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Solving the time-dependent Schrodinger equation using complex-coordinate contours
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The complex-coordinates approach in scattering theory is extended to the time-dependent

Schrodinger equation by using Simon's exterior scaling contour, and it is shown to cause outgoing
wave packets to vanish for large distances in collision problems. Numerical applications are given

for one- and two-dimensional problems where the complex-coordinates method is shown to elimi-

nate reflections of outgoing wave packets from the boundaries of the coordinate space grid used in

the calculations. The extension of the exterior scaling approach to the time-dependent description
of a charged particle in dc and ac electromagnetic fields is given, and numerical results on these

problems are also presented.

I. INTRODUCTION

The use of complex-coordinate techniques in calcula-
tions on scattering resonances and for the calculation of
scattering and photoionization amplitudes has been corn-
monplace since the early 1970's. The consequences of
simply scaling the coordinates x in the Hamiltonian by a
complex factor according to x~xe', as well as more
complicated analytic continuations, have been exploited
in numerous applications of the idea. The numerical ap-
plications have dealt, until very recently, ' only with the
time-independent formulation of collision theory or with
time-periodic problems where the time dependence can
be eliminated using Floquet theory. We seek here to
point out that the direct application of these ideas to
solving the time-dependent Schrodinger equation (includ-
ing the case of generally time-dependent Hamiltonians)
leads to some interesting computational advantages, and,
more importantly, completes an elegant picture of analyt-
ic continuation in quantum scattering theory that is only
partially apparent in the time-independent formulation.

The application of complex-coordinate methods in
many-body Coulomb systems is based on theorems due to
Aguilar, Balslev, Combes, and Simon on the spectrum of
the analytically continued Hamiltonian IJ(xe' ) for these
systems. In particular, discrete resonance states are un-
covered by this continuation and the associated wave
functions become square integrable. Most of the early
applications to resonances were in the electron-atom
scattering problem, but adaptations of the idea for
electron-molecule collisions are by now also famil-
iar. ' ' The use of these ideas to compute Green's-
function matrix elements, and therefore scattering and
photoionization amplitudes is also well established, '

and most of the formal and practical limitations of the
approach are well understood. ' The formal mathemati-
cal problems, ' ' and some practical results, ' ' for
atoms in electromagnetic fields have been discussed,
where the time dependence of the fields was treated by
Floquet theory. There have also been several re-
views of the subject.

In this work we establish the extension of these ideas to

the time-dependent Schrodinger equation and demon-
strate their utility in problems which have intrinsic time
dependence. In Sec. II, we show that correct choices of
complex-coordinate continuations can cause outgoing
wave packets leaving a collision to be extinguished ex-
ponentially beyond a designated point, while other
choices cause outgoing packets to diverge and modify the
large-distance behavior of incoming packets. The key to
practical applications of complex coordinates to time-
dependent problems is an analytic continuation of the
coordinates, introduced by Simon as a formal
mathematical device, called "complex exterior scaling. "
In this approach the coordinates are continued onto a
contour which is complex only beyond a certain distance.
Exterior scaling can prevent reflection of wave packets
from the boundaries of a finite grid used to represent
their propagation, while leaving them unchanged in the
regions of interest. This result has obvious practical
consequences in numerical computations. The analytical-
ly continued packets do not reAect at the boundaries be-
cause they are exponentially decaying along appropriate
complex rays in the complex plane, while their motion at
small distances is unchanged. Depending on the initial
conditions, a collision problem is thereby effectively
mapped onto a finite region of space, and continuum
motion becomes a peculiar type of bound motion. Thus
the behavior of collisional wave packets is simplified by
simply looking at them along well-chosen complex-
coordinate contours. We previously discussed some pre-
liminary numerical results using this approach, ' but the
idea is more general than we had suspected.

It is interesting to note that the evolution of wave func-
tions for any complex scaling of coordinates in the Ham-
iltonian is markedly different than that exhibited by solu-
tions of the Schrodinger equation in complex time. It ap-
pears that no complex time analytic continuation can
mimic complex coordinates in this respect, in part be-
cause the complex-coordinate transformation affects con-
tinuum states differently than it does bound states.

In Sec. II we explore the complex-coordinate behavior
of wave packets in the case of time-independent poten-
tials, but the extension to time-dependent potentials is
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(mostly) straightforward. If the potential is time depen-
dent but short range, we show here that using the exteri-
or scaling contour produces the same type of behavior at
large distances as in the time-independent case. For an
atom in an ac electromagnetic field, the potential is not
short range, but we show in Sec. IV that by working in
the appropriate gauge (the radiation gauge) the same be-
havior of wave packets along the exterior scaling contour
is achieved as in the short-range case.

The principal result of this paper is more than a
mathematical device to prevent spurious refiections of
wave packets in practical calculations. There are other,
quite successful, ways to accomplish that end. Instead,
the connection between time-independent applications of
complex coordinates and the time-dependent formulation
is our primary focus, as well as the extension to time-
dependent Hamiltonians and the time-dependent descrip-
tion of atoms in fields. The results we present here also
suggest that it may be possible to analytically continue
wave packets from a complex-coordinates calculation to
regions beyond that covered by finite grid representation.

In Sec. II we briefly summarize the complex-
coordinates idea and extend it to the time-dependent
Schrodinger equation. Sec. III describes the finite-
element procedure we use in the numerical examples.
Section IV discusses some specific numerical results for
one- and two-dimensional motions and also describes the
extension of the idea to charged particles in dc and ac
electromagnetic fields. Some conclusions and specula-
tions are given in Sec. V.

II. COMPLEX COORDINATES IN QUANTUM
HAMILTONIAN DYNAMICS

In this section we summarize the basics of the time-
independent application of complex coordinates in col-
lision theory and extend the idea to the time-dependent
Schrodinger equation. VVe specialize the discussion to
one-dimensional systems for notational simplicity. The
generalization of the complex-coordinates approach to
multidimensional time-independent systems is well
known, and we shall present a multidimensional applica-
tion to a time-dependent problem in Section IV D.

A. Complex coordinates in the time-independent
Schrodinger equation

The idea of exploiting, both formally and in numerical
calculations, the analytic continuation of spatial coordi-
nates in the time-independent Schrodinger equation
(TISE) is a venerable one, and there exists an extensive
literature on the subject. Here, we will describe only
the essence of the idea without concerning ourselves with
the well-known mathematical subtleties, ' which re-
quire more rigor than we need to introduce the time-
dependent generalization below.

The use of complex coordinates in the TISE is based on
theorems applicable to a wide class of Hamiltonians
which are called "dilation analytic. " The theorems de-
scribe the spectrum, shown in Fig. l, of the Hamiltonian
Hg,

Spectrum of H Spectrum of Ho

Re Re

Discrete Approximation to Spectrum of H~

~~ 20 ~ ~
o

~ ~

Re

FIG. 1. Analytic continuation of the spectrum of a one-body
Hamiltonian for the complex-coordinate continuation xe' and
for the contour C{x).

and arise in any expansion of the exact eigenfunctions in
a finite basis. The matrix eigenfunctions N„and eigen-
functions E„satisfy

and the obvious approximate representation of a resol-

Hs=H(xe' ),
in which the coordinates x have been scaled by e' . Sub-
ject to the boundary conditions that the eigenfunctions of
H (xe' ) be either zero or finite and oscillatory in the limit
x —+ ~, the spectrum generally consists of discrete and
continuous eigenvalues. The discrete eigenvalues appear
at the bound-state energies of the original Hamiltonian
H(x) and at the complex resonance eigenvalues corre-
sponding to poles of the S matrix. The continuous spec-
trum is rotated into the complex plane by an angle of—20.

The computational applications of this idea fall into
two classes. The first is the computation of resonance ei-
genvalues, for which the eigenfunctions of H(xe' ) are
square integrable and thus can be computed by standard
techniques for calculating bound-state eigenfunc-
tions. ' The second class of apphcations is the compu-
tation of Careen's-function (resolvent) matrix elements' '
of the form lim, 0(fl(E —H+~'e) Ig~. An obvious
way to try to compute this matrix element is to approxi-
mate the resolvent operator in terms of matrix eigenfunc-
tions of the Hamiltonian. These eigenfunctions are ap-
proximations to the exact eigenfunctions gz which satis-
fy

H gF (x) = ELF (x),
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vent matrix element using N matrix eigenfunctions is

~ &f1~„&&~„lg&
lim&fl(E H—+ie) ' g&= ge~O (E —E )

(4)

Im

C(X)

Re
This representation is useless for any N as it stands unless
E lies outside the continuous spectrum of H; because it
replaces the branch cut in the E plane, which lies along
the continuous spectrum, with a row of discrete poles.
Scattering amplitudes are expressed in terms of such ma-
trix elements, and the scattering boundary conditions are
contained in the e~O limit. That information is discard-
ed in Eq. (4).

However, if the functions
lf & and lg & are appropriate-

ly bounded for large x then the integral implied in this
matrix element is unchanged by the distortion of the in-
tegration contour onto the complex ray xe' . The resol-
vent matrix element now involves the analytically contin-
ued Hamiltonian H&. As has been discussed in depth in
the complex-coordinates literature, the matrix eigenfunc-
tions of H& are defined using an inner product without
complex conjugation,

(y, y ) = f y(x )(p(x )dx, (5)
0

which we denote with parentheses. Denoting the matrix
eigenfunctions and eigenvalues of II& by 4„and E„, we
see that they satisfy

(4„,He+ ) =E„6„
so that Eq. (4) becomes

(f*
g, 4„)(@„,gg)

lim&fl(E H+ie) 'l—g&= ge~O (E —E )

(7)

where f e and ge denote e ' ~2'f (xe 'e) and
e' ~ 'g(xe' ) repsectively. The complex factors appear-
ing in f e and ge arise from the contour distortion in

& fl(E H+ie) 'lg & that—leads to Eq. (7). For a broad
class of functions

l f & and lg& this representation has
been demonstrated' ' to be convergent with respect to
increasing X, in sharp contrast to the representation in
Eq. (4). This idea has been used, for example, in calcula-
tions of total photoionization cross sections of atoms and
molecules. '

As a final note we observe that all of the results de-
scribed in this section are unchanged if we replace analyt-
ic continuation of the coordinates onto the complex ray
xe' with continuation onto Simon's "exterior scaling"
contour defined by

x, x (x~
C(x)= '

(x XM )e +XM, x xM.

The exterior scaling contour, shown in Fig. 2(a), scales
the coordinates only at large values of x and generalizes
the complex-coordinates approach to a broader class of
Hamiltonians containing potentials which are nonanalyt-
ic for x (x~. Numerical application of this idea in reso-
nance calculations is straightforward. ' This contour

XM

Im

XM
Re

(b}

FIG. 2. Exterior complex scaling contours (a) for x on the in-
terval [0, oo ], (b) for x on the interval [—oo, oo].

also turns out to be useful in time-dependent applications
of these ideas.

B. Complex coordinates in the time-dependent
Schrodinger equation

In order to make the connection with the discussion of
traditional applications of complex coordinates in the
preceding section, we begin by considering a system for
which the Hamiltonian is a function only of the coordi-
nates x and not of time. This restriction will be lifted
later in the discussion in Sec. IV where we present appli-
cations to the problem of a charged particle in an ac field.

In order to construct numerical solutions of the time-
dependent Schrodinger equation (TDSE),

H %(x, t) =i' ql(x, t), —a
Bt

we not only discretize time t in order to propagate the
solution ~II(x, t), but we also discretize the coordinates in
some way. This discretization may be carried out by us-
ing a grid of x values (in finite di6'erence or Fourier-
transform methods) or by using a set of square-integrable
basis functions or finite elements. The eA'ect is to place
the x motion in some sort of "box," either in coordinate
or Hilbert space, and to discretize the continuous spec-
trum of H as in Eq. (3). A familiar computational conse-
quence of this discretization is that a wave packet
describing unbounded motion will eventually reAect from
the boundaries of the box and the results of the propaga-
tion will become unphysical.

While at first glance reAections from the boundaries of
the coordinate or Hilbert space box appear to be a
specific property of the time-dependent formulation, they
are of course a manifestation of the numerical pathology
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of Eq. (4). We can see that this is the case by using the
matrix eigenfunctions of H, which are defined in Eq. (3)
for any discretization of the x motion, to formally con-
struct an approximation to the propagator

e "'"' '-U = g Ic„)e "' "'(e„l . (10)

lim (f I
(E H+ i—e) '

I g )
e—+0

I (i jrt)(E+i@)t(f
I
e (i ltt)HtI )dt

A e~o 0

The resolvent matrix element we considered in the
preceding section can be computed using the approxima-
tion in Eq. (10) to propagate I g ) and Fourier-
transforming the overlap of that packet with the function

exp[ —(i /fi)H( C(x))t] based on H(C(x)) avoids the
boundary reAection problem as long as a sufficiently ac-
curate discrete representation is used. If the representa-
tion is sufficient to converge Eq. (7) for a range of ener-
gies, then there will be no spurious periodic motion aris-
ing from boundary refieetions with frequencies corre-
sponding to that energy range. In a previous publication
and in the following sections we present a finite-element
implementation which demonstrates this fact for a
variety of Hamiltonians, but we ean see analytically how
this procedure works by examining the propagation of a
free packet on the contour C(x).

%'e can write a free Gaussian wave packet, evaluated
on the contour, in the form

4'(C(x), t)=exp —a, [C(x)—x, ] +—p, [C(x)—x, ]

(12) l+ gVf (14)

(13)

The poles in Eq. (13) arise from the periodic behavior of
the correlation function (fl e ' "' 'lg ) and in particular
the poles in the continuum arise from periodic behavior
due to the reflections from the edges of the "box" in
which the motion is confined.

This elementary picture is not new of course, but it
does suggest how the complex-coordinate approach ean
repair the long-time behavior of the correlation function
and of the propagator in Eq. (10) (provided we are in-
terested in sampling the propagated wave function in a
finite region of space). The key is that using complex
coordinates allows Eq. (7) to provide a convergent repre-
sentation of the resolvent matrix element, and, as Eqs.
(11)—(13) demonstrate, there is an equivalent approxima-
tion for the propagator in the form of Eq. (10).

The problem with translating the complex-coordinates
approach, expressed in Eq. (7) for computing resolvent
matrix elements, to a time-dependent representation is
that we could thereby construct exp[ —(i /A)H()t], which
propagates wave packets for complex values of the coor-
dinates. It would be of little appeal to construct
%'(xe', t) instead of 'P(x, t) However, i.f we pick a con-
tour according to the exterior sealing procedure, we can
construct solutions to the TDSE at real values of x in the
region of interest.

For the moment consider a calculation which uses a
discrete grid of x values, say using the finite-difference ap-
proach. If we pick a complex contour using the exterior
scaling prescription in Eq. (8), we can keep the coordi-
nates real for the region of interest while scaling only
near the end of the grid. Using the contour C(x) in Eq.
(8) we would be constructing the propagator
exp[ —(i/A')H(C(x))t]. The important point is that, as
Simon showed, the Hamiltonian H(C(x)) has exactly
the same spectrum as H(xe' ), so that its discrete repre-
sentation produces a well-behaved approximation in the
form of Eq. (7) to resolvent matrix elements. That result
is manifested in the fact that the time propagator

PI=PO ~

CXO

a()(t t() )+1—

(16)

(17)

iA 2&0 iA
y, = — ln + ln

4 A 2

2

+ (t —t, ).po
2'

2a()( t —
t() )' +1

(18)

The momentum is constant for the free packet, and we
take its value po to be positive for the moment so that the
packet propagates toward larger values of x. For simpli-
city we can also choose eo to be pure imaginary so the
packet starts out as a real-valued Gaussian. Now as long
as the value of 8 in the contour C(x), is less than m. /4 the
packet remains bounded,

lim %(C(x))=0, (19)

but for 0&9(~/4 it goes to zero difFerently than does
%(x, t) for large real values of x. In particular, the factor

exp —p, [C(x)—x, ]

I=exp —p()[(x —xM)e' +xM —x, ] (20)

now goes to zero as x increases beyond x~, while without
analytic continuation exp[(i/fi)pt(x —x, )] continues to
oscillate for large x. In particular, the factor in Eq. (20)
goes to zero while other factors of the analytically contin-

where the position x, and the other parameters are given
by

po
x, =x()+ (t t() ), —
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ued packet continue to propagate outward, and thus the
overall packet vanishes at all large x, regardless of the
time. If the grid boundary is set far enough beyond xM
this outgoing packet will vanish before it reaches the
boundary.

Thus an outgoing packet does not propagate forever if
one looks at it on the contour C(x). It begins to fall off
exponentially as it propagates past xM and cannot reAect
from a boundary chosen sufficiently further out. In a
suitably chosen discrete representation, this behavior
eliminates the periodic oscillations in the box and is at
the heart of the connection between the convergence of
Eq. (7) and the ability of the corresponding discrete rep-
resentation of exp[ —(i/A')H(C(x))t] to remain accurate
for long times.

The contour, however, distorts the incoming packet if
we start it beyond the point xM. For the incoming packet
we have po (0, so that the factor in Eq. (20) diverges for
large x. Only the quadratic term in the exponent in Eq.
(14) prevents the packet from diverging for large x and
times greater than or equal to to. To use these ideas in
practical scattering calculations we must choose the point
x~ and the initial wave packet so that the incoming
packet does not begin with appreciable amplitude beyond
XM e

Up to now we have treated x as though it were con-
strained to the interval 0 & x & ~ but that is certainly not
necessary. For the interval —~ &x & ~ we can choose
a "double" exterior scaling contour D(x) as shown in
Fig. 2(b) and thereby eliminate rejections of packets
which are outgoing to either positive or negative x.

It remains to establish the class of Hamiltonians for
which complex contours can cause wave packets to van-
ish at large x instead of continuing to propagate outward.
The arguments given in this section apply to any problem
for which the potential V(x) vanishes for large ~x~ fast
enough to allow the long time and large-x behavior of the
wave packet to be expressed as some linear combination
of outgoing Gaussian packets. A numerical application
to such a problem in one dimension is given in the next
section. If the Hamiltonian contains a time-dependent
potential, but it is bounded in this way, our analysis of
outgoing packets remains unchanged. Once the packet is
beyond the range of the potential it can be expressed in
terms of linear combinations of free Gaussian packets,
and we have established their behavior on the contour
C(x).

The question of mathematically "long-range" poten-
tials, such as the Coulomb potential, is more subtle. In
Sec. IVD we give numerical results on a two-electron
problem with Coulomb potentials, and we have reported
one-dimensional Coulomb calculations previously. The
time-dependent complex contour approach evidently
works as well in numerical calculations in those cases as
it does for a free particle. However, to rigorously extend
the discussion here to the Coulomb case would require an
analysis of the complex coordinate behavior of Coulomb
wave packets which we leave for a later investigation.

The application of these ideas to the Hamiltonians for
charged particles in fields, which do not satisfy the condi-
tion that they be short range, turns out to be straightfor-

III. COMPLEX FINITE-ELEMENT IMPLEMENTATION

All the numerical applications we discuss in the follow-
ing sections were performed with a finite-element im-
plementation of the construction of the propagator
exp[ —(i /iri)H(C (x) )t] or exp[ —(i /fi)H(D (x) )t]. A
finite-difference procedure is in fact easier to implement
using complex contours, but it is instructive to see how
basis functions, even nonanalytic ones, can be used to
represent the Hamiltonian on complex contours.

Our implementation follows Bottcher's for real-
valued coordinates, where the method can be viewed as
an expansion of the wave packet %(x, t) in a basis of "tent
functions" shown in Fig. 3 and defined by

(x —x„,)/(x„—x„,), x„,(x &x„

P, (x)= (x„+i—x)/(x„+, —x„), x„&x (x„+,
0 otherwise.

(21)

The points x„ form a grid, which may be unevenly
spaced, and are called the "nodes" of the finite elements.
The functions P„ lead to a tridiagonal representation of
the Hamiltonian and a tridiagonal overlap matrix. Since
only one function is nonzero at any node, and because its
value is unity there, the coefficients in the expansion,

ward. In Sec. IVB we show that the contour C(x) is
applicable to a particle interacting with a dc field via the
potential eEox. In Sec. IVC we show that the contour
D (x) in Fig. 2(b) is applicable to a particle in an ac field
provided we work in the appropriate gauge. In both of
these cases the complex contours we have discussed pro-
duce the same long time and large-x behavior as for the
short-range case.

A final, but important, formal point concerns "time' s
arrow. " We have discussed the limit t ~~, which is the
one relevant to practical calculations where we begin
with physically meaningful initial conditions at to and
propagate forward in time. If, on the other hand, we
want to apply these ideas to the limit t~ —~, we must
complex conjugate the contours C(x) and D(x). This
fact is a reAection of the well-known association in formal
scattering theory of the +e limits in the time-
independent Green's function, e.g. , in Eq. (11), with the
t —++~ limits in the propagator. If we were to modify
Eqs. (11)—(13) to make the connection with the i e lim--

it in the Green s function, the integral over time would be
over the interval [0, —~], and analytic continuation of
the continuous spectrum of the Hamiltonian into the
upper half plane would be necessary for convergence of
the discrete representation in Eq. (7). The fact that
changing the sign of 0 (complex conjugating the contour)
in a complex-coordinate calculation gives the —ie limit
has been discussed elsewhere.

Another way to come to the same conclusion is to ex-
amine the free packet in Eqs. (14)—(18) in the t —+ —~
limit, for which the behavior of o, , requires complex con-
jugation of the contour to produce the behavior described
above for the t~ ~ limit. In general, equivalent results
are obtained by changing the direction of time evolution
and the signs of both po and 0.
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n(x)

Tent Functions

&n X +n

This definition gives the correct analytic continuation of
the finite-element method to complex values of the nodes.
Simple formulas are thus obtained for the matrix ele-
ments of the kinetic energy and overlap. These matrix
elements are given by the analytic continuation of the
analogous expressions for real nodes to the complex
values z„of the nodes on the contour,

Z~ +1 Z~
(28)

Xn+1

FIG. 3. Tent function basis for finite-element calculations.

1 1T =T
n, n+1 n+1, n

n+1 n

S„„=—,'(z„+,—z„,),
S„~+~=Sn +1, n 6( n+1 n)

(29)

(30)

(31)

n=1
(22)

are the values of the wave function at the nth node. We
have propagated the coe%cients using the Cranck-
Nicolson propagator, which is a familiar unitary ap-
proximation in terms of the Hamiltonian and overlap ma-
trices, H and S,

The potential matrix elements are defined by the contour
integral in Eq. (27) and were evaluated in all the calcula-
tions in this work with two-point Gauss quadrature on
each interval [z„,z„+,]. The intervals may be complex,
and the potential matrix is tridiagonal.

Since in complex-coordinate calculations the Hamil-
tonian and overlap matrices are complex symmetric in-
stead of Hermitian the propagator in Eqs. (23) and (24)
must be modified accordingly,

c(t + b, t) = U(ht)c(t),

with

(23)
U=— 5+ iHht

2A'

1S— iHAt
2A

U—:5+ iHAt1

2A
5+ iHhs1

2A

Extending this procedure for complex coordinates re-
quires some simple modifications. If we use the exterior
scaling contour C(x), for example, we must deal with the
fact that the conventional tent functions p„are not con-
tinuous on that contour. So we define complex tent func-
tions p„which are continuous on C(x),

r

[C(x)—z„,]/(z„—z„,), x„,&x &x„
P„(C(x))= [z„+,—C(x)]/(z„+, —z„), x„&x &x„+,

0 otherwise,

'II(z, t)= g c„(t)p„(z),
n =1

(33)

give the values of the wave packets at the complex nodes,

(34)

to within the accuracy allowed by the choices of the num-
bers of finite elements and time steps.

Since the wave packet disappears as it propagates beyond
xM, its normalization changes after any part of it reaches
that point. The propagator in Eq. (32) is correspondingly
nonunitary, as it must be. The values of the coeKcients
in the expansion,

where we have moved the nodes onto the contour C(x),
Xn, X~ (X~

C

xm+ (xn xM )e ~ xn xM. —(26)

These complex finite elements p„(z) are continuous for
z on the contour, C(x), and share the property of the
conventional "tent functions" that only one element is
nonzero at any node, z, , so that the coeKcients in an ex-
pansion of the wave packet in terms of p„(z) are the
values of the packet at the nodes. The next step is to con-
struct the matrix elements according to a definition in
terms of a contour integral,

= f p„(z)M(z)p (z)dz . (27)
C

IV. NUMERICAL EXAMPLES AND ANALYSIS
FOR TIME-DEPENDENT POTENTIALS

In this section we provide numerical demonstrations of
the ideas in Sec. II and extend them to the cases of
charged particles in dc and ac electromagnetic fields.
The numerical examples we discuss are all for electrons,
and we use atomic units, in which %=1, m, =1, and
e =1, when specifying the numerical parameters of the
calculations.

A. Short-range potentials

In a previous publication we presented an application
to the potential —1/x using the contour C(x). To use
the exterior scaling idea on the interval —~ (x ( oo we
need to generalize the contour to D (x), which is shown
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x
V(x) =exp

2
(35)

in Fig. 2(b). To demonstrate that this approach works we
have propagated a wave packet which bifurcates under
the inAuence of the potential

gles. It is easy to show that the larger the scaling angle
the sharper the decline of the packet past xM, and there-
fore the smaller its value at the edge of the finite-element
grid. However, increasing the scaling angle can also
make the vicinity of the point xM require more elements
for an accurate treatment.

The initial packet, B. Particle in a dc field

l 2 l
%(x,0)=exp —ao(x —xo) + —po(x —xo)+ —

yo

(36)

was chosen to be centered at xo =0 with po =0, so that
under the influence of the potential, pieces recede toward
x = ~ and —~. We chose no=0. 5i and, here and in
every example below, we chose yo so as to normalize the
wave packet. The parameters of the generalized exterior
scaling contour, D (x) were I9=20' and xM = 15.

The results of this propagation are given in Fig. 4,
which shows the sudden decay of the packet outside of
the interval [xM, —xM]. The propagation was carried out
for time steps At =0.01 with 450 equally spaced finite
elements on the interval [—22.5,22.5). Ordinary propa-
gation using real coordinates on this interval leads to
dramatic spurious reAections from the grid boundaries as
shown in the figure. Figure 4 also includes a packet pro-
pagated without complex coordinates and with 1200
finite elements on the larger interval [

—50,50]. Agree-
ment to 4 significant figures is obtained on the interval
[xM, —x~] between this calculation and the one using the
complex contour.

In this calculation, as well as in the others we discuss,
the accuracy of the calculation on the interval [x~, —x~]
can be increased without limit by choosing smaller spatial
intervals and time steps, together with larger scaling an-

For a particle of charge e in a uniform dc field the
Hamiltonian is

2

H = +eEox,
2m

(37)

l 2 l l
%(x, t)=exp —a, (x —x, ) + —p, (x —x, )+—y,

(38)

for this problem remains Gaussian, and that it is an exact
solution with time-dependent parameters given by

pp eEo
x, =x, + (r —r, ) — (r —r, )', (39)

Pf Po eEot (40)

o,'o

a,(r r, )+1—
(41)

ih 2~o i%
y, = — ln + ln

4 ~A 2

2ao(t —to ) +1

which is familiar from discussions of the Stark effect in
atoms. It is a simple matter to follow the approach of
Heller to solve the TDSE in this case and show that a
Cxaussian wave packet,

0.08—
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0.02—

FICx. 4. Bifurcating packet for the gaussian potential using
the contour D(x). Dash-dotted line denotes t =0, and heavy
solid line denotes t = 10. Light solid line shows reflections from
the grid boundary for propagation on the same interval but
without complex contour, while heavy dashed line is the same
packet propagated to t =0 without complex contours but using
a larger number of elements on an extended interval.

p o eEopo
2

+ eE,x, (r —r—, ) — (r —r, )'

(eEO )+ (t r, )' . — (42)

C. Particle in an ac field

The Hamiltonian for a particle of charge e in an elec-
tromagnetic field is

This packet spreads in exactly the same way that a free
packet does, since o.', is the same, but its motion and
phase are of course quite different. For our purposes,
however, the essential feature of the packet is expressed
in Eq. (40). Since the sign of p, remains fixed and oppo-
site to that of Eo for large t, the arguments in the preced-
ing section regarding the factor in Eq. (20) apply, as long
as we choose the correct sign for the scaling angle, 0.
For positive p„O must be positive in the contour C(x),
while for negative p, the contour must be chosen for neg-
ative x in the same way that D(x) appears in Fig. 2(b).
In fact, D (x) produces the desired behavior for t ~ ~ for
either sign of Eo.
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H= p ——A +eP,1 e

2m c
(43)

0.10

0.08—
where p is the momentum operator, and A and P are the
vector and scalar potentials. If we choose a gauge in
which P and the divergence of A are zero, the Hamil-
tonian becomes

2
H= p-

2m mc

2
A.p+

2mc
(44)

This form is known as the radiation gauge, ' and it is
in this gauge that complex contours are applicable in the
time-dependent Schrodinger equation. Although it
would be difficult to establish that this is the case for an
arbitrary vector potential A, we can de.nonstrate the re-
sult easily for a linearly polarized field described by a vec-
tor potential of the form

0.06—

0.04—

0.02—

0.00
-20

~yNOg

S H
g
g p ~ ~ ~ \ ~ ~ ~ I 0 ~ ~ 5 ~ ~ ~ 0 ~ ~ 0

p
~%a o.s I Q 4-~aS a

I I

0-10 10 20

FIG. 5. Wave packet for a particle in an ac field. Solid line
denotes t =0, dashed-dotted line denotes t =3~, dashed line
denotes t =7~ and dotted line denotes t = 11m.

A=a@ cos(cot) (45)

2

iA +(x, t)=a p.
Bt '

2m
ea

cos(cot)p„
mc

where e is a unit vector in the x direction. The Gaussian
wave-packet solution of the time-dependent Schrodinger
equation for this problem is a special case of the Volkov
packet. The y and z motion is the same as for the
free packet, and we must solve the TDSE for the x
motion,

this gauge of an electron in a field with a/c =2 and
co=0.5 (atomic units). The same procedure works in the
case that we add a short-range potential to the Harnil-
tonian, and as we show below, is applicable to the treat-
rnent of an atom in the ac field.

We can accomplish the gauge transformation which
brings the TDSE from the radiation gauge into the elec-
tric field gauge by applying the unitary transformation

e a+
2 cos(cot) +(x, t) .

2mc
(46) . aeI=exp —i x cosset

A'c
(51)

Again, if we write the solution in the form of Eq. (38) it is
straightforward to show that the evolution of the packet
is given exactly by

to Eq. (46). Defining the wave function in the electric
field gauge, 4(x, t), by

po ea
x, =xo+ t — sincot,

m come
(47)

ip(x, t) =Mip(x, t),
we obtain the familiar form

(52)

pt=po ~

0!o

2aot +1

(48)

(49)
where

2
px

eEox cosset —IA'(x, t),
2m

(53)

iA
'V t ln

2~o iA+ ln
2

2aot po ae2

+1 + t — t
m 2m 4mc

(54)

a e
singlet coscot,

4mc co
(50)

where we have chosen to =0 for simplicity.
Note that a, is the same as that of the free Gaussian

packet. The critical feature of Eqs. (47)—(50) for our pur-
poses is that p, has fixed sign even though the center of
the packet, x„contains a term which is oscillatory. For
that reason, the discussion in Sec. II of the factor
exp((i/A')p, t C( )

—xx, ]J in Eq. (20) still applies in this
case. Furthermore, we can accommodate either sign of
p, by using the contour D (x).

In Fig. 5 we show the propagation, using the contour
D (x), of the Cxaussian packet describing the motion in

ea t
x~ =xo+ po+ c m

ea sin(tot),
come

(55)

p, =pa — [cos(cot) —1], (56)

2not +1
(57)

It is useful to cast 4(x, t) into the form of Eq. (38) in or-
der to see how it behaves on complex contours. If we do
so, setting to to zero, the time dependence of the parame-
ters is
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iA
y = — lnt 4

2~0 i A+ ln
mA 2

2

2aot +1

ea
Po+

C

+
2m

a e 3a e
t — t + singlet cosset

4mc 4Hz c co

ea ea ea
po+ t cosset — xocoscot .

inc c c
(58)

To specify the packet in the electric field gauge which
corresponds via Eq. (52) to the one we found in the radia-
tion gauge, ea/c must be subtracted from po for the radi-
ation gauge to get po for the electric field gauge packet.
The position x, oscillates in this gauge as it does in the
radiation gauge, but the important feature of Eqs.
(55)—(58) is that p, is now oscillatory and may continue to
change sign as time increases (depending on the field
strength and po). Thus in the electric field gauge our ar-
guments concerning the momentum-dependent factor of
the wave packet on the complex contour will fail if p,
continues to change sign as time increases. For that
reason, it is not fruitful to apply complex exterior scaling
in this gauge, even though it is arguably the more physi-
cal one in which to visualize the physics of the situa-
tion. "

o go @0 go go 0 4o go 50 y„o so
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I

- IOO
I
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I
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K. Complex contours in more than one dimension
for a scattering problem

FIG. 6. Ionizing wave packet for one-dimensional hydrogen
atom in an intense field; solid line is result from real coordinate
propagation, and dashed line is from complex contour propaga-
tion. Upper panel shows magnification of vicinity of the atom.

D. Model atom in an intense ac 6eld

To demonstrate the utility and accuracy of this ap-
proach in practical calculations on multiphoton ioniza-
tion we investigated a model used recently by Su, Eberly,
and Javanainen ' to study the possibility of electron lo-
calization in intense high-frequency radiation fields. In
their model the bare atom is characterized by the long-
range, asymptotically Coulombic binding potential

1V(x)=-
(1+x )' (59)

We chose an example from Su, Eberly, and Javanainen
with an electric field with frequency cu =0.52 and
strength Eo =0.5. The field is turned on smoothly over 5

optical cycles, and our calculation differs slightly from
that of Su, Eberly, and Javanainen in that we turn on the
vector potential in the radiation gauge using the prescrip-
tion they apparently use for turning on the field in the
electric field gauge. In Fig. 6 we compare the result of
propagating the ground state of this potential for 200 atu
(where 1 atu =2.42 X 10 ' s) using the contour D (x )

with x~=+25 and 2000 finite elements on the interval
[—100,100] with propagation using real coordinates and
8000 finite elements on the interval [—400, 400]. Both of
these intervals and densities of finite elements are larger
than they need to be, but the results nevertheless indicate
the accuracy and e%ciency of the complex contour calcu-
lation. We were able to reproduce the ionization rates of
Su, Eberly, and Javanainen ' for this and other field
strengths using complex exterior scaling and much re-
duced coordinate space intervals.

To demonstrate the application of exterior scaling in
more than one dimension, we have propagated a packet
for an electron-hydrogen atom collision in an approxima-
tion known as the "radial limit. " In this picture the
electron repulsion potential 1/~r, —

r2~ is replaced by its
spherical average 1/r&. The two-electron Hamiltonian
becomes (in a.u. )

1 () 1 (3H= ——
2 BI'& 2 Bl"

1 1

I"
i 72

(60)

where

&p(r r i)=22rze p( xr)(2''~ d)—
Xexp —ikr i—(r, —a)

2d2

This wave function is symmetric with respect to spatial
coordinates and thus corresponds to singlet spin coupling
of the incident and target electrons.

Since the coordinates are both on the interval [0,~],
we use the contour C(x) for both ri and r2 Figure 7.

where r, and r2 are the distances from the nucleus to
each of the two electrons. This problem is similar to that
considered by Bottcher in several studies of electron im-
pact ionization of hydrogen, the difference being that in
that work the electron repulsion potential was replaced
by 1/(r, +r2). We have propagated an initial packet
which corresponds to a high-energy electron incident on
hydrogen in its ground state,

1—[V (ri «2)+V(rz ri)]v'2
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