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Heisenberg approach to photon emission near a phase conjugator
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An expression for the emitted fluorescence radiation by an atom near a phase conjugator is de-
rived from a plane-wave expansion of the electric-field operator and Heisenberg s equation of
motion for the annihilation operator. The result is compared to a solution that was found previous-

ly, based on the classical Maxwell equations. It is shown that both theories yield the same expres-
sion for the field in the radiation zone, in the limit of a transparent medium. This confirms the
correctness of either approach to the problem of optical phase conjugation of atomic radiation.

I. INTRODUCTION

In a previous paper' we have studied the behavior of
an atom near the surface of a four-wave-mixing phase
conjugator (PC). We calculated the fiuorescent photon
emission rate by solving Maxwell's equations for a dipole
p near a PC. The electric field E(r, t) was interpreted as a
quantum operator field, with the argument that the clas-
sical Maxwell equations must be identical in form to the
(quantum) Heisenberg equations of motion for the opera-
tor fields. Nevertheless, questions can be raised as to
whether the identification of Maxwell's equations with
Heisenberg's equations can be justified for the problem
under consideration. In particular, the pump beams
(with frequency co) for the four-wave-mixing process are
taken into account parametrically, and are represented by
classical plane waves. This leads to factors of
exp( 2icot) in th—e expression for the fiuorescence radia-
tion field, rather than a (t), with a (t) the annihilation
operator for a photon in the pump beam. In addition,
our results are in conflict with the results of Hendriks
and Nienhuis, ' who did not find the terms proportional
to p(t)' ' (raising part) in the expression for the fiuores-
cence field.

In this paper we solve the Heisenberg equation for the
annihilation operator az (t) for a photon with wave vec-
tor k and polarization o (either s, surface polarized, or p,
plane polarized). The solution is applied to evaluate the
fluorescent radiation field in the far zone. These calcula-
tions are completely independent from our previous
method, and the results can be used to verify the con-
sistency of our approach.

II. ELECTRIC FIELD

The electric-field operator E(r, t) can be represented as
a sum of polarized plane waves. In the region z )0
(above the PC, where the atom is), we have incident
waves with wave vector k and polarization o.. These
waves gives rise to specularly reflected (r) waves, and to
phase-conjugated (pc) waves which travel in the direction
of —k. In addition, there are transmitted (t) waves
which have their origin in waves which are incident on
the medium from the other side of the PC. The four-
wave mixer also produces a nonlinear (nl) wave in z )0.

The amplitude of each of the generated waves is related
to the amplitude of the corresponding incident wave by a
Fresnel coefficient. The electric field is explicitly

E(r, t)=g'
k, a

+g"
k, o

1/2

[ak (t)(ek e'"'+Rk ek e " )+ak (t)e '"'Pk ea e "' ]r pc

1/2

[az (t)T& ez e'"'+a& (t)e '"'Nk*ek e "' ]+H.c. , (2. 1)

where a prime (double prime) on the summation sign in-
dicates a sum over waves which propagate in the z &0
(z )0) direction only. The unit polarization vectors ez

t

and the wave vectors k; are defined in the Appendix. The
Heisenberg operator az (t) is the annihilation operator
for a photon which is incident on the PC, either from
z )0 or from the other side (back port) of the medium.

We shall take the Schrodinger picture and Heisenberg
picture to coincide at t =0.

III. EQUATION OF MOTION

The only unknown in expression (2.1) for E(r, t) is the
annihilation operator aj, (t) for t &0. Its equation of
motion is
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iA ai, (t)=[ak (t),H],
dt

(3.1)

with initial condition ai, (0)=ai, . The Hamiltonian H
can be written as

H =H, +H„+H,„,
with

H„= giricoai, ak
k, o.

(3.2)

(3.3)

IV. SOLUTION

for the Hamiltonian of the radiation field, and where
co =ck. The atomic Hamiltonian H, can remain
unspecified because it commutes with ak (t). For the in-
teraction, we take

H,„=—p E(h, 0), (3.4)

in terms of the atomic dipole moment operator p and the
position h=he, of the atom. With Eqs. (3.3) and (3.4)
the equation of motion becomes

i% ai, (t)=iriaiai, (t) —p(t). [ak (t), E(h, t)], (3.5)
d
dt

where E(h, t) follows from Eq. (2.1) with r=h.

When we substitute Eq. (2.1) for E(h, t'), then it appears
that many terms in the integrand oscillate at optical fre-
quencies, and these terms average out to zero on a time
scale of an optical cycle. The time dependence of the an-
nihilation operator would be a& (t)=ai, exp( —idiot) in
free evolution, which contains only a single positive fre-
quency. When the interaction is taken into account,
ak (t) acquires a spectral width around the frequency co,
but it is still a positive-frequency operator. Similarly,
when we split the dipole moment into a positive and a
negative frequency part as

p(t) =p(t)'+'+p(t)' (4.2)

then p(t)'+'=p'+'exp( icoo—t) in free evolution (for a
two-level atom with transition frequency coo). The third
time dependence enters as exp(+2i cot). Then we drop all
terms in the integrand which oscillate with optical fre-
quencies, and retain the terms which oscillate with the
difference of two optical frequencies. Furthermore, we
notice that the first term on the right-hand side of Eq.
(4.1) yields the vacuum field E, (r, t).

Therefore, we can write

An integral of Eq. (3.5) is
E(r, t) =E„(r,t)+E,(r, t), (4.3)

az (t)=e ' ' ai, +— td'e'"'p(t') [ai, (t'), E(h, t')]ko ko

(4.1)

where E,(r, t) is given by Eq. (2.1) with
ak (t)~ak exp( idiot). Th—e source field E, (r, t) follows
from the second term on the right-hand side of Eq. (4.1).
We find explicitly

, (r, )= g'toe ' 'bi, (t)(ei, e'"'+Ri, ei, e "
)2e, vk.

'k ~

2@0V pc 2e0V k
J

l

2@0V
g"roe ' "bk (t)N& ei, e "' +H c. ,
k, o.

(4.4)

in terms of the operators

bi, (t)= f dt'e' 'p(t')'+' (ei, e '" "+Ri', ei, e '')+ dt'e' "" (t')' '(Pi*, ek e " ), k, &0,
0 I' 0 pC

(4.5)

bi, (t)= J dt'e' 'p(t')'+'(Ti, 'ei, e ' '")+ dt'e'" " (t')' '(Ni, 'ei, e "' ), k, )0 .
0 0 nl

(4.6)

V. ASYMPTOTIC EXPANSION

In order to simplify the solution (4.4) for E,(r, t) we consider its value in the radiation zone (r~ ~ and z )0). The
operators bi, (t) and bi, (t) are independent of r, so that all r-dependent factors appear in the form exp(ik r). These
exponentials are multiplied by a function of k, and the result is summed over all values of k . Therefore, all terms in

Eq. (4.4) have the generic form V gi, g(k )exp(ik .r). The summation runs either over wave vectors with only posi-
a

tive z components or over wave vectors with only negative z components. Changing the summation into an integration
gives
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—gg(k )e = f dk k f dQg(k )e (5.1)

where the superscript ( ) on the region of solid angle indicates the sign of the z components of the wave vectors k .
Then we can make an asymptotic expansion of the angular integral with the method of stationary phase. The result is

+ik r

f dQg(k„)e =+2vri
fL— ak r

g(+k e„), (5.2)

where e„ is the radial spherical unit vector which points in the observation direction. This direction will be specified by
the spherical angles 9 and P. The asymptotic expansion effectively filters out the value of g(k ) for k =+k e„, corre-
sponding to the plane wave exp(ik r) which travels into the observation direction.

With Eqs. (5.1) and (5.2), the asymptotic expansion of E,(r, t) is found to be

E,(r, t)= g f dk ke '""[toe '"'bz (t)ej, ]I,8~ e0I

ik„r
dk„k„e "[cue '"'bz (t)R& ez ~]z

+ f dk, k, e
0

—f dk, k, e ' [toe ' 'bt (t)Tk ek ]k

+ f dk„)k„)e
0

Ek gr"' [cue '" "bq (t)NI, eq ]q = t, +H. c. (5.3)

VI. POLARIZATION VECTORS

The polarization vectors e&, evaluated for k =+0 e„can be expressed in the spherical unit vectors eo and e&.a
These calculations are similar (but not identical) to the corresponding calculations in Ref. 1 (Sec. IX). Here it is con-
venient to introduce the notation

(6.1)

which will enable us to express the results for s waves and p waves in a single formula. We find

E (r t)= g(e X d„+e X„+e X, +e X, +e X„, )+H c. ,
877 60I'

with

X.,„=—f dk k~e '"" ' '[b„(t)]„«,
X„=f dk„k„cue '

[b& (t)R& ]&

(6.2)

(6.3)

(6.4)

and similar expressions for X, , X, , X„~ . Apparently, the term proportional to X,d„ is an advanced (noncausal)
contribution to E„corresponding to incoming spherical waves. The other four terms are retarded (causal) solutions,
and they have the form of outgoing spherical waves.

Next we substitute expressions (4.5) and (4.6) for bz (t) and bz (t), respectively, into the results for the X 's. Then
we evaluate the polarization vectors in b& (t) and b& (t) at the incident wave vectors. After lengthy calculations we
find

X = dk kcoR e '"" ' " ' dt'e'"'e -(t')'+'
r, cr 0 o. I

+R*e ' "+' " " dt'e'"'e+ p(t')'+'+I'* '"" ' " ' dt'e' ""e .p(t')'a e c~ p CT CT
(6.5)

and four other similar expressions. Here we introduced the abbreviations

e, = —
e&, e = —eo —2 sinOe, , (6.6)
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h
cosO,

c
(6.7)

and all Fresnel coe%cients, like P,R, etc. , are evaluated at frequency co and an angle of incidence equal to the polar
angle (0) of observation.

VII. TWO-LEVEL ATOM

So far we have not made any assumption about the atom and its dipole moment p, (t) In. order to evaluate the expres-
sion for E,(r, t) further, we assume that only two atomic levels, which might be degenerate, are of relevance. The level
separation is ficop. In free evolution, the positive and negative frequency part of p(t) obey the identity

)(+) + )COp( (g )()
( )(+) (7.l)

We shall use this as an approximation in equations of the type (6.5). Then, for instance, Eq. (6.5) can be written as
r

I

X„=f dk kcoR e+ p(t r r—jc)—'+'e ' f dt'e

(+ )
—i(co—cop)(t +w —r/c) t, l (co—cop)t'+R *e+ p( t +r rjc) + e — dt 'e

( ) 2;—(t / )
—l (co+cop —2')(t —7.—r/c) t, i (co+cop —2')t'+P*e p(t r. rjc)—e— ' ' ' " 'e dt'e (72)

X,d„—0, (7.4)

In every term, both the exponential in the integrand and
the exponential in front of the integral have the same fre-
quency. When the distance r is much larger than a wave-
length and the retardation r jc is much larger than an op-
tical cycle, then the integrals can be approximated by

I

e
' f dt'e =2nD(co )

..
0

In writing out all X as in Eq. (7.2), it can be shown
that every integral can be written as in Eq. (7.3). The
only exception is X,d, , which contains the integral of
Eq. (7.3) with r replaced by r. This mak—es the right-
hand side zero, instead of 2ir5(co ), as shown in Ref. 5.
Therefore,

introduce the polarization vectors (without the + super-
scripts)

e, =e&, e =e,
e, =e&, e = —e —2 sinOe, .

Then we define the parameters

(8.1)

(8.2)

y' =R P *—R P +T'N'* —T'N'*,
(8.3)

(8.4)

which will depend on the angle 0, in general. When we
group together all terms with p(t)(+) and all terms with
p(t)' ', then the field assumes the remarkably simple
form

as it should. Then we set k =su/c and carry out the in-
tegrations over co. This gives, for instance, E,(r, t)=

c00e
pe [a+ p(t)( '+e ' 'a .p(t)( ']

47TEOC 7

277670
2

X„~= [R~6~ 'p(t 1 r jc)
c

+ R
I

e+ p(t+i. rjc)'+'—
+R P *@+p(t —r—r jc)'

—2i Q(t —~—r/c) qXe

where

(7.5)

+H. c. ,

in terms of the polarizationlike vectors

2l cc)pT
a = —P*e +e y'e

Alternatively, we can group the terms as

(8.5)

(8.6)

(8.7)

P =P (coc),0),
P =P (2co coo, 8), —

(7.6)

(7.7)

l COpf'

cooe
E,(r, t)= [(M() ee)ee+(M& e&)e&]+H.c. ,

4meOC r

and similarly for other Fresnel coefticients.

VIII. TOTAL SOURCE FIELD

The total field E,(r, t) has four contributions of the
form (7.5), according to Eq. (6.2). We set t rjc ~t, and—

with

M()= y'p(t)++ e ' R p'( t)(+ )

' '[P~"p(t)' ' e' y' p—'(t)( '],

(8.8)

(8.9)
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P'(t) =Pj(t) Pll(t), (8.11)

in terms of the perpendicular and parallel components of
p(t) with respect to the surface z =0. Expressions
(8.8)—(8.10) would be identical to our earlier results
(12.5)—(12.7) from Ref. 1, if the parameters y' and y'
would be y' = 1 and y' =0.

M~=y,'p(t)'+' e—' R,p'(t)'+'

—e '"'[P,*p(t)' '+e ' y,'p'(t)' '] . (8.10)

The mirror dipole p' is defined as

plane-wave expansion of the electric field in terms of an-
nihilation and creation operators. Then we solved the
Heisenberg equation of motion for the annihilation
operator. This gives rise to two contributions to the elec-
tric field: the vacuum field E, and the source field E„
which is generated by the dipole. The form of E„ follows
trivially from the choice of H„, but the form of E, de-

pends on the choice of interaction Hamiltonian and the
structure of E„[which equals E(r, 0)]. We have shown
that E, is identical to the solution of Maxwell's equa-
tions, as found previously, provided that

IX. SPECIAL CASES
y'=1, y' =0 . (10.1)

We have not used any of the properties of the Fresnel
coefficients in the derivation of the results of the previous
section. These coefficients can be calculated explicitly,
but the result is very complicated. Therefore, we consid-
er two limiting cases of practical interest.

A. Dielectric layer

P =X =0, (9.1)

which gives

When we turn oA' the pump beams, then the medium
becomes an ordinary dielectric. Therefore,

These parameters do not appear in the solution of
Maxwell's equations, which indicates that both ap-
proaches are independent indeed. The parameters y'
and y' are determined by the Fresnel refIection and
transmission coefficients for a plane wave, and they de-
pend on the polarization, frequency, and angle of in-
cidence. The general form of the Fresnel coefficients is
extremely complicated, which prohibits the verification
of Eq. (10.1) for the most general case. We have shown,
however, that for a dielectric layer and for a transparent
medium the relations in Eq. (10.1) are satisfied, which
covers most cases of practical interest.
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so that

(9.4)

This shows that for a dielectric layer, the results
(8.8)—(8.10) are identical to those in Ref. 1. Notice that
the term which is proportional to It(t)' ' in Eq. (8.5)
disappears in this limit.

B. Transparent PC

When the dielectric constant equals unity, the specular
waves vanish. This gives

APPENDIX

k,- =VII+ k, ,e, , (A 1)

and any k; in Eq. (2.1) which corresponds to a given in-
cident wave must have the same parallel component kll
with respect to the surface of the medium. The polariza-
tion vectors for s waves and p waves are chosen as

Here we summarize the expressions for the various
wave vectors in Eq. (2.1) and the phase conventions for
the unit polarization vectors. Any wave vector can be
decomposed as

R =N =0 .

The nonzero Fresnel coefFicients are now related by

(9.5) 1
ci., =

k kllXC
II

(A2)

(9.6)

y'=1, y' =0 . (9.7)

X. CONCLUSION

which holds for any polarization, angle of incidence, and
frequency. Therefore, we find again

=1ckp= k;Xc
k t

(A3)

respectively. An incident wave from z )0, and with
wave vector k=kll+k, e, generates a specular (r) wave
and a phase-conjugated (pc) wave. The z components of
their wave vectors are determined by the dispersion rela-
tion, and found to be

We have derived an expression for the fIuorescence ra-
diation field which is emitted by an atomic dipole near
the surface of a PC. The starting point was the standard

k= —(k —k)'
pc, z

(A4)

(A5)
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in terms of

p —(2co co)/co . (A6)

A wave with wave vector k which is incident on the layer

from z (0, generates a transmitted (t) wave in z )0 with
wave vector k. In addition, a nonlinear (nl) wave is pro-
duced in z )0, which has the same frequency shift with
respect to the incident wave as the pc wave.
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