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It is known that ultrarelativistic electrons, when moving nearly parallel to an axis in a single crys-
tal, will emit very intense radiation containing high-energy quanta. The radiation spectra are con-
nected to synchrotron spectra in excessively strong magnetic fields. The latter spectra have previ-
ously been calculated by quantum perturbation theory, and are much reduced compared to the cor-
responding classical spectra. By application of the correspondence principle, it is shown that, for
spin-zero particles, the complete quantum spectrum is obtained exactly from the classical spectrum
by a simple modification of the frequency variable. The result holds for arbitrary external fields and
with respect to angular distribution, polarization, and frequency distribution. Agreement with pre-
vious calculations of the synchrotron case is verified. For spin-% particles the quantum frequency

spectrum can be expressed with satisfactory accuracy by the classical radiation of spin-zero parti-
cles. These results may be of assistance in our understanding of radiation by ultrarelativistic parti-

cles.

I. INTRODUCTION

When a relativistic charged particle encounters an
external force field, it emits electromagnetic radiation. A
basic case is that of circular motion in a constant magnet-
ic field B. The corresponding so-called synchrotron spec-
trum was calculated classically by Schwinger in 1949.!73
He subsequently derived* the first-order quantum correc-
tions to this classical spectrum, i.e., correction terms
linear in 4. The more complete quantum spectrum was
found by Klepikov in 1954, the basis being first-order
perturbation for a Dirac electron in strong magnetic
fields. These results were further enlarged upon by
several authors, in particular Baier and Katkov.>” The
change from the classical spectrum can be described in
terms of a dimensionless parameter Y =(eB/m?*c3)#y,
where y=(1—v2/c¢?)7 /2. When y is small, ¥ <0.1, the
classical spectrum obtains. But if Y > 0.1 there is a strong
quantum reduction. In actual fact, laboratory magnetic
fields are not strong enough to realize y >0.1. Instead, an
important case is that of channeling for a relativistic elec-
tron, with direction of motion close to an axis or a plane
in a single crystal. In channeling there are strong electric
forces due to the combined effect of numerous atoms.
The forces are essentially transverse to the motion of the
particle with an effect simulating that of an exceedingly
large magnetic field of slowly varying magnitude. For ul-
trarelativistic energies, above 100 GeV, y becomes large
and the electron may readily lose a substantial fraction of
its energy in one radiation event.®® The radiation is very
intense, being ~10? times the familiar Bethe-Heitler
Bremsstrahlung,'® which latter forms the background be-
longing to random incidence of the electron beam.

II. THE USE OF CORRESPONDENCE

The purpose in the following is to show that a relativis-
tic quantum spectrum can be obtained directly from the
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classical spectrum by a simple change of variable. This
result is based on correspondence. In order to explain
that, let us consider some general features of radiation
theory.

The classical calculation of radiation consists of finding
retarded solutions of Maxwell equations for a given
motion of a charge e, i.e., when v(#)/c is a given function
of time. If the particle has mass m, the given classical
motion is obtained by means of suitable external forces.
Under certain conditions the emitted intensity spectrum
and its angular distribution will merge with the quantum
result, and the motions will coincide. This happens when
#i/m —0; note, for instance, that the above parameter Y,
for given y and given rotation frequency eB /(mcy), is
proportional to #/m. In that limit the momentum and
energy of a single photon becomes insignificant, or
fiw /E\;, —0.

As to the direct quantum calculation of the radiation
spectra, this consists of treating the radiation interaction
as small and using first-order perturbation theory. A typ-
ical and simple example is the Bethe-Heitler formula'® for
bremsstrahlung, giving the radiation spectrum emitted by
a relativistic electron encountering an atom.

There is another way of calculating the quantum
bremsstrahlung spectrum for relativistic electrons, to wit
the Weizsacker-Williams method.!! In that approach one
introduces the rest frame of the electron, where the
Lorentz-contracted electric field of an atom is resolved
into Fourier components and is considered as a wave
packet of free electromagnetic waves. These virtual pho-
tons are then scattered individually by the electron ac-
cording to the relativistic Klein-Nishina differential cross
section. Finally, the scattered intensity is transformed
back to the laboratory frame. The result is in agreement
with the Bethe-Heitler formula for the quantum spec-
trum. By means of this method, however, one could also
obtain the classical spectrum. In fact, instead of the
Klein-Nishina formula, use the classical and recoilless
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Thomson cross section for scattering of light by a free-
charged particle, but transform still relativistically be-
tween the rest frame and the laboratory frame. In this
latter procedure classical concepts have been used
throughout.

By combining these two procedures, it appears that we
may be able to bypass the Weizsacker-Williams method,
and find the quantum spectrum directly from the classical
spectrum in the following manner. The classical spec-
trum is first calculated from the Maxwell equations. The
result is identical to the above description based on the
Thomson cross section. If we now introduce the Klein-
Nishina cross section instead, we have the quantum spec-
trum, and the question is whether this can be expressed
as a simple substitution in the original classical spectrum.
There is some positive evidence for this since Schwinger’s
first-order quantum corrections are expressed in terms of
the classical spectrum only.

The conception of virtual quanta in the above is ap-
parently more general than in a standard Weizsacker-
Williams procedure. In fact, if we take the example of a
constant magnetic field B, the virtual quanta can of
course not be obtained as Fourier components of B. But
the circular motion could just as well be due to a radial
electric field, and then the virtual quanta are recovered.
In general it is a question of the behavior of the force as a
function of time in, e.g., that Lorentz frame where the
particle is at rest when #=0; this behavior can be decom-
posed into harmonic oscillations.

The program sketched here will be carried out in the
following sections. It is an attempt to apply the
correspondence principle, according to which quantum
spectra must contain all features of classical spectra, with
due respect to the necessary nonclassical features, cf. also
Kramers’ formulation of correspondence.!> In the
present case the nonclassical features turn out to be pri-
marily the finite recoil of the charged particle when
scattering a photon.

Of old the correspondence principle was employed in
order to find properties of atomic states as expressed in
terms of finite quantum jumps. In the present case, the
knowledge of finite quantum recoil jumps of relativistic
electrons is utilized to infer properties of the emitted ra-
diation.

III. CLASSICAL RADIATION SPECTRUM

We follow now the program outlined in Sec. II, and
treat classical radiation. Consider a charged particle,
with y =(1—v%/¢?)"12>>1, moving through an elec-
tromagnetic field of force. The retarded solution of the
Maxwell equations gives the intensity distribution dI of
the emitted radiation. It will be convenient to introduce
also the number of quanta emitted, with dN,
=dl 4, /fiw, so that

dN o @, 3, 9,6 /) =F (0,9, 9,8, )dodQ (1)

class

where o is the frequency, J the angle with direction of
particle motion, ¢ the polar angle, dQ the differential
solid angle, and e, the direction of polarization. These
quantities are recorded in the laboratory reference frame.

6033

We consider then F as a known function.

We calculate next the result (1) by the alternative
method of virtual quanta. We describe the initial situa-
tion in the momentary rest frame of the particle. The
particle meets a certain energy current, with velocity —v,
where v =c. The energy current can be time resolved
into Fourier components, with polarizations e; perpen-
dicular to v. Let then g (k,e;)dk| represent the intensi-
ty distribution of virtual photons, with momentum be-
tween kg and dk. The dash on these quantities indicates
that they belong to the particle rest frame.

We thus have for the incoming number of photons,

dkj
dN;(kgy,e;)=C——g(kg,e}), ()
ko
where C is a constant. If the pulse were a § function, as
in the case of collision with an atom, the function g
would be independent of k.
The photons are scattered by an angle ¢’ in a collision

with the charged particle. The differential cross section
is the classical Thomson cross section d T rhy

dO'Tth(z)dQ,(e}’e; )2 N (3)

where r0=e2/mc2, e being the charge of the particle, m
its mass, and d Q' the differential solid angle. The formu-
la describes a particle without magnetic moment and
spin. The momentum of the outgoing photon is #k’, and
we have k'=k(, because # is considered vanishingly
small in Eq. (3), which implies elastic scattering.
According to Egs. (2) and (3) the number of scattered
photons is
roary— dk’ 'y 2 ol ol )2
dNs(k',e )_CT D 8lk’e;)rod Q' (e-er)’ . (4)

We next transform to the laboratory frame, where the
frequency is w, and the momentum #w /c, so that

1 sind’
tang=——300__
an Y v/c —cosd’ e )
and
2

~+sin%9’

172
=k'E . (6)

v
o=k'c|y?|=—cos?
c

so that E=cy(1—cosd') if 9 <<1 and y >>1. By Egs. (4),
(5), and (6) we arrive at the classical radiation spectrum

%,e; ridQ'(e}-e; 2,

Cdow
N oass (@, 0, pre) =" 7= = ezlg

(7)
where e is the final polarization, and d )’ is connected to
dQ by Eq. (5).

We can now go back to Eq. (1), relating F to Eq. (7), so
that

_76,“ r(z)dQ’(e;-e’f)2=F(w,{},(p,ef)dQ ,

Isol2e
o = g7
€;

(8)
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the right-hand side being a known function. If here we
sum over final polarizations, writing

F(CI),’L?,¢): EF(COﬂ?’(p’ef) »
s
we find

@

g,e§ ridQ'[1—(n'-e})*]=F(0,9,¢)dQ ,

C1
v >

€

9

where n’ is a unit vector in the direction of k’, and
(n’-e;)=sind'sing’. Integrating next over the solid angle
on both sides of (9), we note that the average of sin’p’ is
1, and thus

Cr
27 ya)o fjlld(cosﬁ') E’g e; [3(1+cos’d)=F(w) ,

«©
g b
9"

since £=¢£&(cosd’) according to (6). Since the radiation is
emitted within an extremely narrow cone, the angular
distribution is often not of practical interest, and the
function F(w) describes the essential property of the
spectrum. We shall also utilize (9’) to find the average of
cos?¥', in cases where g is a simple function.

IV. QUANTUM SPECTRUM FOR CHARGED
PARTICLES

In order to find the quantum spectrum we now have to
replace the classical Thomson cross section (3) by the cor-
responding one in relativistic quantum theory. We intro-
duce therefore the Klein-Nishina cross section, belonging
to a Dirac electron in an initially unpolarized state,

1 1 2
lk Lk ]
ko

’
ko
where k' is connected to k( by energy and momentum
conservation in the collision, or

2 ’
(e}-e;)+ k

do=r3dQ e
0

(10)

komce

[— J—

- —xr |1 T
mc +#k (1 —cosd’)

E

o1 (1+y) |, 1D

where Egs. (5) and (6) have been applied, and where
1+ =cos?(1—cosd')/(v/c —cos’)
~1—9%/4+y " %/4 .

Moreover, E =ymc? is the energy of the particle in the
laboratory frame.

In Eq. (10), the first term in the large square brackets is
a simple kinematic modification of the Thomson formula.
In fact, this term in itself represents the relativistic
scattering of photons by a scalar particle. The second
term in the brackets is due to the spin and magnetic mo-
ment of the electron. It follows from Eq. (11) that the
second term is proportional to %2, i.e., to the square of the
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spin.

The ratio k' /k in the Klein-Nishina formula (10) can
now, by (11), be expressed in terms of variables of the lab-
oratory frame. Before doing that, we introduce a
simplification by noting that, since y >>1, all relevant
parts of the spectrum are radiated at angles ¢ very small
compared to 1. Thus, a characteristic angle of the spec-
trum is 3~ 1/y. Therefore, in (11), 1+ can be replaced
by 1. The error, ~y 2, is exceedingly small; already for
¥ =10 it would be only ~1%, but in channeling radia-
tion for ultrarelativistic electrons one might have
¥ -2, 10~ 10'

We can then rewrite (10) as
2

do=r3dQ’ | o (e}-e;)
1 | fiw fiw
el 11— , (12)
+4 E E ]]

and, for fixed angle ¢ or &, cf. (6) and (11),

-1
do (13)
@

dky
ko

_ fio
E

Corresponding to the two terms in Eq. (12) there are two
contributions to the radiation spectrum, or
AN =dNV+dN?), to be handled separately.

Consider the first term in Eq. (12), belonging to spin-
zero particles. The procedure is now analogous to that in
Sec. III. We start from the formula for the number of in-
coming photons, Eq. (2), where we can express k( in
terms of the frequency w in the laboratory frame, by sub-
stituting (13) for dk, /k, and introducing

k= k' — @

° 1—#%w/E &1—%w/E)

by Eq.(11) with ¥=0 and by Eq. (6). Finally we multiply
Eq. (2) by the first term in Eq. (12), i.e., the differential

cross section, and sum over initial polarizations, obtain-
ing

Cdow #iw
dN(l) YU, @, = DU D
(0,9,p,e/) 2 o 1 E
(4] ’
Xg |l —0——F—7=-,¢;
8 e(1—#o/E)’® ]
Xrid Q' (ey-e;)” . (14)
When we define
* @
© T 1—%w/E "’ 1)
and compare (14) with (7) and (8), we obtain
dNNw,9,¢,e,)=F(0*,9,p,e,)dodQ , (16)

where F is the known function in Eq. (1), calculated
directly from the classical Maxwell equations.

Equation (16) represents the central result of the
correspondence argument for a charged particle with
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y >>1. It is obtained from the classical spectrum (1) sim-
ply by retaining dow, but changing o to o* every-
where else. Likewise, in the radiated intensity, or
dI'V=#wdN'", we must retain wdw from the classical
intensity, and in the remainder change w to w*.

Our first general conclusion from (16) deals with the
first-order quantum correction of Schwinger.* To that
end we note that the second term in the square brackets
in (12), i.e., the spin term leading to dN‘? contains #? as
a factor. Therefore, the first-order quantum correction
belongs exclusively to dN‘! or dI'!), and here the stipu-
lated substitution in (16) is exactly the one given by
Schwinger; he solved explicitly for synchrotron radiation
with constant magnetic field. Therefore, the present
derivation is a more general one, belonging to any exter-
nal field.

The second conclusion from (16) deals with the
specific case of synchrotron radiation. The detailed clas-
sical spectrum, F(w,3,p,e;), was studied by Schwinger,1
cf. also Jackson.? It is confined within an angle ~1/y
with the direction of motion. For simplicity, let us here
consider only the spectrum integrated over angles and
polarization. Qualitatively, at low frequencies this inten-
sity spectrum increases quite slowly, proportionally to
©'/3. But above a cut-off frequency . the spectrum falls
off exponentially. This critical frequency is

—3eB » 3 E

2 mc X7
where Y is the previously mentioned quantum parameter
of field strength, and E =ymc?. Thus, as long as y <<1,
the highest energies in the spectrum, ~#w,., remain small
compared to the energy of the particle. The intensity
spectrum is (cf. Landau and Lifshitz?)

w, (17)

2
Al () = 224

= ey fw/mcK5/3(x)dx =fioF(o)do .

(18)

Therefore, Eq. (16) leads to a quantum spectrum for a
spinless particle

elwdw

dI(l)( )= ah
@ 7V 3cy? Yoty

Ks,3(x)dx , (19)

where ©* is given by (15). This result is in agreement
with the formula quoted by Baier and Katkov® for a spin-
less particle. As mentioned above, Schwinger’s first-
order quantum correction is also contained in (19). We
have thus seen that the correspondence principle can be
applied in a precise manner for a radiating charge.

Third, there are several advantages of the present re-
sult (16) based on the classical spectrum. Thus, it follows
that the essence of the quantum calculations in Refs. 4, 5,
6, and 7 is that one considers jumps of a free particle, be-
cause the Klein-Nishina formula applies. It is to be not-
ed that the number of quanta meeting the electron in the
rest frame does not increase with y; only their energy in-
creases proportionally to ¥. When Y is large, the high-
energy quanta even tend not to contribute to scattering.
Moreover, the present calculation, as expressed by Eq.
(16), is quite flexible and need not be confined to syn-

chrotronlike spectra.

There is also an advantage as compared with the
Weizsacker-Williams method as such, because the virtual
quanta are not calculated directly. They would not be
readily found, for instance, when there is a constant mag-
netic field B all over laboratory space. Instead, they are
implicit in the change of motion as seen from the momen-
tary rest frame of the electron.

V. QUANTUM SPECTRUM
DUE TO MAGNETIC MOMENT

The use of the correspondence argument was straight-
forward for obtaining the radiation spectrum dN‘! in Eq.
(16), where only the charge of the electron was involved.
But the situation is different when we ask for the spec-
trum dN'® due to magnetic moment and spin, and deter-
mined by the second term in the Klein-Nishina formu-
1a.!? This difference is not unexpected since the classical
spectrum has to be accommodated to one further quan-
tum feature—the quantization of spin—in addition to
the quantum recoil effect.

There are two ways of using correspondence. The first
one is a simple procedure, but it is only approximate. It
starts from the classical and quantum radiation by a
charge, e.g., from Egs. (1), (7), (12), and (14), finally re-
placing the first term in Eq. (12) by the second term. The
second way is an attempt at precise correspondence. It
requires knowledge of radiation by a classical magnetic
moment moving in a classical orbit, and a comparison be-
tween the second term of Eq. (10) and a classical cross
section for scattering of light by the magnetic moment of
a spinning charged particle. It is then analogous to the
previous procedure in Secs. III and IV, only now for a
magnetic moment instead of a charge.

It is profitable to follow the first procedure, even
though approximations will have to be made in the final
stage. The intention is to replace the Thomson cross sec-
tion by the second term in Eq. (12). The essential
difficulty is that the former quantity, but not the latter,
contains the factor n=(e}-e; )2, depending on angles ¥,
@, and polarizations. Now, we need only ask for the fre-
quency distribution of the final spectrum and not for its
dependence on angles. Let us therefore integrate over the
angular variables. First, we average 7 over the final po-
larization e and over the polar angle ¢'. The corre-
sponding average of 7 is equal to (1+cos?3’')/4, which
function is already narrowed down to a value between +
and 1. Next, we integrate this function over ¢ as de-
scribed in (9) and obtain the desired average 7=7(w).
This function depends implicitly upon the virtual spec-
trum of photons, since g(kg,e;)=g(w*/§,e;), and
E~cy(1—cosd') according to Eq. (6). If the function 7% is
known, we can immediately find the spectrum dN‘? from
dN'V. Indeed, the ratio dN'?’/dN'" is equal to the ratio
between the second and first terms in the Klein-Nishina
formula (12), with the polarization factor replaced by its
average, 7. The total spectrum is therefore, using Eq.
(16),
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2 *
AN (@) =doF (0*) |1+~ L Fou” | 20)
74 E

and this is an exact formula for large ¢ in the same sense
as Eq. (16). We have achieved this because we renounced
on finding the angular dependence of the spectrum. But
it remains to find (w). As we shall see, quite primitive
approximations will here give acceptable results.

In order to illustrate the situation, it can be appropri-
ate to study a simple model for the virtual spectrum g.
For this purpose, suppose that g is proportional to (k)"
which again varies as (1—cosd’)”". When now we per-
form the averaging described above, and contained in (9'),
we find
1 1—v
2 2=v)3—wv) @b
where it is known beforehand that L <% =<
must have v < 1, for convergence.

As a further illustration, we can now solve the case of
bremsstrahlung. The Lorentz-contracted field of an atom
gives a pulse proportional to a d function in time. Then,
the initial number of quanta in Eq. (2) behaves as
dk /kg, so that g is independent of kg and F(w)=1/w.

ﬁ:

1, and thus we

In Eq. (21) we have v=0 and therefore 7=+. The spec-
trum (20) becomes
_ dow 3 How*
dN(w)—const-;)T I+Z 5P
do fio | 3 | fiw
=const- £ [1- "2 4= | 22| | (22
const > 1 E i | & (22)

where the factor in the second set of large parentheses is
the quantum correction to classical bremsstrahlung. It is
seen that Eq. (22) is precisely the Bethe-Heitler formula
for y large.' Moreover, the second term in large
parentheses is the first-order quantum correction and be-
longs to Eq. (16), the radiation from a charge.

We can now look into the synchrotron radiation.
From Egs. (20) and (19) we get

11 #ow*
74 E

=9

elwdw
7V 3cy?

dl ()= K5, (x)dx ,

o /o,
(23)

where it remains to estimate 7. Since the classical syn-
chrotron spectrum is proportional to »'? at lower fre-
quencies, and since this part is mainly responsible for the
radiation at large y, we introduce v=1 in Eq. (21) and
find 7= %, quite close to its value in bremsstrahlung. In-
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serting this value in Eq. (23) and comparing with the re-
sults of Baier and Katkov for quantum synchrotron radi-
ation of electrons, one finds that if Y =5 our results are
correct within a few percent. This primitive estimate of
7 is thus satisfactory in a discussion of present measure-
ments of channeling radiation.’

The above estimate leading to 7= is not accurate
when Y is very large; for y= 10° the error is some 20%.
But the following argument shows that 7 then tends to
the value J. Notice first that when Y becomes large, we
are concerned with the lowest part of the classical syn-
chrotron distribution. This is because the cut-off fre-
quency o, in Eq. (17) becomes very large compared to
E /#. Next, from the classical theory it is known (cf.
Jackson,? p. 676) that the angular width of the lower
spectrum is approximately

I~y Mo, /o) =y N2XE /3t0)'? ,

where we have to replace o by o*. Therefore, although
is very small, it becomes large compared to ¥y~ !. We
learn from Eq. (5), on the simplified form
F~=~y lcot(d /2), that eventually &' must become quite
small, and finally from n—(1+cos’¥')/4 we find 7=1.
With this value in Eq. (23), the total power for y =10
agrees with Baier and Katkov®’ within 1%. It can be
surmised that further improvements in this kind of treat-
ment can lead to quite accurate results for all values of y.

As mentioned previously, there is another, more basic
way of introducing correspondence for the spin term in
the Klein-Nishina formula. It contains the additional
correspondence argument belonging to a transition from
classical spin to quantized spin. It also requires quite ex-
tensive calculations of radiation and of light scattering by
the magnetic moment of a classically spinning particle.
The present case of spin 4 turns out to correspond to
classical spin parallel to the velocity. For spin-1 particles
Baier and Katkov find asymptotically much stronger ra-
diation than for spin-zero and spin-1 particles. This be-
havior also reflects properties of classical spin. I shall not
here enlarge upon the correspondence argument for mag-
netic moment and spin.
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