency evaluated far away from the
minimum dispersion wavelength, where P2 dominates,
i.e., O, exp( —az/2), we find that the latter falls off ex-
ponentially at twice the rate at which the former decays.

III. EXPERIMENTAL RESULTS
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To show the viability of generating a train of fem-
tosecond pulses with repetition rates in the terahertz re-

FIG. 4. Autocorrelation trace and corresponding spectra (a)
and (b) at 6.0-W and (c) and (d) at 8.0-W pump peak power.
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IV. CONCLUSIONS

We have investigated MI of single-mode ideal optical
fibers in the region of minimum group-velocity dispersion
through an extended NLSE that takes into account
dispersion up to fourth order. We have shown that
fourth-order dispersion plays a major role for the critical
MI frequency in the region around A,d, thus confirming
the result obtained by Kitayama, Okamoto, and Yoshina-
ga in Ref. 9 from a different route. Also, we have demon-
strated that the maximum gain obtained in the present
regime is the same as in the region far out from the
minimum dispersion regime although at a higher frequen-
cy. Furthermore, by including loss effects we find that

the critical modulation frequency falls off exponentially
at half the rate than in the region where Pz dominates.
Finally, we have shown the generation of a train of fem-
tosecond pulses with repetition rates in the terahertz re-
gime for a situation as close as possible to the theory de-
scribed in Sec. III.
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