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Hanle effect in nonmonochromatic laser light
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We report results of calculations on the Hanle effect in a J=O~J=1 atomic transition with

three types of model Quctuating light fields: (a) the Brownian-motion phase-diffusion field, as pro-
duced in recent experiments by Arnett et al. [Phys. Rev. A 41, 2580 (1990)];(b) Gaussian amplitude
fluctuations; and (c) the chaotic field model, in which real and imaginary parts of the electric-field
amplitude fluctuate. For the stochastic density-matrix equations, we use methods developed by
Zoller and co-workers [e.g. , Dixit, Zoller, and Lambropoulos, Phys. Rev. A 21, 1289 (1980)] em-

ploying the Fokker-Planck operator and leading to matrix continued-fraction expansions. The
Hanle effect is of interest as a prototype for multisublevel atomic transitions. The width of the
Hanle dip at zero magnetic field reAects the tendency of the light field to preserve the coherence be-

tween excited-state sublevels. For monochromatic light, the Hanle dip width increases as the

square root of light intensity. When the laser bandwidth increases, power broadening of the coher-
ence dip normally decreases. However, with the Brownian-motion phase-diffusion model, if the
laser spectral profile is nearly gaussian, broadening the laser up to several times the natural width

of the atomic line does not diminish the Hanle dip width. With amplitude Auctuations, even in the
limit of monochromatic hght, power broadening of the Hanle dip with intensity is reduced by one-

third to one-half depending on the particular model.

I. INTRODUCTION

Recently there has been renewed interest in under-
standing atomic processes induced by laser light that is
not monochromatic, but has a bandwidth comparable to
the linewidth of the atomic transition of interest. Atomic
excitation either by broadband or by monochromatic
light is well understood in terms of rate equations or
Bloch equations, respectively. Considerable effort has
now been expended to fill the gap between these limiting
cases so as to provide a comprehensive theory of laser ex-
citation. The recent renewal of interest stems from the
development of experimental laser modulation tech-
niques' that produce well-characterized light with the
properties of idealized models. After earlier experiments
on two-photon processes, ' experiments on the Hanle
effect in Yb have been performed with a range of laser
intensities. In the present report, we show how the
methods for solving stochastic density-matrix differential
equations developed largely by Zoller and co-workers
were applied to these Hanle effect experiments. %'e
present results for a wider range of laser parameters than
was used by Arnett et al. , and also apply similar com-
putational methods to other models in which the ampli-
tude, rather than the phase, Auctuates.

When the laser field is sufficiently intense that many
photon interactions occur, the laser spectral bandwidth
or spectral shape, obtained from the second-order corre-
lation function, is inadequate to characterize the field.
Rather than using higher-order correlation functions ex-
plicitly, as in most discussions of finite-bandwidth effects
we employ soluble models for Auctuating light fields. The
Brownian-motion phase-ditt'usion model (BMPDM), the
Gaussian amplitude model (GAM), and the chaotic field
model (CFM) are considered in parallel with a discussion

on two-level atom transitions by Georges. " (The
BMPDM is a more general phase-diffusion model than
Georges discussed. ) Techniques for experimentally pro-
ducing laser light obeying the BMPDM were developed
by Elliott, Roy, and Smith. ' Recently, Elliott and co-
workers have produced GAM (Ref. 12) and CFM (Ref.
13) fields by modulation of monochromatic laser light.
Hence it is now possible to test experimentally the
theoretical predictions for each of these model fields.

The Hanle effect' is of interest as a prototype for tran-
sitions between multisublevel atomic states because the
coherence between excited-state sublevels plays a crucial
role. For a J =0+-+J=1 transition, if the linear polariza-
tion of the exciting light (taken to be along x) and the
direction of observation are parallel, the observed Auores-
cence signal is zero at zero magnetic field because Auores-
cent transitions from the IJ=+1 sublevels destructively
interfere. The level scheme and typical experimenta1
geometry are shown in Fig. 1. When a z-directed mag-
netic field is applied, the two I1=+1 sublevels no longer
evolve at the same frequency, the induced polarization
precesses, and the observed fluorescence signal increases.
If the excitation is narrow band, the fluorescence eventu-
ally decreases due to detuning as the levels separate in the
magnetic field. The case of monochromatic excitation
was considered theoretically by Avan and Cohen-
Tannoudji' and observed experimentally with 1ow inten-
sity relative to saturation by Rasmussen, Schieder, and
Walther. ' The Hanle dip at zero field broadens with in-
creasing intensity because the stimulated emission and
reexcitation partially preserve the coherence between the
upper sublevels. The ability of an intense laser to
preserve coherence between the m J =+1 excited-state
sublevels depends on the laser bandwidth and statistics.
The experiments of Arnett et al. showed power
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FIG. 1. (a) Energy-level diagram for the Hanle effect in a
J=O+-+J=1 atomic transition. (b) Schematic diagram of the
typical experimental geometry for experiments discussed here.

broadening of the Hanle dip in monochromatic light, and
decreased broadening with increasing laser bandwidth for
Lorentzian laser profiles. There were also data showing
that a more Gaussian profile produces more power
broadening than a Lorentzian profile of the same band-
width. Basic, qualitative physical explanations were
given in Ref. 5. Our goal here is to show how methods
for solving stochastic differential equations may be used
to calculate signals for the Hanle effect for amplitude as
well as phase fluctuations. A primary focus will be the
extent to which the coherence between the excited-state
sublevels is preserved in nonzero magnetic field (as shown
by the width of the Hanle dip) in an intense laser field as
the laser bandwidth increases due to various types of fluc-
tuations.

The effects of phase and/or amplitude fluctuations on
the Hanle signal may be compared with analogous effects
that occur in other atomic excitation processes. One ear-
ly theoretical conclusion, not yet confirmed experimental-
ly, was that Mollow sidebands in resonance fluorescence
would be quickly washed out with amplitude fluctuations,
but much less so with phase fluctuations. ' In optical
double resonance with a strong saturating field and a
weak probe field, the doublet split by the Rabi frequency
has been observed to exhibit the predicted reversal of in-
tensity asymmetry for a Lorentzian exciting profile. In
two-photon excitation, the absorption linewidth relative
to the laser width with a Lorentzian laser spectral profile
was observed to be twice that with a nearly Gaussian

laser profile, in accord with theoretical predictions.
Also, in the microwave region, a Gaussian noise source
has been used to modulate oscillator output to produce
comparable effects. ' Recently, the variance of fluores-
cence intensity as a function of laser detuning has also
been shown to depend sensitively on laser phase fluctua-
tions. '

Theoretical models of fluctuating narrow-band optical
fields applied to atomic transitions date from Burshtein's
solution of the excitation of a two-level atom in a
Lorentzian wave with random phase jumps. Agarwal '

has discussed the Hanle effect and other atomic processes
for a model light field with a Wiener-Levy-type phase
diffusion, which results in atomic density-matrix equa-
tions identical with those obtained with the phase-jump
model. Avan and Cohen-Tannoudji addressed the more
general problem of two-level atomic excitation and the
Hanle effect in the presence of laser with both rapid
fluctuations and a slow diffusion, as in Brownian motion.
However, they solved the stochastic equations only in the
limit of a Rabi frequency greater than the bandwidth of
the light. A short time later, Dixit, Zoller, and Lambro-
poulos' applied techniques for solving stochastic
differential equations using the Fokker-Planck operator
to density-matrix equations for laser excitation. This
BMPDM covers the range from the Wiener-Levy PDM
with short correlation times and Lorentzian spectral
profile to long correlation times and a Gaussian profile.
For a two-level atom, this approach leads to equations
identical with those obtained by Georges" using eigen-
functions of the conditional averaging integral, but ap-
pears to be easier to extend to multilevel problems. Prior
to the present work, neither approach was applied to the
Hanle effect.

Other stochastic laser field models and methods should
also be noted. The random telegraph model (RTM)
seems to be quite flexible and relatively easy to apply,
and RTM phase fluctuations have now been produced
electronically in the optical and in the microwave re-
gime. Jump models for phase fluctuations have been gen-
eralized to include non-Markovian processes, and solved
by integral equations. For the case of correlated ampli-
tude and phase fluctuations, the detuned-rotating-wave
van der Pol oscillator model (DRWVPOM) has also been
applied to two-level atomic transitions, and in place of
solving stochastic differential equations by eigenfunction
techneques, Monte Carlo numerical simulation has been
used. ' It is obviously advantageous to have a variety
of models, methods, and measurements to explore
different possibilities.

This paper is organized as follows. In Sec. II the
density-matrix equations for the Hanle effect are obtained
in forms suitable for application to the laser field models.
In Sec. III, the BMPDM, GAM, and CFM are discussed
in more detail. The method for solving stochastic
differential equations in terms of marginal averages is re-
viewed in Sec. IV. Some analytic results for the Hanle
effect with PDM laser fields are given in Sec. V, and in
Sec. VI more general numerical results are presented.
Possible extensions of this work are discussed in the con-
clusion (Sec. VII).
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II. DENSITY-MATRIX EQUATIONS
FC)R THE HANI. E EFFECT

The typical experimental geometry for the Hanle e6ect
in a J =O~J = 1 transition involves mutually orthogonal
directions for the polarization of the exciting light, the
polarization of the observed fluorescent light, and a mag-
netic field along the axis of quantization (see Fig. 1). Un-
der these conditions (which correspond to the experimen-
tal configuration of Ref. 5), the Liouville equation for the
density matrix, '

o = i[H—, o ]+.. . ,

where the ellipsis represents decay terms, involves only
the ground state, denoted by the subscript 0, and the
MJ =+1 upper state levels, denoted by + subscripts:

~++ ~+ — ++o
(2)

~o+ o — ~oo

with Tr(o )=1. With the experimental geometry given
above, the Hanle signal is' '

S —0+++0 —0+ —0

We consider a linearly polarized laser field of the form

E ( t) =Eo(t)cos[co, t + (5( t) ]

where co, is the center frequency of the laser. For the
BMPDM, Eo(t) is a constant and P(t) is a stochastic
variable (see below). For the GAM and CFM, P(t) is a
constant which may be taken equal to zero, and Eo(t) is

stochastic. The atomic frequency interval will be desig-
nated coo and the Zeeman shift by co, (both in rad/sec),
where fico, =genoa, in terms of the g factor, the Bohr
magneton po, and the applied magnetic field. We define
the Rabi frequency for a multilevel transition as the am-
plitude Eo of the applied field times the reduced dipole
moment element ~p~ divided by A'. In a J =0+-+J =1 tran-
sition (Fig. 1), each of the sublevel transition elements,

p+o, happens to be equal to ~iM ~, since each upper sublevel
has only one decay branch. For an x-polarized field, the
amplitude of the o. component is 2 ' times Eo, while
the exp(ico, t) term in (4) involves another factor 2
Hence in the Hamiltonian we will use the quantity v (t),
related to cori(t) by

ipiE, (t)
coi, (t) = =2&2v (t) . (5)

To simplify the notation, the parameter v =v (t) will be
used as the stochastic variable in the discussion of ampli-
tude Auctuations. With these definitions, neglecting the
nonresonant component of the field, the Hamiltonian is

coo+ co 0 v*exp[ i (co, t —+P)]
v*exp[ i(co, t+—P)]

v exp[i(coot+/)] v exp[i(co, t+P)] 0

where the possible time dependence of v and P is not ex-
plicit. Oscillations at the laser center frequency in the
density-matrix elements are removed by the substitutions

oo+exp[ i(co, t +P)]=—po+, o.++=p++,

cr+oexp[i (co, t +P) ]=p„o, c7++ =p++

For the phase-diA'usion model, it is convenient to use
the following linear combinations of density-matrix ele-
ments:

41 P++

1+rgl V/6 0

+I g~
—vfs=O,

it, + rq, 2~, q4 v it6 —v its 0—, — ——

iti4+ I g4+ 2co, P3+ v iti7 vg, =0—,
(9)

Q, +(I /2)P5+(co, b, co)$6+V—P4=0, —

itt6+ (1 /2)iti6+ (6+co—co, )$5+4V i', +2v iti7+ v $3=2V,

iti3
=p+ —+p +»—

44=i(p-+ —p+- »
Ps=p+o+ po+

6='(P+o Po+ )

P7 P 0+Po-
Ws=i(p-o —po-)

to obtain a set of equations with real coeKcients:

j,+(r/2)q, (a+~+~, )q, —vq, =o, —

(&)
its+(r~/2)itis+(b. +co+co, )iti7+4viti2+2vg, +vg, =2V .

In these equations, I is the natural radiative decay rate
of the atomic transition, 6=~, —coo is the laser detuning,
and co=co(t)=cti(t) is the stochastic component of the
laser frequency.

For amplitude Auctuations, the occurrence of the sto-
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chastic variable u on the right-hand side (the inhomo-
geneous term) complicates the approach to stochastic
differential equations used here. Therefore we define an
alternative set of linear combinations of density-matrix
elements for which 1t &

and g2 are 2-

(o)

b/0 = 0.0I

!!!~j (

.2
0+ P++ Poo=2P+++P

=p --p~- —=p+++2P -1-—
(10)

-4

-8

and g;, i =3, . . . , 8 are as defined in (8). The density-
matrix equations for the amplitude Auctuation model
then are (co is now zero)

- I 0'-

-I2

j,+rq, 2uq, —uy, =—r, —

+ I 1(j
—ug6 —2vgs= —I

4+rq, —2,A —6—y, =o,

f4+ I P4+2rv, f3+ uP~ ug5=0—,

$5+(I /2)$5+(ro, —b, )$6+ v/4 =0,

q, +(r/2)q, +(a—~, )y, +2v q++u y3 0,

g~+(I /2)g7 —(b, +co, )gs —v/4=0,

ps+(I /2)ps+(6+re, )$7+2vf +v/3=0 .

The method for solving stochastic differential equations
of the form (9) or (11) is discussed below.

For the chaotic field model, v is complex, and v and v

are both stochastic variables. In this case, it will be con-
venient to work with the set of density-matrix elements

p;, defined in Eq. (7), with f+ from Eq. (10) instead of
p++. The eight-independent equations obtained from (1)
may then be written

3(X)

CA

X' 20(i-

(c)
b/P = O.OI b/P * 20

~
ioo

0

R
4l
~-IOO -2

-2(X)- -4-

-3(X)
0

TI&IE (ARBITRARY UNITS)

2()

FIG. 2. Typical numerical simulations of stochastic phase
and frequency in the BMPDM for a spectral width of one in-
verse time unit. (a) and (b) show the evolution of phase, (c) and
(d) give evolution of the frequency, with parameters as indicat-
ed. The high-frequency Auctuations in (a) and (c) are associated
with greater intensity in the wings of the Lorentzian as com-
pared with Gaussian line shape.

d +I P+ —2i(vp+o —v po+) —i (up+o —u po+ )= —I~ j(r

dt

d + I +2icv, p++ l (vp+p u*po+ ):0—
dt

r+—+i (6+ ro, ) po++iu(f++p++) =0,
(12)

d I+— i ( b, + rv—, ) p+o —iu "(g+ +p++ ) =0 .

III. MODELS OF LASER FIELDS
WITH FLUCTUATIONS

A. Brownian-motion phase-diffusion model

Phase-diffusion models are closely related to the
theoretical and observed properties of single mode

lasers. The amplitude of single mode lasers is stabi-
lized due to saturation of the gain medium, and the phase
diffuses due to the effects of spontaneous emission.
Semiconductor diode and highly stable He-Ne (Ref. 34)
lasers in fact have been shown to have Lorentzian spec-
tral shapes out to a few linewidths from line center near
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and slightly above threshold. The quantum noise or
Schawlow-Townes limit is usually less than a kHz for
gas and dye lasers, but actual lasers are typically several
orders of magnitude wider. "' Therefore the spectral
profile of gas and dye lasers tends to be Gaussian due to
technical noise such as plasma instabilities, acoustic phe-
nomena, and pump noise. Monolithic diode lasers, be-
cause of their short cavities, low reflectivity mirrors, and
coupling between amplitude and phase noise, have quan-
tum limit linewidths several orders of magnitude larger
than gas or dye lasers, and the quantum noise regime
occurs over a much larger power range. Since the
phase-difFusion linewidth varies inversely with power, at
high power relative to threshold eventually other mecha-
nisms also dominate the spectral linewidth and shape of
diode lasers.

The limiting case of instantaneous increments of co cor-
responds to Wiener-Levy phase diffusion which gives a
purely Lorentzian spectral profile. The Brownian-motion
or Ornstein-Uhlenbeck' ' ' phase-diffusion model as-
sumes noninstantaneous changes in the time derivative of
the phase, leading to a laser spectral density that is sub-
Lorentzian in the wings. The BMPDM with finite P (e.g. ,
finite correlation time, as defined below) provides an ap-
proximate model for lasers with non-Lorentzian profile.

As discussed by Dixit, Zoller, and Lambropoulos, ' the
stochastic variable co(t) in the BMPDM obeys the
Langevin equation for an Ornstein-Uhlenbeck pro-

38 42

Gaussian process very analogous to diffusion. From (14),
the diffusion constant inside the integral is 2b/3 . (u„ is a
Gaussian random with a variance of one. The phase it-
self is obtained by another integration:

c/)„+,=c/)„+co„r. (17)

(e(y('+r) cy(~)) —
exp[ b~r~+(e —t I~I I )—//3] . (18)

In the limit P—+ac, the spectrum is Lorentzian with a
width 2b. In the limit P~O, the spectrum is Gaussian
with a width (8b/3ln2)'~ . For intermediate values of
b//3, we show in Fig. 3 the values of b and P that give a
width scot =1 rad/sec.

B. Gaussian amplitude model

Figure 2(a) shows typical results for evolution of the
phase with b/P=0. 01, while Fig. 2(b) shows the phase
for b//3=20. The corresponding plots for co are shown in
Figs. 2(c) and 2(d), respectively. A large value of P im-
plies rapid fluctuations such that wings of the spectral
distribution fall off more slowly than with a small value
of /3. Actually, the plots in Fig. 2 represent generic
Brownian-motion behavior, with P corresponding to the
displacement and co corresponding to the velocity, and as
such will also be applied to the GAM discussed below.

The exact relation between b, P, and the laser spectral
distribution is obtained from the Fourier transform of the
correlation function,

d co( t)
dt

+/3co(t) =F(t)

where F(t) is a 6-correlated Gaussian force:

(F(t)F(t') ) =2b/3'o(t t') . —

(13)

(14)

An extreme contrast with the phase-diffusion model is
presented by the Gaussian amplitude model, defined by
Georges, " in which the (real) electric field exhibits
Gaussian fluctuations about zero. It will be convenient to
consider u [Eq. (5)] rather than Eo as the stochastic vari-
able. A Gaussian distribution of v:

indicating that P ' is the correlation time for co(t), and
b/3 is the mean value of co . In the /3~~ limit, corre-
sponding to instantaneous increments of co, the dc'/dt
term in Eq. (13) may be neglected, and P evolves as in-
tegrated white noise, a random walk with infinitely rapid
infinitesimal steps, known as the Wiener-Levy process.
Noninstantaneous increments of co occur when /3 is finite
(the Ornstein-Uhlenbeck process).

For additional physical insight into the Brownian-
motion model, we have performed numerical simula-
tions ' of the stochastic evolution of P and co. We in-
tegrate the Langevin equation (13) using simply the Euler
method, which is adequate to show the basic features
despite an error of order 2 per step of size r. The noise
process makes the Euler method surprisingly stable. The
discrete equation is

co„+,—co„+/3co„r=J F(t')dt'=(4bP )' w„.
t

(16)

F ( t ) is a white Gaussian process, so the integral is a

Thus co(t) is analogous to velocity in Brownian motion,
while P is analogous to displacement. By integrating (13)
and averaging over F(t), one obtains" the correlation
function for co(t) For t, t')). /3

(co(t)co(t') ) = b/3e

exp( —u /2uo)
P, (v)=

(2~)'"u,

AcoIp=, b/3=uo (20)

where Ecol is the laser bandwidth, and vo is the rms
value of v. Figure 2 applies if we replace the label phase
by amplitude. In the limit /3~0 but b/3 finite, there will
be a Gaussian distribution of (constant) amplitude values.
Clearly this will affect the signal in a way that a distribu-
tion of phase values would not.

C. The chaotic field model

It has been shown that a laser with many uncorrelated
modes may be represented by a model in which Eo(t) in
Eq. (4) is complex and the phase P(t) is constant.
As for the GAM, we will take the coupling element v as
the stochastic variable. v and v' each obey Langevin
equations of the form (13). In terms of uo = ( ~u

~
), the

stationary distribution function is

together with a value of P for the correlation time for
amplitude fluctuations, is consistent with a Langevin
equation of the form (13) and (14) with the substitution
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exp( —
~
v

~
/u o )

Po(u, v*)=
GATV 0

(21)
aP(Ix~, t)

at
a a'

h, ( jx )I, t)+g, P( Ix I, t) .

This same distribution over laser intensity (or
~ v~ ) is ob-

tained for thermal light arising from a large number of
independent sources.

(25)

For the set of variables Ix;,i =0—8I where xo=z, and

x; =lb;, i =1—8, we have

IV. THE MARGINAL AVERAGES

A. PDM and GAM

ho = —Pz, go =Pv'b

For i = 1 —8, from (22), g,. =0 and

(26)

The density-matrix equations (9) and (11) have the
form

d
dt

+ A +Bz lb=y (22)

x; =h, ( Ix I, t )+g,-l (t) (23)

where A and B are matrices, le and y are vectors, and z is
a stochastic variable, either P=cv or u. The method fol-
lowed here for solving such equations has been developed
by Zoller and co-workers ' and discussed also by
Stenholm and Risken. ' Equations with complex z (for
the CFM) will be discussed below. The density-matrix
equations together with the equations for evolution of the
stochastic variable z are considered to be a set of coupled
Langevin equations (the stochastic force term does not
occur in the equations for the density-matrix elements tb).
We recall ' that coupled Langevin equations of the form

h;= —g (A, +B, z)x, +y, . .

j=1,8

(27)

From the Langevin equation (13) for a single stochastic
variable z =P or u, one obtains the Fokker-Planck equa-
tion

aP(z, t) a, a'
/3 z+P b P(z, t)=L,P(z, t)

at az az'
(28)

The Fokker-Planck equation (25), with the substitutions
(26) and (27), is multiplied successively by each of the lb, ,
integrated over the g, and then integrated by parts to
obtain the set of equations

where L, is the Fokker-Planck operator.
The marginal averages are obtained by integrating the

probability function over the %=8 density-matrix ele-
ments le;,

w, (z, t)= JQ, P(I/I, z, t)d

where
a + A +Bz L, w (z, t) =yP(z, t) =yP—o(z) (30)

(1 (t)&(t') ) =2&(t —t') (24)
where w is a vector of marginal averages and

exp( —z /2zo)
P(z, t)= f d QP(I QI, z, t)=Po(z)=

rr Q

lead to a Fokker-Planck equation with drift coefficients
h;( {x I, t) and diffusion coefficients g, . Thus the mul-
tivariable Fokker-Planck equation for the probability dis-
tribution P ( Ix I, t) in this case is (31)
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The distribution function P(z, t) is time independent and
equal to the Gaussian distribution Po(z). For either mod-
el,

zo=bp . (32)

For the Gaussian amplitude model, zo=Uo is the rms
coupling element, while for the BMPDM, zo is the rms
spread of co.

Equation (30) for the marginal averages is solved by us-
ing an expansion in Hermite polynomials:

sion relations for Hermite polynomials:

d +pn + 2 w„(t)+Bzo+n+ lw„+,(t)
dt

+Bzo&n w„ i(t) =y05„0. (36)

Here A and B are matrices, while w„(t)and yo are vec-
tors. In the steady state, the time derivative and time
dependencies disappear, giving a matrix recursion rela-
tion of the form

w(z, t)= g w„(t)PD(z)H„(z)
n

(33) Cn Wn +dn Wn +1+dn —1wn —1 P05nO (37)

H„(z)=, H„1

(2"n!)'~ z,&2
(34)

so that

where H„(z)is defined in terms of the standard Hermite
polynomials H„(x):

Methods for evaluating the continued fractions that re-
sult from such expressions are discussed in the Appendix.
The desired quantity is the expectation value (w(z, t))
which in steady state is equal to wo.

B. The chaotic field model

f dz Hk(z)PO(z)H„(z)=5k„. (35)
When both u and u* are stochastic variables, as in (6)

and (12), the Fokker-Planck operator is

The product Po(z)H„(z) is an eigenfunction of the
Fokker-Planck operator L, with eigenvalue nP —A.
three-term recursion relation is obtained by substituting
the series expansion for w(z, t) into (30), multiplying by
Hk(z), integrating over z, and using the standard recur-

I

a a ~ a'
L(u, v*)= b —v+ u*+2vo

Bv* BUBv
(38)

The differential equations for the marginal averages have
the form

a +2 +Bv+Bv* L(u, u*) —w(v, u*, t)=yP(v, u*, t)=yPO(u, u*)=yPO(x)=y exp( —x)/ vo . (39)

We transform to "polar coordinates" u = V exp(iP ) and introduce x = V /u 0. A solution of (39) may be obtained by ex-
panding each marginal average w; ( v, u *,t ) in a series of the form

w 1 (u, v*, t) = g w;."(t)PO(x)P „(V, P)
a, n

where

(40)

n!
(n+ al)! Up

exp( i aP )L„(x)—
in which L„' '(x) is the associated Laguerre polynomial. The P „areeigenfunctions of the Fokker-Planck operator (38):

L( , uu)P „=b( 2n+l al 4)„.
In obtaining recursion relations for the w, ', the following matrix elements are needed:

(Po„lVexp(+i(u)lP0$+, ) =vo( n +15„v'n5„+—, ),
( P+, „

l
V exp( + i (v ) l

Polio

) =u0&n + 1(6„—5„,) .

(42)

(43)

By the same procedure used to obtain (36), Eqs. (12) for the density-matrix elements p; are transformed into equations
for the coefficients, w,"", in the expansion of the marginal averages. (w+ will denote the marginal average of
f+ =p++ poo. ) In the stead—y state

(2nb + I )w+" —2iuo(&n + lw+0 —&n w+0
' )+2ivo(&n + lwo+'" &n wo+'" ' )—

iuo(&n+lw— '+0 &nw'+0 ')+ivo(—wo+"&n+1 &nwo+'" —')= —15„0, (44a)

(2nb+I 2i(u, )w++ —ivo(&n + 1w+0 &n w+0 ' )+—ivo(&n + lwo+" —&n wo~'" ' )=0,
[(2n + 1)b + I /2+i(A+ (o, )]wo+'"+iuo&n +1(w+"—w+"+' )+iuo&n + 1(w++ —w++ '

) =0,
[(2n+1)b+I /2 —i(b+(v, )]w+0 iuo&n + 1(w—+" —w+"+') —ivo+n+1(w++ —w+++" =0 .

(44b)

(44c)

(44d)
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Expressions for wo+
" and w+o may be obtained from the four equations represented by (44c) and (44d), and substituted

into (44a) and (44b). This yields recursion relations for the four variables w+ and w++ ..

[2nb +I +2( A„—+ A„:i)]w+" +(A„+A„ i )w+ +(8„—+8„:i )w ~+ +(8„—*+B„**i)w ~ ~ —2A„—w+"

—2A: " ' —3 w —"+' —3 w —" ' —B*w "—+' —B— w ":'—B +—*w —"+' —B:w —" '= —I 5n —1W+ n + n —1 + n ++ n —1 ++ n ++ n —1 ++ n0 &

(D„++D—„:,)w "+(D„*+D„+,)w —"+(2nb + I +2ioi, +C„—++C„:,)w "+ —D„+w+—"+' D„:—,w+"

—C — "—+' —C— w" —D *w —"+' —D *w —" '=0.
n W++ n —1W++ n W+ n 1W+

(45a)

(45b)

The coefficients used in these equations are

2b (2n + 1)+I
[b(2n +1)+I /2] +(6+co, )

3b(2n +1)+3I /2+3iro, +i5
8„=uo(n—+1)

[b (2n +1)+I /2+iro, ] +5
2b (2n + 1)+I +2i co,

C„—= uo(n + 1)
[b ( 2n + 1 ) + I /2+i co, ] +6

D„=uo(n +— 1) 1

b (2n + 1)+I /2 —i(A+co, )

If now one defines the column vector

(46)

Eq. (8) relax at the rate (I +hcoz)/2. This conclusion
agrees with the substitution rule for optical-absorption
processes found by Eberly for the Wiener-Levy phase
difFusing field (P~ ~, Lorentzian laser spectral profile).
The same distribution rule can also be obtained from a
comparison of Burshtein's equations for the phase-jump
model with the standard Bloch equations for a two-level
atom. 4'

The Hanle signal is S =g, +$2 —
P3 in terms of the f,

defined by Eq. (8). For the case of zero detuning, 5=0, a
relatively simple analytic expression may be obtained
from (9), (37), and (50). We define y =b,col /I, and ob-
tain

On
(

On On On On )Tw+, w, w+, w (47)
2u ro, (2+y)

Q+R (51)

one has again a (complex) matrix recursion relation of the
form (37).

V. COMPARISON WITH PREVIOUS
ANALYTIC RESULTS

FOR PDM LASER EXCITATION

xo=(A +zoBx, xo ')

and from (32) and (A4) for n = 1

x,xo ' = —
( A +P+&2zoBx~x, '

) 'zoB
1/2

b B

(48)

(49)

From the BMPDM density-matrix equations, one can
deduce that B = —D, where D is a diagonal matrix with
D,, =0 for i = 1 —4, and D;; = 1 for i = 5 —8. Furthermore,
in the limit p —+ ca, b = b, coL /2. Using also zo =b p from
(32), the density-matrix equations reduce to

wo=(A +DAIL/2) 'yo .

Taking diagonal elements of A from (9) and (22), one
finds that the optical coherence elements g, i =5—8 in

The two 1owest-order terms in the continued-fraction
expansion for the BMPDM are physically significant.
The Hanle signal for monochromatic light is given by the
lowest-order result, wo= A 'yo, where 3 is defined by
(22) and (9). The next term, taken in the limit p —+ ~,
reduces to the result obtainable from Burshtein's phase-
jump model or from Wiener-Levy phase-diff'usion pro-
cess. This may be shown as follows. From (9), (36), (37),
(Al), and (A2) for n =0, we have

where

Q =co, +4u +u co, (1 +3 y),
p2 r' (52)

R = [co,(2+2y+y )+5u (1+y)]+ (1+y)
4 16

Equation (51) with R =0 is identical to Eq. (5.5) of Avan
and Cohen-Tannoudji when expressed in their parame-
ters, coi=&2u, 0, =co„and also taking Ti =(bcoL)
This last substitution is equivalent to taking the limit
p= ~. In the BMPDM, finite values of p require the full
continued-fraction evaluation rather than adjustments to
T, as in Ref. 23. With A =0, terms in I are neglected
relative to terms in v, so this approximation is valid only
in the high-intensity limit.

With the additional term R, Eqs. (51) and (52) give the
exact expression for the on-resonance Hanle signal with a
J 0~J =1 transition with either monochromatic light
(y=0) or with a Wiener-Levy phase-diffusion model
(P~ oo, y&0).

VI. RESULTS

Our calculations show that the shape of the Hanle sig-
nal is sensitive not only to the intensity and bandwidth of
laser exciting light, but also to the type of fluctuations
that produces the spectra1 broadening. Not surprisingly,
the sensitivity to laser characteristics increases with laser
intensity.

In the following discussion, all results are presented in
terms of scaled parameters. Laser intensities are ex-
pressed in terms of a scaled Rabi frequency co+ =~co~ or
its rms average, where co~ is defined in (5). Often one
defines a saturation parameter, S =2~ co~ . Hence
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co+ =&S/2. The scale unit for magnetic field is the tradi-
tional Hanle half-width at half maximum with broadband
excitation, B &&2 =A'/2gpo7. Also, laser widths will al-
ways be scaled by the natural linewidth of the atomic
transition, so the width parameter will be
rb.coL = b,coL /I . For experiments on the Yb 556-nm line,
5 =1 corresponds to 0.14 mW/cm, B&&2=44 pT, and
I =0.18 MHz. In contrast to the experimental results in
Ref. 5, in the computational results presented here there
is no averaging over a Doppler distribution of resonance
frequencies.

0Q—
8 N

CQ

hl

Q3

IO

A. Phase-diffusion model 20

Typical curves for Auorescence intensity versus mag-
netic field calculated for the Hanle effect by methods dis-
cussed above are shown in Fig. 4. The curves at the top
show signals for phase diffusing laser light with a near
Lorentzian spectral profile, while those in the bottom
part were calculated for a nearly Gaussian profile, in each
case with a laser spectral width AcoL =5I . With a given
laser spectral width, the Hanle dip width increases with
laser intensity, and this increase is more rapid if the
profile is more nearly Gaussian, as discussed previous-
ly. ' Note also that the falloff in the wings is steeper if
the exciting light has a more nearly Gaussian profile.
(Figure 1 1 of Ref. 5 shows an experimental observation of
this effect. )

The variation of the width of the Hanle dip with laser
intensity, bandwidth, and spectral shape can be displayed
more directly with plots of the Hanle half width at half
maximum (HWHM), as displayed in Fig. 5 for several
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values of the laser spectral width for a Lorentzian profile.
With purely monochromatic light, the Hanle zero-field
dip broadens as the square root of laser intensity (linearly
with Rabi frequency). This may be attributed to partial
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FIG. 6. Calculated scaled Hanle HWHM vs scaled Rabi fre-
quency for PDM laser excitation close to the Gaussian limit for
scaled laser width values as indicated.
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B. Gaussian amplitude model

Calculated Hanle widths for Gaussian amplitude Auc-
tuations of the las er field show an immediate contrast
with the results from the phase-diffusion model. Even in
the monochromatic limit, which implies long coherence
time, there is a Gaussian distribution of field amplitudes.
The Hanle HWHM signal in the limit of infinitely narrow
laser width is thus equivalent to averaging Hanle signals
with monochromatic light [as given by Eqs. (51) and (52)
with y=oj over the amplitude distribution, and conse-
quently results in a Hanle width less than one-half that
obtained with purely monochromatic nonstochastic light
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gures). The dependence of Hanle HWHM with rms

Rabi frequency ss essentially linear in the monochromatic
limit, but when the laser width is equal to the atomic
inewidth, the Hanle HWHM varies nearly as the square

root of the Rabi frequency. We have no simple explana-
tion for this rather surprising result. For larger laser
widths, Fig. 10 shows that the GAM gives again a rough-
ly linear dependence of the Hanle FWHM with Rabi fre-
quency.
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FIG. 12. A comparison of Hanle line shapes for the different
Quctuating models, and two laser bandwidths, as indicated. The
scaled Rabi frequency ~co& = 8 in every case.

CFM, the monochromatic limit is equivalent to averaging
Eq. (52) with y=0 over the field amplitude distribution
given by Eq. (20). This results in Hanle signals with dip
widths intermediate between the PDM and the GAM.
At a scaled rms Rabi frequency of 20, the scaled Hanle
HWHM values for the nonstochastic monochromatic
field, the CFM, and the GAM are 9.70, 6.05, and 3.93, re-
spectively, so the effect of averaging over field amplitude
is clearly significant. With the CFM, there is only a small
probability that both the real and imaginary parts of the
amplitude will be near zero, and thus the excursions of
the field amplitude are smaller than with the GAM.

The curves for the CFM in Fig. 11 are particularly
nonlinear and nonmonotonic with scaled bandwidth.
However, as in almost all cases, for a scaled Rabi fre-
quency of about 1.8, the scaled HWHM values cross at
the value near unity. Some of the more subtle features of
these curves will no doubt be lost if there is a Doppler
spread of resonance frequencies with a width appreciably
greater than I .

D. A comparison of line shapes

In view of the contrasting results for the Hanle
HWHM from the PDM, GAM, and CFM, even in the
limit of monochromatic light, a comparison of line shapes
is clearly of interest. Figure 12 (top) shows calculated
Hanle signals with three species of monochromatic light,
normalized to a constant peak signal. Averaging over a
distribution of amplitudes Aattens the peak, hence nar-
rows the Hanle dip and broadens the wings. Figure 12

(bottom) shows that when the laser width is greater (81
in this case), all three Lorentz profiles, GAM, CFM, and
BMPDM with P= ~ give very similar shapes. However,
the BMPDM Gaussian profile does show appreciably
more broadening of the Hanle dip and more rapid falloff
in the wings.

VII. DISCUSSION AND CONCLUSION

The formalism presented here shows that methods
developed primarily by Zoller and co-workers for sto-
chastic density-matrix equations can be extended to mul-
tilevel atom transitions. Previously, " the BMPDM,
GAM, and CFM have been applied basically to two-level
processes, possibly coupled to additional levels by weak,
nonstochastic probe fields. For the BMPDM and GAM,
the approach discussed here has been to define real vari-
ables and avoid the algebra required for the "top-down"
evaluation of continued fractions. In preliminary work,
we have also pursued the alternative approach which in-
volves algebraic elimination of four variables, but the ex-
pressions are more complicated to present and more sus-
ceptibile to errors, and the added efficiency in the
continued-fraction expansion not compelling. However,
with the CFM it is necessary to perform the algebraic el-
imination to reduce the problem to four (complex) vari-
ables.

The computational results presented here show that
laser-excited Hanle-effect signal shapes are sensitive not
only to laser intensity and bandwidth, but also the nature
of fluctuations. We have been concerned primarily with
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the zero-field coherence dip because it rejects the coher-
ence between the excited-state sublevels. One could also
examine the "outer" HWHM, considering the point at
which the Hanle signal falls to one-half its maximum
value at higher magnetic fields due to detuning. This
quantity is less interesting because it rejects the spectral
distribution of the laser light and the power broadening
in much the same manner as the width of a two-level
atom transition as a function of detuning. Also in experi-
ments, the "outer" HWHM will be more sensitive to the
Doppler distribution of the atoms than the "inner"
HWHM discussed here.

Very ingenious and elaborate schemes' ' have been
developed to produce laser fields that closely follow the
idealized models discussed here. Precise comparisons
with experiment will be conditioned by several factors,
such as possible variation of laser intensity over the in-
teraction region and averaging over a Doppler distribu-
tion of resonant frequencies, as discussed by Arnett
et al.

A more intractable limitation on the experiments
occurs because there happens to be very few atomic tran-
sitions at a convenient wavelength in which the ground
state is J =0 and the excited state J = 1 with no hyperfine
structure. Extension of the theoretical results to transi-
tions of higher J or F value will involve larger matrices in
the continued-fraction expansions. For example, for
F=3~F=4 transitions, as occur in Rb or Cs D line
hyperfine components, there will be 16 —1 density-
matrix elements rather than 3 —1 here. Furthermore,
there will be complications due to the redistribution of
population by spontaneous decay to different ground-
state sublevels and due to optical pumping effects. Typi-
cally, spontaneous decay to other hyperfine levels will
also occur. The Hanle effect in forward scattering of
nonAuctuating laser light has been studied for transitions
of higher J, and the next simplest case, with ground
state J=1 and upper state J=O, is now being pursued
experimentally with fluctuating laser light.

Experimental techniques do exist for narrowing both
dye and diode lasers to the kHz regime, narrow enough
to be considered effectively monochromatic for typical al-
lowed atomic transitions at optical frequencies. Howev-
er, often in designing an experiment or analyzing results,
it is useful to know what effects can occur with finite-
bandwidth excitation.
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APPENDIX

Nn In+0

so that the matrix recursion relation becomes

n+n + nxn+1 n —1 n —1 nQ

From the equation for n =0,

xo=(co+doxixo )

For arbitrary n,

x~x~ —1 (cn +dnxn+1xn ) dn 1

(A 1)

(A2)

(A3)

(A4)

This recursion relation may be evaluated "from the top
down" by setting

n n n+1 n (A5)

for some maximum value of n, and then using recursively

s„ i
— d„ i(c„+5„)d„ (A6)

down to s0. Finally,

The time-independent matrix recursion equation (38)
may be solved by standard continued-fraction tech-
niques. ' The "top-down" methods described by Dixit,
Zoller, and Lambropoulos' may be tested for conver-
gence after each term. For this approach it is necessary
to eliminate enough variables that the matrix B in (36),
for example, is nonsingular. This algebra can be avoided
by retaining all eight variables (for the case discussed
here) and evaluating the continued fraction "from the
bottom up, " in which case B ' does not occur. It is
then necessary to test convergence by starting over at a
higher value of n,„,but when scanning the magnetic
field with the Hanle effect, usually only one or two test
values of n,„arenecessary at each field value. The fol-
lowing computational procedure is applicable to equa-
tions of the form (37).

In Eq. (37), we define

Experimental work by H. J. Metcalf, S. J. Smith, and
D. S. Elliott and co-workers has provided the motivation wo=(co —so) yo .

—1
(A7)
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