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Dynamical thresholds for the existence of excited electronic states of fast ions in solids
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We calculate eigenenergies for bound states of electrons in the dynamical screening potential of a
fast charged particle traversing a solid by diagonalization of Hamiltonian matrices in a truncated
Hilbert space of 600 hydrogenic basis states. Application of classical scaling invariances yields a
universal energy-level diagram. A simple approximate formula for projectile-centered one-electron
bound states is obtained. We find velocity thresholds for the existence of excited states which are in
surprisingly good agreement with recent data by Chevallier et al. [Phys. Rev. A 41, 1738 (1990)].

The formation and evolution of bound states of fast
charged particles penetrating solids are of continuing in-
terest and a subject of intensive investigations.!”3 One
fundamental problem is that of their existence inside the
solid, in particular, for excited states. The propagation of
the projectile with speed v, >>vp (vp is the Fermi veloci-
ty) in a dense medium leads to a strong perturbation of
atomic states which has, until now, prevented the accu-
rate determination of the projectile spectrum. The com-
plication results from two processes which are, in fact,
closely related to each other. The interaction with the
medium, the ionic cores of the target as well as the delo-
calized valence electrons, causes collisional destruction
and broadening of all levels. Therefore, projectile-
centered states will be, at best, quasibound states due to
collisional ionization. Secondly, the collective response
of the medium, in particular of the quasi-free valence (or
conduction) electrons, leads to dynamical screening of the
ionic potential of the projectile. Even in the absence of
collisions the atomic or ionic spectra of the projectile are
therefore strongly distorted. Since the screened potential
is short ranged only a finite number of such quasibound
states may exist. Rogers, Graboske, and Harwood* per-
formed a systematic study of the hydrogenic spectra in
the limit of static (v, —0) isotropic Debye-type screen-
ing. They concluded that the number of bound states will
be drastically reduced, in particular that protons (Q=1)
do not possess a bound state in an electron gas of solid-
state density.

For fast projectiles (v, > vy) the modification of the hy-
drogenic spectrum is determined by the dynamical® rath-
er than static screening. The motion of a fast charged
particle through a solid polarizes the medium which re-
sults in an anisotropic enhancement of electron density
behind the projectile (“wake”). The enhancement of elec-
tron density leads to an electric field which will result in
Stark splitting of bound states of the projectile. Since the
effectiveness of screening is projectile-velocity dependent
it was suggested some time ago>® that “critical »* thresh-
old velocities should exist below which a given projectile
state enters the continuum and ceases to exist as a quasi-
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bound state. Only recently, Chevallier et al.” found the
first experimental evidence for a dynamical threshold for
the n =3 manifold.

In the following we present a study of the nonrelativis-
tic bound-state spectrum of a hydrogenic ion with charge
Q in the presence of a dynamical screening potential.
The conduction electrons are represented by an electron
gas. We find simple scaling properties of the spectrum of
this system if we neglect the non-Hermitian part of the
Hamiltonian due to collisional decay as well as crystal-
field effects. We will then discuss the size of collision-
induced level broadening. Using a simple approximation
for the non-Hermitian part, we find only small shifts in
the positions of the resonances, i.e., the real part of the ei-
genvalues. Furthermore, we find critical velocities for
each manifold whose exact position are, however,
smeared out due to collisional broadening.

The static crystal potential has not been included in
this work, since it depends on the orientation of the beam
relatively to the crystallographic axis. The error due to
the neglect of the crystal-field effects is largest for highly
excited states with extended wave functions. However, in
this regime collisional broadening due to scattering of the
projectile electron at the target-ion cores will lead to
overlapping resonances and thus make the identification
of individual states impossible. We furthermore neglect
the dynamic response of the target cores. The latter is
expected to be most important for highly charged ions.

The nonrelativistic Hamiltonian of an electron in the
dynamical screening potential is given in a.u. by °

2
H=£2—+Vsc(p,z), %)

where V, is the dynamical screening potential that is in
linear approximation given by

Jolprlexp( —iwz /vp)
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The speed of the projectile is denoted by v, and its
charge by Q, z, and p are cylindrical coordinates in the
frame of the projectile, ¢ is the wave number, and
k=(q*—w*/v})'”2. The linear response underlying (2) is
valid for Q /v, <<1, i.e., for small Sommerfeld parame-
ters for Coulomb scattering of the electron gas at the pro-
jectile. For the dielectric function €(g,®) in (2) we chose
the plasmon pole approximation®®~ 10 which, in spite of
its simplicity, represents important features of the
dynamical screening quite well. Using this approxima-
tion the integral over w can be performed, but the poten-
tial is still given in terms of a one-dimensional numerical
integral. The Hamiltonian possesses rotation symmetry
about the beam (£) axis. In the nonrelativistic problem
the orbital angular momentum L, with exact quantum
number m is therefore conserved. Approximate energy
eigenvalues of (1) can be found in a straightforward
fashion by expanding the trial wave function ¢,,, for the
ith eigenstate in a suitable basis

t/)im = 2 Cr(l;r)n nlm - (3)
nl

Relativistic corrections have been neglected in (1) and (3)
but can be included if necessary for high Q. We have
used a hydrogenic basis with basis size for given m of
~600. The expansion (3) converts the Schrédinger equa-
tion into a 600X 600 matrix eigenvalue equation for the
Hamiltonian matrix {nlm|H|n'lI’m ) that can be solved
by diagonalization. We have tested the convergence as a
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FIG. 1. Energy-level diagram (a) for the m =0, n=2ton=5
manifolds of He" in carbon (w,=0.81) and (b) for the m =0,
n =8 to n =14 manifolds of S** (w,=0.33) in gold, as a func-
tion of v, !, k=(n—1), (n—3),...,(—n+1) from top to bot-
tom.
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function of the basis size. Convergence could possibly be
accelerated by using a Sturmian!! rather than a hydro-
genic basis.

Figure 1 displays the m =0, n=2, 3, 4, and 5 mani-
folds of He™ in (a) carbon and the m =0, n=8 to 14
manifolds of S!** in (b) gold as a function of vp‘l. The
effect of the perturbation vanishes in the limit v, — o (or

v, 1_0), since the dynamical screening length

Ap=v,/w, @

becomes large compared to the extent of the wave func-
tion of the bound states. The extrapolation of the energy
levels shifted to the ionization limit (E =0) determines
the threshold velocity, v, for the existence of a given
(quasi) bound state. It should be noted that the spectrum
becomes complicated near threshold due to a multitude
of avoided crossings with only weakly shifted levels from
higher manifolds. Near the ionization limit it is thus im-
possible to keep track of the ““identity” of the shifted en-
ergy levels. We use, therefore, simply the diabatic extra-
polation of the energy levels (by replacing all avoided
crossings by crossings) to determine the approximate
thresholds. The application of diabatic extrapolation is
justified in the energy regime associated with classically
regular motion'® (E < -—szp /20v,) since the wave
functions retain their character through an isolated
avoided crossing, characteristic for regular motion.
Close to threshold the classical motion becomes chaot-
ic.!® The large number of overlapping avoided crossings
characteristic for chaotic motion introduces, however, lit-
tle uncertainty with respect to the critical velocity v,
since collisional broadening of the energy levels exceeds
the width of this chaotic spectral region for not too large
charges Q.

In principle, this large-scale diagonalization method
has to be applied for each charge state Q, each quantum
number m, each projectile velocity, and each target. The
latter is characterized by its plasmon frequency w, (or
electron density N,, w, =1/ 47N,). The similarity of the
energy-level diagram for different n manifolds, different
projectiles, and different targets (Fig. 1) suggests, howev-
er, the existence of an underlying universal energy-level
pattern. We note that such a universal level diagram ex-
ists only for the classically regular regime. In the weak
perturbation limit (vp_l——>0), each manifold displays a
Stark splitting determined by the electric quantum num-
ber k. In this limit the eigenstates (3) are approximate
Stark states. The Stark splitting of low-lying energy lev-
els in the solid has been observed in resonant coherent ex-
citation of the n =2 manifold!? and the Stark “beats” in
the substate population'® of highly charged ions. In the
regime of strong perturbation we will continue to use the
state label k even though the eigenstates are no longer
Stark states.

To uncover the universal energy-level diagram we in-
voke classical scaling invariances'® for this problem.
Since classical dynamics, unlike quantum mechanics (via
#), does not possess a fundamental scale, the classical
equations of motion are invariant under mechanical simi-
larity transformations. We have found for this problem
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TABLE 1. Classical scaling invariances for the dynamical screening potential. Scaling transforma-
tions with scaling variables a,,7, >0. Q is the charge of projectile, v, is the velocity of projectile,w, is
the plasmon frequency of the medium (foil), E is the energy separation of the electron, S is the classical
action, ¢ is time, p is the momentum of the electron, and g represents the coordinates (p and z) of the

electron.

Transformation I

Transformation II

Transformation III

(exact) (approximate) (approximate)
Q'=aQ 0'=0 0'=0
%=y v, =Bv, Up =TV
a);, =w, o, =Pw, ©,= o,
E'=aE E'=E E'=1/yE
S'=vas S'=S S'=y'28
'=01/Var t'=t =y
p'=Vap p'=p p'=v"'p
q'=q q9'=q 9'=vq

three invariant scaling transformations (Table I), one of
which is exact while the others are valid to a good degree
of approximation. Note that only transformation II in-
volves target variables and may be altered for different
choices of the dielectric function, in particular if €(q,w)
depends on additional characteristic parameters besides
®,. Transformation III is the scaling transformation of
the Kepler problem and becomes invalid at large dis-
tances when dynamical screening dominates. The appli-
cation of classical scaling invariances to the quantal ener-
gy spectrum derives its justification from the correspon-
dence principle."* The energy-level spectrum should
satisfy classical scaling invariances in the quasiclassical
limit of large quantum numbers. In the present case the
justification of classical scaling invariances, both exact
and approximate, is a posteriori. We show explicitly that
the numerically calculated eigenvalues satisfy, to a good
degree of approximation, the scaling invariances. To this
end we use the following scaling parameters:

a=Q 7}, (5)
B=(mw,)” !, ©)
y=Q/n (7

These transformations rescale the unperturbed energy to

that of the ground state of hydrogen (E = —1). Accord-
ingly, scaled velocities are given by
= Q 7V (8)
Tw,N
and scaled energies by
2
E= "g—{E 9)

Using a scaled electric quantum number k =k /n the cal-
culated energy-level spectra for different Q, n, v,, and w,
can be mapped onto a scaled universal energy-level dia-
gram (Fig. 2). The close agreement of different data sets
attests to the validity of the scaling transformations for
the quantum spectrum. We can furthermore find a sim-
ple analytic formula describing the D’p_l dependence of
the energy levels within the universal manifold. To this

end we map the scaled energy level onto the interval [0,1]
via the transformation

e=2E +1, (10)

where 2=0 corresponds to the unperturbed energy and
€=1 corresponds to the ionization threshold. The
energy-level curves can now be well represented by the
formula

v, '=e—k(@-&)+[p, (k)—1]e*. an
The only fit parameter in (11), ‘u“c_l, is the reciprocal of
the scaled critical velocity. The latter can be
parametrized in terms of the scaled electric quantum (k)
as

7,(k)=(0.81—0.36k 2. (12)

The deviation between the matrix diagonalization and the
results obtained with Eq. (11) are generally less than 2%
of the unperturbed energy. Transforming to the original
physical variables we obtain
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FIG. 2. Rescaled universal energy-level diagram for hydro-
genic manifolds in an electron gas described by a dielectric
function in the plasmon-pole approximation. Scaled electric
quantum number k=2,1,0,—1,—2, from top to bottom;
, Eq. (11). Results from numerical diagonalization [Eq.
n}: +, 0=2, 0,=0.81; 0, Q=16, ©,=0.33; V, Q=2,
©,=0.33; @, 0 =8, w,=0.56.
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v, {(n,kE,0,,Q)

»
2E k | 2n? ’
=—2—Q—+———ll—- —’%E—H} ]
n‘w,T  TO, 0]
1 2n? !
+ | -=2 |2 E+1 (13)
Ve  nio,m o
with the critical velocity v, =v,(E =0)
Dp 2
ve(n,k,0,,0)=—-(1.43n—0.64k ). (14)

Q

v. describes the velocity at which a given state enters the
positive-energy continuum. Equation (13) can be numeri-
cally inverted to give binding energies for a given choice
of n, k, w,, Q, and v,. A direct comparison of these ener-
gies with experimental data by Datz et al.'? and calcula-
tions by Crawford and Ritchie,!> who present transition
energies AE from the n =2 manifold to the 1s ground
state, is difficult due to the presence of crystal-field
effects. However, an indirect comparison using the
difference

8(v,,0,0,,k)=AE(v,,0,0,,k)—AE ., (Q,0,,k)

[where AE ,(Q,®,,k) is the transition energy in the limit
v, — o, which for Ref. 15 includes the static crystal field]
is possible. Generally we find good agreement. Devia-
tions with Ref. 15 at very high projectile velocities can
be attributed to the omission of the crystal field, which
splits the energy levels within a given n manifold even in
the limit v, — . Here the crystal field leads to a quadra-
tic rather than a linear Stark effect.

The threshold for a given #» manifold can be defined by
the critical velocity v, (k=n —1), when the most stable
state (with the largest value k) enters the continuum.
Figure 3 shows the threshold line for » manifolds in car-
bon in the (Q,v, ) plane.

The comparison with the recent observation by Che-
vallier et al.” of a sudden change of the velocity depen-
dence of the population ratio P(He " (3p))/P(He™") after
exiting the foil requires a mapping of states inside the
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FIG. 3. Threshold lines for different #» manifolds in the
(Q,v,) plane (calculated for carbon, w, =0.81).
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solid onto the asymptotic, field-free states for which we
use a sudden approximation in view of the high projectile
speed. We find the admixture of lower-lying manifolds to
the n =3 He™ states in vacuum to be less that 1%, which
indicates that the threshold remains unchanged. We find
an n =3 threshold of v, =3.6 a.u. which is in amazing
agreement with the experimental value of v,~3.7 a.u.
This agreement is expected to be, in part, fortuitous for
several reasons: collisional broadening is expected to

smear out any sharp threshold. The width is of the order
of 3,16,17

w,In(V/2/w,v,) 47Z3Nrv,
r.= + > 7, (15)
v, v, 0?
1.32%73 2n?

where Z,=6 is the charge of the carbon nucleus and N
is the target density. A typical value for the collisional
broadening for this system is I', =2. 51)1,_1 a.u. The size of
collisional broadening should prevent accurately defining
a threshold value. Furthermore, it appears that experi-
mental determination of sudden changes in the popula-
tion of excited states is subject to considerable uncertain-
ty due to cascade contributions and the obstruction of the
signal near the foil.

The decay of states due to collisional destruction and
photon emission can be taken into account in terms of a
non-Hermitian contribution to the effective Hamiltonian.
To this end we have performed numerical diagonalization
of the non-Hermitian Hamiltonian which has Eq. (1) as
Hermitian and I', /2 as anti-Hermitian part. Our calcu-
lations for a few test cases show that the spectrum (Fig.
2), i.e., the real part of the complex eigenenergies is little
affected (typically less than 0.1%) despite the large
broadening which leads eventually to overlapping reso-
nances near the ionization limit. The reason for the rela-
tive insensitivity is that the approximate decay rate [Eq.
(15)] does not depend on the substate quantum numbers
of a given manifold.

Finally, Eq. (11) can be solved for € and, in turn, for E
in terms of a power series in x =n%/QA ), the ratio of the
radius of the excited state to screening length,

€= i ax’. (16)

To second order in x we find for large screening length
(large v,)

0 wQw
Blnkitpon == 7+ 3=,
77'2 o)
+——kn—2+0w 3. (17)
27 2 p

The physical meaning of the individual terms is as fol-

lows: The first term corresponds to the unperturbed en-
ergy. The second term, which is proportional to vp_l,

equals the dynamical screening potential at the position
of the projectile and leads to a uniform state independent
shift of the energy levels. This shift could account, in
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part, for the observed shift of the peak in the x-ray spec-
trum due to radiative electron capture (REC) recently ob-
served by Vane et al.'® for highly charged channeled
ions. It should be noted that for highly charged ions
dynamical screening by target cores may contribute to
the energy shift as well. The third one, proportional to
vp_z, is due to the linear Stark effect, which is proportion-
al to the dynamical screening field, i.e., the derivative of
the dynamical screening potential along the beam direc-
tion (Z) evaluated at the position of the projectile. This
term can be compared with a first-order perturbation
theory for the Stark effect using the electric field of the
screening charge at the origin in plasmon-pole approxi-
mation.

31 2
_ 3G, /0p) @ (18)
2 up2

Equation (18) agrees with the corresponding term of the
series expansion up to a factor ~In(v, /vg)/m, which for
4=<v, /vp =20 varies between 0.46 and 1.

In summary, classical scaling invariances allow the
determination of a simple analytic approximation formu-
la for nonrelativistic hydrogenic energy levels in the pres-
ence of strong dynamical screening in an electron gas de-
scribed by the dielectric function €(k,w®) in the plasmon-
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pole approximation. Predicted velocity-dependent
thresholds for the existence of bound excited states in the
medium agree with recent experiments. The presented
results apply to situations where, on the average, at most
one electron will be bound to the projectile.® Therefore
the velocity of the projectile (in a.u.) is required to be
larger than the charge of the projectile. Extrapolation to
smaller speeds will only give qualitative trends of the be-
havior of the spectrum. The present calculation suffers
from the uncertainties associated with the case of the
plasmon-pole approximation to the dielectric function.
The latter becomes important in particular when the
linearity parameter Q /v, is no longer small compared to
1. An analysis using an improved e€(k,w) in random-
phase approximation is in progress.
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