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This paper presents calculations of electron-loss cross sections for fast H(1s) projectiles incident
on different atomic targets (He, Ne, Ar, Kr, Xe, H, N, or 0) for a broad kinetic-energy range (90
keV/amu to 1.4 GeV/amu), and compares the calculations with experimental measurements where
possible. The calculations are based on the semiclassical free-collision model. Theoretical
differential cross sections for elastic electron scattering, and theoretical or semiempirical differential
cross sections for inelastic electron scattering, are used in making the calculations. The results are
in good agreement with experimental data. We apply a simple model based on the H(1s) results to
obtain single- and double-electron-loss cross sections for H projectiles incident on the same atomic
targets. Again the results are in good agreement with experiment. Further calculations have yield-
ed results for electron loss of H(1s ) incident on molecular H&, N2, and 02 targets.

I. INTRODUCTION

Electron-detachment cross sections are of interest both
intrinsically and for a variety of applications. For exam-
ple, at incident energies above about 100 keV/amu, the
best method for producing fast neutral hydrogen (or deu-
terium or tritium) atoms is to accelerate H ions to high
energy and detach one of the electrons. ' Fast neutral
atomic beams are used for heating controlled thermonu-
clear plasmas. Another application of electron detach-
ment is the production of polarized positive hydrogen
ions, which can be formed by the pick up of a polarized
electron, the transfer of the electron polarization to the
nucleus, and the subsequent collisional detachment of the
electron.

This paper reports calculations of the electron-loss
cross sections for fast H(ls) atoms incident on He, Ne,
Ar, Kr, Xe, H, N, or O atomic targets as a function of
the energy of the incident fast H(ls) atom for energies in
the range 90 keV/amu to 1.4 GeV/amu. Also reported
are calculations of single- and double-electron-loss cross
sections for fast H ions incident on the same gas targets
as a function of the incident energy for the same energy
range. Completely quantum-mechanical calculations of
these cross sections are difficult. Instead, we further de-
velop a simple semiclassica1 model to calculate these
cross sections from known electron-scattering cross sec-
tions. The results of our calculations are compared to ex-
perimental measurements of these cross sections where
possible. The calculations show good agreement with the
measured cross sections.

To describe the loss of the single electron from H(ls),
we utilize an extension of the semiclassical free-collision
model. " The electron in the H(ls) atom is treated as a
free electron with a velocity that is equal to the velocity
of the H(ls) center-of-mass velocity plus the velocity of

the electron about the H(ls) center of mass. The electron
is assumed to be scattered by a target atom with a cross
section equal to that for a free electron. The scattering of
the hydrogen nucleus is neglected. In order for the elec-
tron to be detached, it must receive an impulse during the
collision that is large enough that it acquires an energy
greater than the ionization energy for the H(ls) atom.
This condition restricts the allowed kinematic
configurations, and requires that the free-electron scatter-
ing angle be larger than a critical angle 0, which depends
on the other kinematic variables. Our calculations show
that it is important to include this effect, and to average
over the initial electron velocities in the incident atom.

A geometrical model' ' in combination with the free-
collision model is also used to calculate electron-loss
cross sections for incident H ions. Using a true three-
dimensional model, we calculate not only single- but also
double-electron-loss cross sections. The geometrical
model presented is valuable because it affords a relatively
simple semiclassical method to utilize known electron-
scattering cross sections to calculate the one- or two-
electron-detachment cross sections.

Finally, we use the geometrical model and our semi-
classical electron-loss cross section for H(ls) incident on
single atoms to calculate the electron-loss cross sections
for H(ls) incident on diatomic homonuclear targets. The
molecular cross sections approach twice the atomic cross
sections at high energies, but the molecular-to-atomic ra-
tio falls significantly below 2 at low energies. The results
are in excellent agreement with existing data.

II. METHOD OF THE CALCULATIONS
FOR A H(1s) PROJECTILE

The calculations are carried out using a free-collision
classical-impulse approximation. In this formalism the
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projectile and electron velocities are used as the variables.
These velocities are more suitable variables than the pro-
jectile and electron kinetic energies, which include the
different masses. The velocities describing the scattering
process in this approximation are shown in Fig. 1. The
velocity of the center of mass of the incident hydrogen
atom is denoted as v&. The velocity of the electron with
respect to the center of mass of the incident hydrogen
atom is u, . The angle /3 between v~ and u; is arbitrary.
Eventually we average over all values of f3. With respect
to the laboratory frame, in which the target is at rest, the
electron is incident on the target atom with a velocity v;,
which in the nonrelativistic case is given by v,. =v&+u;.
The electron is scattered impulsively by the target. In
particular, we neglect interactions between the electron
and the hydrogen nucleus during the electron-atom col-
lision. The electron velocity just after the collision has
occurred is denoted by vf. Assuming that the scattering
of the nucleus of the projectile is small, we take the final
velocity of the hydrogen nucleus to be equal to the initial
velocity of the hydrogen nucleus, so that both are ap-
proximately equal to vz. The assumption of negligible
scattering of the nucleus also implies that any change in
the internal energy of the target, AE, is solely related to a
change in the kinetic energy of the electron. Hence,
Pl vf IU)' 26E, where I is the electron mass. The
direction of vf is given by the electron-scattering angles
(8,$) as shown in Fig. 1. For any given set of the in-
dependent parameters (v~, u;, P, 8,$, b,E), the final veloci-
ty of the electron with respect to the hydrogen center of
mass is determined. For nonrelativistic velocities we

A sinO —8 cosO~C, (2)

where

u]. =1sinP cosP, B—: (vi—v +u;cosP),
U; U;

26EC= v;
P72

Er+ ~E
U~ u; cosP

U;
= (Uiv +u; +2u(vivcosP)

The total electron-loss cross section for a hydrogen atom
incident on a target with velocity U& is the sum of the
differential cross sections leading to specific final atomic
states j, integrated over p and the allowed range of 8, and
averaged over the initial distribution of electron velocities
in the projectile,

Q(viv)=g f f(u;)du,
J

have uf =vf —vz. The semiclassical condition for elec-
tron loss is that the electron acquires enough energy in
the collision to exceed the ionization limit. Denoting the
ionization energy of the ground-state hydrogen atom by
Er, the electron-loss condition is

muf ~ mu +2Er .

Expressing uf in terms of the parameters
(v~, u;, P, 8, P, b,E ), the condition for electron loss is

X f —,
' sinPdP

X f dP f rr (U, , 8)sin8d8,
0

(3)

FIC». 1. Velocities and angles of the free-collision model in
the laboratory frame in which the target is at rest. Velocities
with respect to the center-of-mass system of the hydrogen pro-
jectile are denoted by u, whereas velocities in the laboratory
frame are denoted by v. The subscripts i and f refer to initial
and final velocity of the electron, respectively. The velocity of
the projectile nucleus in the laboratory frame is v&. The
electron-scattering angles in the laboratory frame are 0 and P.
The angle 8 is the angle between v; and vf. The angle P is the
angle between the plane defined by v& and v; and the plane
defined by v; and vf. All values for the angle P between u; and

vz are equally probable.

where the last integral is carried out for all values of O

that satisfy Eq. (2). In Eq. (3), f(u;) denotes the normal-
ized distribution of the magnitude of the electron velocity
u; about the center of mass of the hydrogen projectile,
and rr~(v;, 8) is the differential electron-scattering cross
section for the process j at an angle O for an electron with
velocity U; incident on the target chosen. The differential
cross sections oj describe elastic scattering (b,E~ =0)or.
the various inelastic processes (b,E %0). The sum over j
includes both the elastic and inelastic processes.

Calculations of Q(viv) using Eqs. (1)—(3) are cumber-
some, because the different o.'s depend on u; and P
through the velocity v;=(u; +viv+2u;vivcosP)'~, and
because the limits of the 8 integration depend on u;, P, P,
and AE . In order to simplify the calculations, we make
the high-energy approximation that oj(v;, 8)=o~(v~, 8).
Although the distribution function f(u, ) is well known, '

we further simplify the calculations by taking u; equal in
magnitude to the root-mean-square velocity of the 1s
electron in the hydrogen atom, u, ,; that is, we replace
f(u;) by 5(u; —u, , ). The direction of u, , which is de-
scribed by the angle P, is still assumed to have the same
probability for any value of P between 0 and rr. The
simplifications regarding cr and f ( u; ) reduce substantial-
ly the time required for numerical calculations of Q( v& ).
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We restrict our calculations to those values of v&
where v& )u, „this means that our calculations are val-
id for incident H(ls) kinetic energies greater than 25 keV.
Because we take u; =u, , (U~, the quantity B in Eq. (2)
is always positive, and the integration limits can be stated
in a simple way. Implementing the simplifications ex-
plained above, the electron-loss cross section is

Q(UN)= —,'g f sinPdP f dP f crj(u&, 8)sin8d8,
J c,j

(4)

where we have introduced the critical angle 0, as the
lower integration limit. The critical angle is given by

0 for y)1
0, = 'cos 'y for —1&y &1

for y & —1,
where

y
—

[ P ( P 2 +B2 C2)1/2 BC](2 2+B2) 1

Here, A, B, and C must be evaluated for u;=u, , and
DE=DE. . Physically, the critical angle 0, . is such that
electron detachment occurs if the electron-scattering an-
gle 0 is greater than 0, . It should be noted that 0, . is a
function of P, P, and AE, .

For u, , « U&, the calculation can be further
simplified if Eq. (2) is expanded in terms of u, , /U~ and
0, keeping terms up to order u, , /v& and 0 . For small
angles 0, this yields an expression quadratic in 0, and the
critical angle is then given by

III. CALCULATED ELECTRON-LOSS
CROSS SECTIONS FOR AN INCIDENT

H(1s) PROJECTILE

We have calculated the electron-loss cross sections for
H(ls) incident on atomic targets of He, Ne, Ar, Kr, Xe,
H, N, and 0 as follows. At low energies, we should prop-
erly use Eqs. (4) and (5) to calculate Q(U&), while at high
energies we may use Eqs. (6) and (7). In particular, the
values of 8, ~

from Eq. (5) can differ from the value of
8, (x) calculated from Eq. (6) by as much as 40%%uo at an
energy of 90 keV. However, with the extra angular
averaging, the cross sections obtained from Eq. (4) using
the 0, 's differ from the cross sections obtained from Eq.
(7) using the 8, (x)'s by less than 4%%uo. At higher energies,
the differences between 8, . and 8, (x) and between the
corresponding cross sections are still smaller. For this
reason, we have actually used Eq. (7) to calculate Q(U&)
for all energies from 90 keV to 1.4 GeV.

In order to use Eqs. (4) or (7), one must know the
differential cross sections o. . The largest differential
cross sections o . for the scattering of the nearly free elec-
tron by the target are those for elastic scattering (cr,&), ex-
citation of the target to the lowest excited level (o,„,),
and ionization of the target to the lowest continuum level
(o;,„). Hence, we truncate the sum in Eq. (7) to a sum
over these three processes. To evaluate Q(U&) we then
need o,&, o„„and o.;,„as functions of the incident elec-
tron energy and scattering angle. In the following two
paragraphs, we give the origin of the differential
electron-scattering cross sections used in our calcula-
tions.

8, = ™
[(1+sin /3 cos P )

' —sing cosf ]
A. Elastic differential cross sections

[(1+x )'i —x],
UN

(6)

i

Q(qz)=~ f dx f ger (v~, 8)sin8d8, (7)

where 0, is the same for all the different electron-
scattering processes j.

At sufticiently high energies relativistic effects must
also be included. In this situation the laboratory frame,
in which the target is at rest, is related to the projectile
center-of-mass frame by a Lorentz transformation with
y = [ 1 —( vz /c ) ] '~ . Using the Lorentz transforma-
tion, we can relate u; to v; and u& to v&. We include the
relativistic corrections to 8, (x) so that our calculations
are correct even at energies up to 1.4 GeV.

where x =sing cosP. This result is consistent with the as-
sumption of 0 being a small angle and u, , « U&. In this
approximation 0, is independent of AE. , and is only a
function of x. Making a variable transformation from
(P, P ) to (cosP, x ), the cosP dependence can be integrated
out, and the final result for the electron-loss cross section
in the high-energy approximation assumes the simple
form

At low energies we utilize elastic differential electron-
scattering cross sections calculated by McCarthy et al. '

for all the inert-gas targets (20—3000-eV incident electron
energies) and those by Blaha and Davis' for atomic oxy-
gen and nitrogen targets (20—500-eV incident electron en-
ergies). At higher energies we utilize the Born-
approximation calculations for the elastic-scattering
cross sections with the elastic form factors calculated by
Bonham and Schafer' for all targets. Bonham and
Scha.fer have calculated form factors only at a few fixed
energies. The form factors at energies between those
given are obtained using an interpolation scheme similar
to that given in Ref. 16. We use the elastic Born cross
sections at electron energies high enough that the Born
cross section is smaller than the cross sections calculated
using a low-energy formalism. For example, we use the
Born elastic cross section at incident electron energies
above 3 X 10 eV for a He target and above 3 X 10 eV for
a Xe target. For the atomic hydrogen target we use the
Born elastic cross section at all energies. This gives an
excellent fit to the experimental cross sections. It should
be noted that the Born cross sections are neither scaled to
fit experiment nor to fit our low-energy calculations, but
are used directly as calculated from the form factors
given by Bonham and Schafer.
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B. Inelastic differential cross sections

The inelastic excitation and ionization differential cross
sections that we use in our calculations are obtained as
follows. For the inert-gas targets and at low energies, we
use the total inelastic excitation or ionization cross sec-
tions from de Heer, Jansen, and van der Kaay. ' They
obtained the total inelastic cross sections from a semi-
empirical combination of experimental data and theoreti-
cal calculations. Since their calculations are for total
cross sections rather than differential cross sections, we
assume that the angular dependence of the differential
cross section at low energies is identical to the angular
dependence of the Born inelastic cross section at low en-
ergies so that

Q
deHeer J Bdn

J' ~,dn= (g)
o dQ

0

Here, Q
' "' is the total cross section for process j,

where j stands for excitation (j=exc) or ionization
(j=ion), provided by de Heer, Jansen, and van der
Kaay, ' and o. is the inelastic difFerential cross section in
the Born approximation with the form factors given by
Bonham and Schafer. ' We use the semiempirical cross
sections of de Heer, Jansen, and van der Kaay at energies
low enough that Q,„', '"+Q;;„"'& Joo d n, and we use
the Born inelastic cross sections at higher energies where
the inequality is reversed. This procedure results in our
using the Born inelastic cross sections at electron energies
above 300 eV for a He target and above 2000 eV for a Xe
target. For atomic O and N targets there are no

differential or total inelastic cross sections for the low-
energy region of our calculations. Our calculations for
low energies are based only on the differential elastic-
scattering cross sections, and therefore represent only a
lower limit for the total cross section, Q(v~ ). For atomic
hydrogen targets, the Born approximation with the in-
elastic form factors given by Bonham and Schafer' is
used at all energies, as was done for the elastic case. At
high energies, for all targets, we use the Born inelastic
differential cross sections with the form factors again
given by Bonham and Schafer. '

Our numerically calculated cross sections together
with the corresponding experimental results are shown as
functions of the energy of the incident hydrogen projec-
tile in Fig. 2. As can be seen, the agreement of our calcu-
lations with experimentally measured cross sections is re-
markably good. For further experimental results we refer
to the review articles given in Ref. 24.

IV. SINGLE- AND DOUBLE-ELECTRON-LOSS
CROSS SECTIONS FOR H

In this section, we present calculations of both the
single- and double-electron-loss cross sections for H
ions incident on the same target gases as used in the H(ls)
electron-loss calculations. The electron loss for H is
semiclassically described in two steps. Assuming that
there is no correlation between the two electrons, the first
step is that each electron will independently be subject to
hard scattering, identical to the electron scattering in the
case of an incident H atom. This hard-scattering process
can lead to no-, single-, or double-electron loss. If there
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FI~. 2. Electron-loss cross sections of H(1s) incident on He, Ne, Ar, Kr, Xe, and atomic H, N, and 0 targets as a function of the
inetic energy of the incident H(1s) projectile. The solid lines are the calculated electron-loss cross sections including elastic- and

inelastic-scattering processes, and the dot-dashed lines are the calculated electron-loss cross sections based only on elastic electron
scattering. The symnbols represent experimental measurements and are taken from Ref. 18 (open triangle) Ref- 19 (open square)
Ref. 20 {open inverted triangle), Ref. 21 (open circle}, Ref. 22 (solid triangle), and Ref. 23 (solid square). Our calculations are only
carried out for energies above 90 keV. However, we show experimental data at energies below 90 keV to indicate the trend of the ex-
perimental data.
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is no electron loss due to the hard scattering, the elec-
trons are assumed to remain in their initial wave func-
tion, and the electron-loss cross section vanishes. If one
electron is lost due to hard scattering, the remaining elec-
tron will be left in a state that is not an eigenstate of H .
Hence the remaining electron may undergo a transition
into either a continuum state ("electron shake-off") or to
a bound state. In the first case, the whole two-step pro-
cess contributes to the total double-electron-loss cross
section. In the second case, it contributes to single-
electron loss. The anal possibility is that both electrons
are lost in the hard-scattering process, a process that con-
tributes directly to the double-electron-loss cross section.

We first calculate the hard-scattering cross sections
utilizing the classical-impulse approximation in the con-
text of the eikonal formulation of scattering theory. We
assume that the two electrons scatter independently, so
that the free-collision model previously applied to the
electron of H(ls) can now be applied to each of the two
electrons in H separately. We take one electron to be
bound by 0.75 eV and the other by 13.6 eV. The
electron-loss cross section Q, for hard scattering of the
tightly bound electron is given by the results of the
preceding section. The electron-loss cross section Qz for
hard scattering of the loosely bound electron is obtained
from similar calculations carried out for an ionization en-
ergy of 0.75 eV and using the corresponding u, , for the
loosely bound electron. This yields values of Q2 which
are 1.4 to 3.0 times larger than the corresponding values
of Q&. The electron-loss cross sections Q, and Qz are
hard-interaction cross sections, which means that Q; de-
scribes the electron loss of electron i due to direct scatter-
ing on the target atom, independent of whether the other
electron is detached during the hard scattering or not.
Following the ideas of Bates and Walker' and Dewangan
and Walters, ' these two interaction cross sections for the
hard process can be visualized as two disks of radius
l;=(Q;/re)'~, where i=1 or 2. Again i =1 corresponds
to the tightly bound electron and i =2 corresponds to the
loosely bound electron. As shown in Fig. 3, the two disks
generally overlap. The overlap area A0 depends on the
distance d between the centers of the two disks. The dis-
tance d is given as the projection of the vector separation
R of the two electrons on the plane perpendicular to the
direction of incidence. The total cross-sectional area of
the two electrons of the H ion from the perspective of
the target is Q, +Q2 —Ao. We interpret the overlap area

I

FIG. 3. Cross-sectional areas for electron loss presented to a
target by an incoming H projectile.

A0 as the double-electron-loss cross section associated
with direct or hard scattering of both electrons. The
remaining area, Q, +Q2 —220, is interpreted as the
single-electron-loss cross section for hard scattering.
These results are formally derived in Appendix A using
the eikonal formulation of scattering theory. In order to
evaluate the single- and double-electron-loss cross sec-
tions, the overlap area A0 must be averaged over all
orientations and magnitudes of R. Hence we need a
reasonable approximation for the electronic wave func-
tion f(r„rz) of H to extract the normalized distribution
function P(R) for the electron separation R. This is dis-
cussed in Appendix B.

The last step in calculating the double-electron loss is
to choose the eikonal scattering function to determine the
hard-scattering ionization probabilities. This is discussed
in Appendix A. For a Gaussian distribution we obtain

hard ( g )db

=—' f dR P(R)f dg(sing)
0 0 1 2

mR sin 0
Qi+Q2

For a step distribution we obtain

hard ( g )db 0

=
z f dR P(R)f dg(sing)AD(l&, l2, R sing),

0 0

(10a)

where"

ml, for d l2 l&

Ao(l„l2, d)= 1&(g—singcosg)+lz(P —sinPcosP) for (l2 —I, )&d &(12+i|)
0 for d ~ I2+I&

with

—1
d2+ $2 —I2

e=cos 1 2

1

P=cos
2dl2

l

We compare the results for these two expressions for
0db' in the case of a H target and a Xe target in Fig. 4.
Clearly, o.db' is insensitive to the choice of distribution.

The single-electron-loss cross section for electron i due
to hard scattering is given as

hard
Q ( g ) Q

hard
SIlga I
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Fl&. &. «ntrtbuttons to Qdb for (a) a H target, and (b) a Xe target. The solid line represents crhdb"d as calculated using a &aussian
eiko»» function [see Eq. (9)], and the dashed line represents odb' based on a step function for the eikonal distribution [see Fq. (10)].
The dotted line shows the contribution to Qd& from shake-oF of the remaining loosely bound electron (Q, —crdhb'd)P„calculated with
P2 =9.63 X 10 and the hard cross section for the Gaussian eikonal distribution. The dashed-dotted line is the corresponding contri-
bution from shake-oF of the tightly bound electron (Q2 —o„"b )P&, with P, =6.6X10 . Note that the shake-oF cross section be-
comes increasingly important at high energies, and can be larger than o.zb' for a light (H) target. It is relatively less important for a
heavy (Xe) target.

P(Z, , r) =

However, an electron can also be lost through the shake-
off process noted above even if it does not interact
directly with the target atom. As discussed in Appendix
B, our choice for the initial H wave function is a sym-
metrized wave function of the form g(r„r2)
=N[P(Zt, r, )P(Z2, r2)+P(Zt, r2)P(Zz, r, )]. We have as-
sumed that scattering of one electron on the target atom
does not inhuence the other electron. Hence, if one elec-
tron is removed, the remaining electron will be left in a
state (()(Z, , r) which, in general, is not an eigenstate of H .
The probability P; that the remaining electron will make
a transition into a continuum state, that is, will be "shak-
en off" in the overall process, is given by

1 2
P; = f d p 3 fR(pr)P(Z, , r)d r

(2m. )

where R(p, r) is a properly normalized continuum-state
wave function for an electron of momentum p in the
Coulomb field of hydrogen nucleus. Choosing

1/2
Zi

l

In Fig. 5 we show P, as a function of Z;. As explained in
Appendix B, we choose Z, =1.0445 and Z2=0. 3259 as
the best values for the calculation of P(R). This choice
gives P1=6.55 X 10 and P2 =9.63 X 10 respectively.
The shake-off cross sections are then

shake-off —p hard p (g ( A ) )~1 1~sng 2 1 2 0

shake-ofr p hard p ( g ( A ) )2 2~sng 1 2 1 0

The probability that electron i is not shaken off is
1 —P, , so the total single-electron-loss cross section is

=(1 P2)gi+(1 P—i )Qq —(2—P—
i P2)( Ao ) . —

Finally, the double ionization cross section with shake-off
included is

hard+ P hard +P hard~db ~db 2~sng, 1 1 ~sng, 2

we obtain
=(1 P P)( A )+—P g—, +P g (15)

=32
1

1

2

Xexp
4 m 11——tanZt 4

x f "dr „sinh(1+r')"

(12)

The quantities that we actually calculate are
Q t, Q2, ( A o ) and P„pz.

In Fig. 4 we show the calculated results for the indivi-
dual shake-off cross sections (1 P, )o,"„"

z and—
(1 P2)o,"„'I, for the c—ase of a H and Xe target. In each
case, electron 2 is the weakly bound electron, and has the
larger shake-off cross section. The cross sections o.",„"1
and o",„'g 2 used are based on a Gaussian distribution func-
tion for calculating odh' in an eikonal formalism [see Eq.
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FIG. 5. The transition probability P; as a function of the pa-
rameter Z; of the electron wave function. The curve was calcu-
lated using Eq. (12).

(9) and Appendix A].
In Figs. 6 and 7 we compare the total cross sections

Q,„s and Qdb calculated using odb' of Eq. (9) for the
different atomic gas targets H, He, Ne, Ar, Kr, Xe, N,
and 0 to the relevant experimental cross sections. As
can be seen, the agreement of the theoretical results with
the experimental cross sections for both single- and
double-electron loss is astonishingly good. At very high

energies, our results for the double-electron-loss cross
sections are somewhat too low, though it should be point-
ed out that the experimental results are subject to uncer-
tainties of about 25%%ug.

One might expect that our model should be more reli-
able at higher energies since the approximations used in
calculating the cross sections Q, and Q2 should become
more accurate for v& much larger than u, , A few sam-
ple calculations, which included the u; average, rather
than taking u,- =u, differed from the simplified calcula-
tions by less than 4/o for the high-energy case. We there-
fore conclude that more complete calculations, which uti-
lize Eq. (3) in context with the eikonal model described
above, are unlikely to eliminate the apparent discrepancy
between the theoretical and experimental results for the
high-energy double-electron-loss cross sections. It is
therefore possible that the present model has to be ex-
tended. For example, correlation effects between the two
electrons, or electron-electron scattering inside the per-
turbed H system, could enhance the double-electron-
loss cross section without significantly changing the
single-electron-loss cross section. It would certainly be of
interest to have more data, including data at even higher
energies than the present limits, so that the general ener-

gy dependence of the cross sections can be checked, and
the theory refined.

V. H(ls) KLKCTRQN-LOSS CROSS SECTIONS
FOR MOLECULAR TARGETS

We have also calculated the single-electron-loss cross
section for H(ls) atoms incident on molecular gas targets
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FIG. 6. Single-electron-loss cross sections of H incident on He, Ne, Ar, Kr, Xe, and atomic H, N, and 0 targets as a function of
the energy of the incident H projectile. The solid lines are the single-electron-loss cross sections calculated from single-electron-

scattering cross sections, which include both elastic- and inelastic-scattering processes. Electron shake-off corrections are included.

The dotted lines are the calculated single-electron-loss cross sections only based on elastic electron scattering. The symbols represent
experimental measurements and are taken from Ref. 19 (open square), Ref. 20 (open inverted triangle), Ref. 22 (solid triangle), Ref. 23
(solid square), and Ref. 26 (solid inverted triangle).
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FICx. 7. Double-electron-loss cross sections of H incident on He, Ne, Ar, Kr, Xe, and atomic H, N, and 0 targets as a function of
the energy of the incident H projectile. The solid lines are the double-electron-loss cross sections calculated from single-electron-
scattering cross sections, which include both elastic- and inelastic-scattering processes. Electron shake-oF contributions are included.
The dotted lines are the calculated double-electron-loss cross sections based on elastic single-electron scattering alone. The symbols
represent experimental measurements and are taken from Ref. 19 (open square), Ref. 20 (open inverted triangle), Ref. 22 (solid trian-
gle), Ref. 23 (solid square), and Ref. 26 (solid inverted triangle). %'here necessary we use arrows to indicate to which curve the exper-
imental data correspond.

H2, Nz, or 02 using the results from the calculations for
atomic H, N, or 0 targets. We take Q to be the cross sec-
tion for one of the atoms in the diatomic mo1ecule as cal-
culated in Sec. III. The electron-loss cross section seen
by the H(ls) atom incident on the diatomic homonuclear
molecule is Qd =2Q —A, where 3 is the atomic overlap
calculated in the Gaussian eikonal model using the ana-
log of Eq. (9) with Q, = Q2 =Q. The origin of the overlap
can be visualized in this case as the result of one of the
two atoms of the target molecule being behind the other
from the perspective of the incident projectile. The over-
lap area A depends on the vector separation R of the two
target atoms. To get the total electron-loss cross section,
one must average Qd over all possible spatial orientations
of R, as well as over the different allowed magnitudes of
R due to vibration. We average the overlap area A

only over the angular distribution. Each orientation of R
is assumed to be equally probable. Because the ampli-
tudes of vibrations about the mean interatomic separa-
tions are small, we approximate P(R) in Eq. (9) by
5(R —R,„),where R„is the average value for the inter-
nuclear separation: R„=0.7461, 1.0975, and 1.208 A
for H2, N2, and 02, respectively.

The quantity of interest is the ratio of the electron-loss
cross section for H(ls) incident on a diatomic target di-
vided by the electron-loss cross section for H(ls) incident
on a monatomic target. The ratios are shown for H2, N2,
and O2 as functions of the kinetic energy of the incident
H(ls) atom in Fig. 8. At high energies, (Q/m. )'~ is small

compared to the internuclear distance, the overlap area is
small, and the ratio is close to 2, as would be expected.
At low energies, (Q lvr)' is large compared to the inter-
nuclear distance, the overlap area is 1arge, and the ratio is
significantly below 2.

The comparisons of our calculations with previous ex-
perirnental data are shown in Fig. 9. The very good
agreement of the calculated and measured cross sections
implies that one can extract reliable atomic cross sections
from. molecular cross sections by using the theoretical
molecular-to-atomic cross section ratios discussed above.
Often experiments are more easily carried out using a
molecular gas target rather than an atomic gas target.

VI. CONCLUSIONS AND DISCUSSION

In this section, we brieAy discuss our calculations and
compare them with previous theoretical calculations.
Except for some of the high-energy results for double-
electron-loss cross sections of H, the agreement of our
calculated electron-loss cross sections with the experi-
mental data is remarkably good for H(ls) and H projec-
tiles. Based on this agreement, we expect that the calcu-
lated cross sections are likely to be correct at energies
where there are no experimental data available.

The experimental cross sections for single electron loss
from H in Ar, Kr, or Xe show the following interesting
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FIG. 8. Ratio of the electron-loss cross section for H(1s) in-
cident on a diatomic target to the electron-loss cross section for
H(1s) incident on a monatomic target for difl'erent energies of
the incident H(1s) projectile. Results are shown for the ratio of
the molecular Hz, N&, and 0& targets to the corresponding
monatomic targets. See Fig. 9 for the cross sections used to cal-
culate the ratio. The solid lines correspond to calculations for
H, 0, and N in which the single-electron cross sections include
both inelastic and elastic scattering. The dotted lines corre-
spond to calculations for 0 and'N that are based only on elastic
electron scattering.

feature. At kinetic energies of about 100 keV the
single-electron-loss cross section of H for a Kr target is
larger than the corresponding cross section for a Xe tar-
get, and both are larger than the cross section for an Ar
target. The increasing order is Ar-Xe-Kr. This seems
surprising since the target sizes increase in the order Ar-
Kr-Xe, and an ordering of the cross sections in the same
way might be expected. For energies larger than approxi-
mately 200 keV, the measured single-electron-loss cross
sections of H show the expected order. This interesting
feature also shows up in our calculations.

In the case of electron loss from H(ls) incident on Ar,
Kr, or Xe targets, the experimental results show a similar
behavior. At 100 keV the cross sections increase in the
order Kr-Ar-Xe. For energies larger than approximately
200 keV the order Ar-Kr-Xe is observed as one might ex-
pect. Our calculations give a different result. At 100 keV
they predict an increase of the electron-loss cross sections
in the order Xe-Kr-Ar, and the order Ar-Kr-Xe is ob-
tained for energies larger than 300 keV.

It is remarkable that our theoretical calculations give
results that violate the order of cross-section magnitudes
that one might expect from the size of the target atoms.
The reason is that the theoretical electron differential
cross sections by McCarthy et al. ' have deep minima at
certain angles. Because only the differential cross sec-
tions for angles larger than certain values of 0, contribute
to the total electron-loss cross section, the location of the
minima is very important. Hence it is possible that,
though the total electron-scattering cross section for an-
gles from 0 to ~ for a Kr target is larger than for an Ar
target, the electron-loss cross section of H(ls) for these
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targets is not. Because the calculations involve an aver-
age over 9,(x), the final order of the results is not always
easily predictable. In the case of H ions, the situation is
even more difficult because there are two different 0, 's
corresponding to a tightly and a loosely bound electron.
Additionally, a three-dimensional averaging is needed in
the H case to explain the measured cross sections.

To calculate H(ls) electron-loss cross sections, Dewan-
gan and Walters' have utilized the free-collision model
but with (in our notation) u;=O. This is a satisfactory
approximation at high energies. At low energies the
agreement of some —but not all —cross sections with ex-
periment is improved if one takes u; =u, , and takes all
values of P as equally probable. Bates, Dose, and
Young" have used the exact velocity distribution f(u;)
rather than taking u; =u, , This is unquestionably the
better approach, but since the free-collision model with
u; =u, „and all values of P as equally probable gives re-
markably good agreement with experiment, we believe

FIG. 9. Electron-loss cross sections of H(ls) incident on H,
H&, N, N2, 0, 02 as a function of the energy of the incident
H(1s) projectile. The solid lines are the calculated electron-loss
cross sections calculated using single-electron scattering cross
sections, which include both elastic- and inelastic-scattering
processes. The dashed lines are the calculated electron-loss
cross sections based on elastic single-electron-scattering cross
sections. The symbols represent experimental measurements.
For monatomic targets, they are taken from Ref. 18 (open trian-
gle) and Ref. 20 (open inverted triangle), and for diatomic tar-
gets the results are from Ref. 18 (open triangle), Ref. 21 (open
circle), and Ref. 23 (solid square). Reference 18 gives the
electron-loss cross sections per target atom, but those results
were obtained for H(1s) incident on diatomic targets multiplying
the molecular results by a factor 0.5. Both results are shown.
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that for most cross sections our simplifying approxima-
tion is satisfactory. A considerable increase in computa-
tion time is required for the use of the exact distribution
f(tt;).

For the single- and double-electron-loss cross sections
of H incident on atomic targets, our analysis is some-
what different from that of Bates and %'alker' or
Dewangan and Walters. ' They both take the two elec-
trons as having a mean projection d = (R /2) of the elec-
tron separation on the plane orthogonal to the incident
velocity, where (R ) is the mean electron separation in
H . They then assign a cross section Q; (where i = 1 or
2) and hence a radius l, =(Q;/vr)' to each electron. At
low energies the radii are large enough that there is an
overlap. At high energies, however, the radii are small
and there is no overlap. On the other hand, we take a
true three-dimensional average over the direction and
magnitude of the separation R of the two electrons. In
this case there is always a contribution to the overlap
area when one electron is behind the other, even in the
case of small radii, I;. We have also shown formally that
the overlap area is associated with the double electron
loss. At high energies double electron loss due to shake-
off contributes significantly to the total double electron
loss. At low energies we obtain double-electron-loss cross
sections that agree very well with experimental data.
Even at high energies we obtain double-electron-loss
cross sections that agree reasonably well with experimen-
tal data. We conclude that taking a three-dimensional
average is important and offers a reasonable approxima-
tion for calculations of the double-electron-loss cross sec-
tion in the classical-impulse approximation. A final judg-
ment on the correctness of the double-electron-loss cross
section results must be delayed until further high-energy
experiments have been made.

Finally, if printed tables of the calculated cross sections
are desired, they can be obtained by writing to the au-
thors of this paper.
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—2 Rez'i —2 Rez&X 1 —e (A 1)

where ij'j is the initial electron wave function, r; =(b;,z; )

is the position of electron i with respect to the origin of
the H center of mass, and b is the two-dimensional irn-
pact parameter of the H ion relative to the target atom.
The eikonal functions y; describe the (independent)
scattering of the electrons on the target atom. In particu-
lar, y; depends only on the impact parameter b,

' =b —b,.
of electron i relative to the target, y; =g;(b', ) =y;(b —b; ),
where b is the ion-target impact parameter and b; is the
transverse coordinate of the electron in the incident ion.—2 Reg,.(b —b,. ) .
The function e ' ' is equal semiclassically to the
probability p;(b,') that electron i does not undergo a hard,
ionizing collision with the target atom for the given b and
b, , independent of whether the other electron interacts or
not. Let p, (b,')=1—

p, (b',. ) denote the probability that
electron i does interact. Then

=P&+F2 P&P2 ~

where p,p2 is the probability that both electrons interact
directly with the target atom. Using this expression in
Eq. (Al), we find that

hard~ .i=Qi+Qz —
~dh

where

Q;=fd rifd r ~gz(r ri)~zfd bp, (b b,)—
=fd'b'p;(b')

(A2)

(A3)

is just the interaction cross section for electron i, and
hard ( g )0

= fd'r, fd'r, f dz~bq(r„r )z~

z

Xp, (b —bi)p (b —b ) . (A4)

Alternatively, we can reexpress the eikonal probability
function in Eq. (Al) as

—2 Reg&
—2 Rey2 =P &72+7 &72+7 iP2

and write o.;„,& in terms of the two single-interaction cross
sections and the double-interaction cross section,

and very simply, including the average over R, in the
impact-parameter approximation we have used. Assum-
ing that the scattering of one electron is independent of
the scattering of the other electron, the inelastic ioniza-
tion cross section in the Glauber eikonal approximation
1s

o;„,i=fd r, fd rzfd b it(r„rz)

APPENDIX A

In this appendix we provide a brief discussion of the
hard cross sections for single- and double-electron-loss
cross sections from H . These cross sections, due to
hard scattering, are o dh'"= ( Ao ) and o',"„'s =Qi
+Qz —2( A 0). These expressions can be derived exactly

—hard ~ hard ~ hard
inel sng, 1+sng, 2

hard+ hard
~sng db

where

hard
Q

hard
Q ( g )

(AS)

(A6)
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By introducing new variables b' =b —
b& and

d=b& —b2, we may rewrite the general result for the
double-electron-loss cross section due to hard scattering
as

hard
Odb fP(R) dR de~ f d b'p, (b')p2(b'+d)

4a
dR d cosO P R Ao R sin6 (A7)

This construction shows that azb' only depends on the
functional form of the ionization probabilities p; and the
distribution function for the vector separation R between
the two electrons. Again d is the projection of R on the
plane perpendicular to the direction of the incoming H
ion.

Two simple choices for the eikonal probabilities p, are
the following:

(a) Gaussian distribution:
—b IJ

p, (b)=e

(b) Step distribution:

1, Ibl«,
, (b)= 0 lbl) l

For either choice, the parameters l, are related to the
cross sections Q; calculated in the free-collision model by
l; =(Q;/vr)' . The Gaussian distribution is more realis-
tic; the step distribution leads directly to the overlapping
disk picture discussed in Sec. IV. Using these distribu-
tion functions we obtain the results of Eqs. (9) and (10),
respectively.

We can also get some insight into the double scattering
cross section by using a simple Gaussian model for the
radial separation of the electrons in H

2 —(R /p )2P(R) ~R e i ~' . The integrals in Eqs. (A7) and (9)
can then be evaluated analytically using the Gaussian
model for the eikonal probabilities, with the result

where

1 P(R)dR dQ~ —= f lg(r„r, +R)l d'r, R dR dQz .
4~

(A8) Q(H)[o.,"„"(H )
—Q(H)]

a,hard( H
—

) +~a 2
sng

(A10)

If we neglect the electron shake-off' correction in

Q,„s(H ), Eq. (14), and add the larger shake-off' correc-
tion P2Q, in Eq. (15) (see Fig. 4), we obtain

Q(H)[Q,„s(H ) —Q(H)]
adb=P2Q(H)+

Q,„(H )+~a
(A11)

This relation works reasonably well for our calculated
cross sections, and may be useful for estimating double-
electron loss of H from the single-electron-loss cross
sections of H and H for energies between 90 and 5000
keV. (It should be noted that the upper energy limit
chosen is sensitive to the target element considered. )

APPENDIX 8

To obtain an approximate distribution function P(R)
for the distance R between the two electrons of the H
ion, we assume that the electronic wave function can be
written as

p(ri, r2)=&N [p( Zrii)p(Z r2)2+((ilZi, r )p2( Zr2i)],

where

$(z, r)=(z /~)' exp( —Zr)

and

gives a slightly small result for the average separation of
the electrons, but reproduces the location of the peak in
P (R ) obtained with realistic wave functions (see Appen-
dix B).] Because Qi and Q2 are considerably smaller
than ~a, especially at higher energies, o.zb'" is small, and
falls more rapidly than Q, or Q2 as the energy is in-
creased.

We can extract a useful estimate of o.
db from Eq. (A9)

by noting that, because of the smallness of o.„"b

hard+ 2 hard hard~ 1 ~ 2 ~sng db ~sng

while Q, =Q(H). Thus,

h-d
~db 2

Q, +Q2+~a
(A9)

128Z )Z2
3/N = 2+

(Z, +Z2)

The area ~a is characteristic of the H ion. The low-
energy data for double-electron loss as shown in Fig. 7
are fit within 20% using vra =7 X 10 ' cm . [This value

Throughout this appendix, we assume lengths to be in
atomic units. It has been shown that this wave function
gives a bound state. The probability of a separation R
between the two electrons is

P(R, Z„Z, )=f lq(r, , r2)l2d3r, R2d&,

—2Z R
=42VZ (Z2R e

2Z2R 4Zj Z2 —2Z2R+ +e
(Z2 Z2)2 (Z2 Z2)3

2Z)R
(Z2 Z2 )2

4Z)Z2
(g2 Z2 )3

N(Zi+Z2) —iz +z
e ' ' [3R +3(Z, +Z2)R +(Z, +Z'2) R ] .

24
(B1)
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The mean separation between the two electrons is then
obtained as

(R ) =2N
3Z I +9Z ~Z2 + 1 1Z &Z2 +9Z

~
Z 2 +3Z p

2Z, Z2(Z, +Zz )

280Z Z
+ 1 2

(Z, +Zz)
(B2)

The parameters Z, and Zz are chosen to give the exact
value of (R ), which is 4.4129 a.u. , and to minimize the

total electronic energy under this constraint. This is
achieved with Z& =1.0445 and Zz =0.3259, which yields

E„,= —13.94 eV. This corresponds to an electron
affinity of 0.34 eV. Because we only use this wave func-
tion to obtain a reasonable distribution P(R), the devia-
tion in the electron amenity from the correct value, 0.75
eV, is of no concern. We have carried out alternative cal-
culations of a.db' for the distribution functions P(R) ob-
tained from different wave functions. We find that o.

db

is not sensitive to the (reasonable) wave functions chosen
as long as ( R ) is adjusted to 4.4129 a.u.
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and tl(r„r, )=N(e ' 'e ' '+e ' e ' ')(1+cR), Z,
=1.075, Z, =0.478, c=0.312, (R ) =4.25 a.u. The latter
form of the H wave function was introduced by S. Chan-
drasekhar, Ref. 28. For the latter cases the results obtained
for o.db"" differed by less than 8% from the original results.
For a further discussion of H wave functions we refer to H.
Massey, Negative Ions (Cambridge University Press, Cam-
bridge, 1976), p. 9.


