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A quantum-mechanical approximation is developed for ionization of one-electron targets by
charged-ion impact. The model is based on the nonrelativistic distorted-wave formalism valid for
impact velocities larger than the electron orbital velocity in the initial state. The exact impulse
wave function is used to describe the initial state, thus incorporating the projectile potential to all
orders. The final state is represented by a product of continuum Coulomb wave functions around
both centers, providing the correct asymptotic conditions and the projectile and target cusps. The
theory is thought to be valid for large projectile charge, even larger than the ion velocity. The im-
pulse approximation developed here is expensive in computing time, but it is probably one of the
few models to deal with high projectile charges. Double-differential cross sections are computable
in the forward and backward ejection angles. Comparisons with the experiments in different regions
of interest are presented, including the binary sphere, capture to the continuum cusp, ridge elec-
trons, and backward ejection angles. The theory proves to be quite successful, and it does not seem

1 JUNE 1991

University of Tennessee, Knoxville, Tennessee and Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

to deteriorate with increasing projectile charge.

I. INTRODUCTION

In the present work we are interested in the three-

particle ionization process:

Zpt(Zpte)>Zpt+Zyte, (1.1)
where Z; and Z, are the target and projectile nuclear
charges. Early works on the subject'"> demonstrated the
importance of the equal status of the Coulomb interac-
tions of both the residual target (7') and the projectile (P)
on the outgoing electron (e). During recent years, several
distorted-wave methods were put forward to deal with
the problem in the perturbation regime, that is, when the
ion velocity v is larger than the Coulomb charges Z; and
Zp,. Some theories have proven to be moderately
successful—for example, the continuum-distorted-
wave>* (CDW), the multiple-scattering5 (MS), and the
eikonal-initial-state® (EIS) theories.

In the present work we are interested in the strong-
distortion region, that is, when v >>Z; and ZpZv. In
this range no perturbative method successfully describes
the details of the angular and energy distributions of the
ejected electrons—namely, the double-differential cross
section (DDCS). The classical trajectory Monte Carlo’
(CTMOQ) is the first approximation that comes to mind to
treat such processes. Although the classical theory is
known to fail for v >5Z; for proton impact, it is ob-
served that the performance of the CTMC improves with
Zp, and so this is a method to compare with in its range
of validity. In principle, the close-coupling technique
with Sturmian basis sets may also be employed; however,
for large Zp, the dimension of the basis to describe the
DDCS may be intractable by today’s standard.

We are motivated by recent experimental work (Ref.
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8), in which energy distributions of ionized electrons in
collision between multicharged bare ions and H, and He
targets have been measured. The bare projectiles used,
between C®* and F°" at impact energies between 1 and 2
MeV/amu, places these experiments in the strong-
distortion domain. The measurements were done at 0°,
(6,=0) with respect to the incident beam, where the
DDCS exhibits the binary peak. This enhancement is
centered near 2v in the target frame at 6, =0 (for any
other ejection angle the binary peak centers around
2v cosf,). The binary peak can be interpreted as a classi-
cal collision between the “quasi-free” target electrons and
the projectile (i.e., 180° Rutherford scattering in the pro-
jectile frame). By comparing the experiments with the
classical model, two major conclusions were drawn in
Ref. 8. First, the DDCS of the 2v electrons behaves as
y4 }%, as for any first-order perturbative method, and
second, some uncertainties arise when the results are nor-
malized to 3-MeV H™ +Ne K Auger cross section; in this
case the experiments were lower than the prediction of
the classical binary theory by a factor of approximately
0.6. If true, the corrective factor would indicate a failure
not only of the classical theory, but of any first-order per-
turbation theory; in their range of validity, and it is there-
fore worthy of further study.

Alternatively, the Z2 law has been studied for single-
differential cross sections for ionization with CTMC.” It
was found that for large Coulomb distortion or Sommer-
feld parameter Zp /v, saturation effects, that is, depar-
tures from quadratic behavior, occur. For total cross sec-
tions, the saturation phenomena are very well known;
however, for DDCS the situation is more complex due to
the electron capture to continuum (ECC) process which
introduces a different Z, dependence. Saturation was
also found theoretically’ and experimentally!® in direct
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excitation. Therefore, one would expect some indications
of such effects in ionization, in particular for slow elec-
trons which can be seen as the continuation of excitation
to Rydberg states.” In Ref. 8, bare ions of charge
Zp=6-9 and velocities v =6.3-8.9 were used, and so
the corresponding Sommerfeld parameter Zp /v ranges
between 0.95 to 1.4, which is not sufficiently large to ob-
serve large saturation effects. Experience with excitation’
indicates that for Zp /v ~1, departures from the quadra-
tic rule are observable, and so it is interesting to study to
what extent saturation effects, if any, are relevant for the
reported experiments.

Our intention is to develop a theoretical method valid
not only for large Z, but also in the perturbative regime.
Any of the three distorted-wave methods cited here—
CDW, MS, and EIS—are valid at small Sommerfeld pa-
rameters Zp/v. Any extension to the strong-distortion
regime should account for a better description of the P-e
Coulomb interaction. The mentioned theoretical
methods have in common a product of continuum wave
functions to describe the final channel [see Eq. (2.1)
below]. ECC and direct ionization then are described on
equal footing, and the Coulomb asymptotic conditions
are properly satisfied. These methods differ in the
description of the initial channel: MS, CDW, and EIS
use plane, peaked impulse [see Eq. (2.16)] and eikonal [see
Eq. (2.17)] wave functions, respectively (the MS in second
order includes the internuclear interaction in the final,
rather than the initial, channel?®).

The most noticeable effect of the P-e interaction in the
exit channel is the so-called ECC cusp, which is account-
ed for by the above-mentioned approximations. But in
the entrance channel the projectile induces a sort of bind-
ing effect which we have to describe to the best of our
abilities if high Zp are considered.

In the present work, we describe the initial channel by
the exact impulse wave function'! [see Eq. (2.5)] which in-
corporates the projectile potential to all orders, at least
on the electron-energy shell. We cannot prove formally
that this is the right theory for large Z, even in the case
v>>Z,. The experience in capture!’ and excitation'
processes with the exact impulse approximation includ-
ing the correct asymptotic conditions on both channels,
indicates that the method gives a good account of the ex-
periments for asymmetric collision (i.e., when the
Coulomb charge of one of the partners is larger than the
other one). The price that we have to pay is a three-
dimensional numerical integration to obtain the 7-matrix
element, and an additional two-dimensional one to obtain
a DDCS. The quantum theory here formulated will be
called simply impulse approximation (IA) and should not
be confused with the classical binary model which is
often called by the same name. Our goal is to describe
the behavior of the ionization DDCS as a function of Zp
using one of the best theoretical treatments without any
other approximation than the exact impulse approxima-
tion.

Atomic units are used, and the mass of the electron
with respect to the heavy nuclei is neglected. As usual,
the internuclear interaction was dropped and could be in-
cluded in an eikonal approximation if we are interested in
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projectile differential cross sections. In Sec. II, we review
the basic formulation. For brevity, the corresponding
algebra is not shown: It consists of transforming from
position coordinate systems to momentum space, and
then using the Nordsieck technique>® to complete the in-
tegration. In Sec. III we describe the details of our nu-
merical calculation. A link between the simplest
quantum-mechanical approximation and the classical
binary theory is presented in the Appendix. From the
computational point of view, our formulation is calcul-
able for DDCS in the forward direction where there are
three regions of interest—namely, binary electrons at 2v,
ridge electrons around v /2, and the ECC cusp or elec-
trons with velocities near to v, which we study in Secs.
1V, V, and VI, respectively. The behavior of backward
electrons with respect to the projectile direction is stud-
ied in Sec. VIL

II. THEORY

The distorted final state is chosen to be a product of
functions:

\Plf’=<I>KT(RT)1/F(ZT,kT|rT)D “(Zp,kplrp)

=(I>KP(RP)¢_(ZP,kP|rP )D (Zp,kyplry), (2.1)
where
Y (Z,k|r)=®(r)D ~(Z,k|r) 2.2)
is the Coulomb continuum wave function,
¢k(r)=e—2‘%’;‘%) , (2.3)
is the normalized plane wave,
D~ (Z ,k|r)=vy(a),F\(—ia,1,—ik-r—ikr)
(2.4)

yv(a)=exp(ma /2)[(1+ia) ,

a =uZ/k, and p is the reduced mass. The usual notation
is used: ry p are the positions of the electron with respect
to the target and projectile, and Ry, , are the correspond-
ing intersystem coordinates. The coordinate systems di-
agonalizing the kinetic-energy operator are {R,r;} and
{Rp,rp}. Similarly, k; p are the momenta of the elec-
tron with respect to the target and projectile. Momenta
and positions satisfy the following relation:

KRy +kp 1 =Kp-Rp+kprp .

We describe the initial channel within the exact im-
pulse approximation:'!

Vir= [dqdi (@), (RpY(Zp, —Klrp)
(2.5)

where k; =v—q, ¢, is the Fourier transform of the initial
electronic state, K; is the momentum of the projectile
with respect to the target,

prl=(Mp+1) 7 (M) !

is the electron-target reduced mass, and M, and M, are
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the target and projectile masses, respectively.
The T-matrix element is given by

Tia = WOV, (W) =(WE |y ¥in)

where the final and initial potentials satisfy
(H—EWE=V ¥} and (H—EW*=V,¥*, H and E
are the Hamiltonian and the total energy, respectively.
After using the Nordsieck technique and some algebra,
we find that T, is given by

4 VT(P)C(aT,AT) Vp(P)Clap, Ap)
TIA:—_ 3 qu
(277') AT AP
X Q‘YC(a,-,AJ&Ti(q) ; (2.6)
o
where the tilde denotes the Fourier transform
172
= 2 Zyp
V _ | = —_— .
7,p(P) . ISR 2.7
P=K,—K;, p=|P|, Q=P—k;+q, (2.8)
Cla, A)=yla)A @, (2.9)
a,-:ZP/k,-, aPZZP/kP, aT=ZT/kT , (2.10)
— 2 .
AP—1+p2+62(—P'kP"‘lkP€) 5
A,=1 2 — —i
i + 2+ 2( P'ki lk,'E) ’
p te
2 (2.11)
_ . +
Ar=1+ Q2+62(+Q-kr—sz6), as €—0
_ 2
A3—1+—p—2:'—_~6—2~(k,-k1,—ki-kp) ,
V=Y,kkp—Y,k;—Y,P, (2.12)
ia; + A;— A,
=— Y =—Y,—F .1
Y, AiF > 1 4, 2 , (2.13)
F=,F,(ia,,iap,1,X) ,
(2.14)
Ft=,F,(1+ia;,1+iap,2,X) ,
and
x—1- At Az 4 2.15
N A, A, 15

Although the expression for the matrix element T, is
complicated, its interpretation is simple: The electron in-
itially bound, represented by a wave packet ¢,(q), is dis-
torted by the incoming projectile through C(a;, 4;). In
the final channel, both the residual target and the
projectile  distort the outgoing electron via
Vp(P)Clar, A7) A7 ' and Vp(P)Clap, Ap) Ay !, respec-
tively, on equal footing. It is important to note that Eq.
(2.6) is valid for any initial electronic state. The Fourier
transform of the initial state, namely, &,(q), provides the
initial electron momentum distribution.

Equations (2.1) and (2.5) are written in such a way that
most theoretical approximations emerge with specific
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choices of parameters.

(@) If Z;=Zp=0 in Eq. (2.1) and Z,=0 in Eq. (2.5),
we obtain the plane-wave approximation,'* which is
closely related to the binary classical theory (see the Ap-
pendix for details).

(b) If Zp, =0 in Eq. (2.1) and Z, =0 in Eq. (2.5), we ob-
tain the first-order Born approximation considered as a
direct process, as reported by Bates and Griffing."

(c) If Z;=0in Eq. (2.1) and Z, =0 in Eq. (2.5), we ob-
tain the first-order approximation considered as a capture
to the continuum process, as reported by Dettmann.®

(d) If Z,=0 in Eq. (2.5), we obtain the first-order
multiple-scattering approximation.’

(e) If k;=v in Eq. (2.5), we obtain the CDW approxi-
mation.* The initial wave function is then the peaked
version of the IA, Eq. (2.5), given by

WEPV=dy (Rp)$;(r7)D (Zp, —vlrp) . (2.16)

(f) If k;, =v—P+k in Eq. (2.5), we obtain the modified
CDW approximation.'’

(g) If in Eq. (2.16), we approximate the Coulomb dis-
tortion D'(Zp, —v|rp) by its long-distance limit,® we ob-
tain WEIS,

Z
VIS =g (Ry)¢;(rr)exp —-i—;’iln(vrp +v-rp)
(2.17)

(h) If Zp=0 or Z;=0 in Eq. (2.1), we obtain the exact
prior impulse approximation for ionization considered as
a direct or capture process, respectively. It should also
be noted that the IA for capture with Z, /v > 1 is essen-
tially equivalent to the distorted-wave strong-potential
Born approximation (DSPB).

The first seven theoretical methods cited above have
T-matrix elements that can be expressed in closed forms,
and this is a great advantage because, by making the cor-
responding approximations at the level of the integrand,
we can test our numerical procedure. When Z, /v <<1,
we can approximate k; ~v, and the present IA should
tend to the CDW.

The PW approximation is the simplest quantum model.
The T-matrix element and DDCS (in the forward direc-
tion) can be obtained in closed form (see the Appendix).
It behaves as Z3. The EIS represents the next level of so-
phistication. Its T-matrix element has closed form in
terms of the hypergeometric functions ,F;, and the
DDCS requires a numerical integration. The correct
asymptotic conditions are satisfied in both the initial and
final channels, and higher orders in Z, are included
through the distorted-wave formalism. The EIS is cer-
tainly one of the most successful models used so far in the
perturbative regime.'® The IA developed here represents
a further step forward toward dealing with high Z,. The
numerical computation is quite laborious, but it is
perhaps the only quantum-mechanical model appropriate
for ionization by multicharged ions. In the present work
we compare IA results with those of the PW (dotted lines
throughout the figures) and EIS (dashed lines) to see the
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differences with the simplest first-order and a current
distorted-wave method, respectively.
The double-differential cross section reads, in general,

do do
a0 _ .4 S 2.18
dE,dQ, fdeEedQedQ ’ ( )
where
dO' — 27TkT l |2
dE,dQ,d$} quTUz ’
(2.19)

prl=(Mp+1)" (M),

dQ=sinfdepd0, ¢ and O are the azimuthal and polar an-
gles of the scattered projectile, and dQ, =sin6,d . d 0, is
the differential solid angle of the ejected electron in the

target frame.

III. DETAILS OF THE NUMERICAL
CALCULATION

In this work we make no further approximations. All
the integrations have been carried out numerically. Some
computational limitations should be mentioned. The
three-dimensional integrals on q(@,,0,,9) were per-
formed with a relative error €, much less than 1%, 1.5%,
and 2% for ¢,, 6,, and g, respectively. The modulus
square of the T-matrix element then is obtained with
€, <<0.04. The integration on the projectile angular dis-
tribution 6 was estimated to introduce an additional 1%
of uncertainty. So we conclude that the present results
have a numerical relative error of less than 5%.

Most of the computing time is spent in the calculation
of the two hypergeometric functions ,F;. When analytic
continuation is needed, the task becomes more complicat-
ed because in this case four functions ,F;, besides the cor-
responding I' functions are required. The function ,F,
was obtained with only four significant figures. The con-
vergence of the usual series representing the hyper-
geometric function is very slow when a; and/or ap are
large. The situation is aggravated for large Z.

As Q—0, the factor A; tends to zero and there
C(ar, Ay) introduces infinite oscillations, typical of
Coulomb distorted-wave functions. As usual, to avoid
the infinite oscillations, we use a cutoff e~ 10~ instead of
the mathematical limit as €e—0-+. Note that when
Q =0, we have the momentum conservation equation for
a given value of q, namely, P—k;+q=0, or
K;+tq=K;+k;.

In this work we present DDCS results in the forward
and nearly forward directions. In this case, the integra-
tion on the projectile azimuthal ¢ is straightforward and
the task is reduced to a four-dimensional integral. This is
work that can be done with today’s computers: One
DDCS requires about 1 h of CPU time in a cluster com-
posed of a Vax 8800 and a 6000-440. A total cross sec-
tion would require a seven-dimensional numerical in-
tegration, which would be a formidable task. 7-matrix
elements in the EIS and CDW approximations have
closed forms and can be performed very quickly (say 1
sec, per DDCS) in comparison with the IA calculation.
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The theory developed here deals with purely hydrogen-
ic targets. To extend it to two-or-more-electron targets,
we need to make some approximations, viz., (i) H, targets
were considered to be composed of two hydrogenic atoms
with Z;=1.065 to satisfy the experimental binding ener-
gy of 15.4 eV. (ii) He targets were considered as two-
independent-electron targets. The initial bound state was
described by the 5-z wave function of Clementi and Roet-
ti,! with binding energy 24.9 eV, and the target change
in the final continuum state was taken to be 1.687 (Ref.
20) in order to make this distorted wave as orthogonal as
possible to the initial orbital.

Another point of interest is that the final perturbation
was used, i.e., Ve In the case of hydrogenic targets, the
use of V; or V, gives the same result, but this is not the
case when dealing with multiple-electron systems. These
approximations, which are common to most of the
theories are stated here explicitly to permit reproduction
of the present results and comparisons of the different
theories on an equal basis.

IV. BINARY ENCOUNTER PEAK
OR 2v ELECTRONS

As defined before, 2v binary electrons are those elec-
trons ejected in the forward direction, attributed mainly
to head-on collisions with the projectile. In the following
paragraphs we will be interested in three features, viz.,
saturation, shape, and position of the binary peak.

A. Saturation

Our bench mark here is the measurement of mul-
ticharged bare projectiles on H, at 1.5-MeV/amu impact
energy (v =7.746), where the binary encounter peaks at
around 3168 eV in the target frame, or 770 eV in the pro-
jectile frame, corresponding to k;~kp,=15.26. DDCS
results are presented in Fig. 1 as a function of Z, for kpy,
in the forward direction along with the experiments.®
First-order PW and Born approximations behave as
3X 1072 and 2.9X 10~ 2 Z2 cm?/eV sr, respectively, and
both account well for the data. The EIS approximation
also follows the experiments in the low-charge domain.
For Zp=9, EIS coincides with first Born results and it is
3% below the PW. For the same projectile charge, the
IA is 8% below the PW approximation. No conclusion
can be drawn because the IA is well within the numerical
and experimental uncertainties. For large Z,, the situa-
tion changes: the IA approximation exhibits a clear satu-
ration, which is also present in the EIS, but less prom-
inently. The full meaning of this departure from the Z}
behavior will be appreciated in the next Secs. IV B and
IV C when we study the shape and the peak position.

We can conclude that EIS, and even the PW approxi-
mations, can be used when Z, <15 in our case [say,
Zp<2(v/Zy) in general] and there is no need to intro-
duce more sophisticated and expensive models. These
approximations could be used then to study the binary
peak production with an increasing number of projectile
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FIG. 1. Double-differential cross sections in the forward

direction (6, =0) for ionization of H, by impact of bare ions as
a function of the projectile charge. The electron energy is 3.168
keV (or kr=15.26) and the impact energy is 1.5 MeV/amu
(v ="7.746). All quantities are in the target reference frame.
Theory dotted and dashed lines denote the PW and EIS approx-
imations, respectively, and the crosses are the calculations with
the present IA (the solid lines connecting the crosses are only to
guide the eye). The solid circles are the experiments from Ref.
8.

electrons, where the cross section was found to increase
as the total projectile charge decreases.?!

B. Shape

As shown in the last paragraph, there are no large de-
viations from the Z3 law for the binary encounter peak in
the cases studied in Ref. 8., and so we can use any first-
order theory to delineate its form. In Fig. 2(a) we show
the PW and EIS approximations for F°* on H, and com-
pare with the experiments. The agreement is good. The
IA, also shown in the figure, is about 8% below at the
maximum and exhibits a small skewness favoring the
high-energy electrons. If we normalized the experiments
to the IA (in Ref. 8 the data were normalized to the clas-
sical binary theory), it would not be possible to reach a
firm conclusion about its performance because of the ex-
perimental and numerical uncertainties.

As Zp increases, the binary peak starts to be distorted
by the projectile, and higher orders in Z, are certainly
needed. To illustrate this situation, we have chosen
Zp,=30 at the same impact velocity. Figure 2(b) shows
the PW; EIS, and IA approximations. Here, it is clear
that two effects occur: First, the peak is relatively
broadened, and second, the position of the maximum is
shifted relative to the first-order PW approximation. Re-
markably, the IA favors higher electron energies in con-
trast with the EIS prediction. The differences relate to
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; | . X .
$ 1ol SR
S V) AN |
£ - I/: Ve 4
o g N R

o Sl /A .
T r * /: N\ 7
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(eV)

FIG. 2. Double-differential cross section in the projectile
frame in the forward direction (8, =0) for ionization of H, by
impact of bare ions F°" and Zn**" as a function of the
projectile-frame electron energy. The impact energy is 1.5
MeV/amu (v =7.746). Results of Zn*** are divided by ten.
Theory as in Fig. 1, and solid circles are the experiments as re-
ported in Ref. 8 i.e., normalized to the classical binary theory).

the description of the initial channel. The EIS describes
the situation only at long internuclear distances as an
eikonal perturbation [see Eq. (2.16) above], and since the
peak is shifted towards lower energies, one can interpret
this situation as a binding energy. The IA, on the other
hand, better describes the internal region, permitting also
the distortion of the “fast” electrons [see Eq. (2.5) above].
The outcome seems to indicate an antibinding effect
which moves the enhancement towards higher electron
energies. Experiments would be welcome to test the IA
prediction. Departure from the Z3 behavior, as dis-
cussed before, should be seen in the context of the entire
peak.

C. Shift of the binary peak

Now we turn our attention to the shift

A=1(20)*— kg ), 4.1)
where k. is the momentum where the binary peak is
maximal. It is interesting to note that even though the
theoretical peaks seem very close to each other, A may be
rather different, indicating that the shift is a quite sensi-
tive quantity. Besides the intrinsic binding energy of the
initial state, which shifts the position in relation to 2v 2,
two other sources are examined next.

It the target is hydrogenlike (Z;=1"—2¢,, €, being
the binding energy of the initial state) and the Z32 behav-
ior holds, then, by using the scaling properties of the
Schroedinger equation, the shift can be displayed in a
universal plot of A/|e;| versus 1v?/[g;|. Figure 3(a)
shows the universal curve U, obtained with the simple
PW approximation (see the Appendix). The theoretical
prediction differs from the experimental results. We can
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proceed further and present the Compton profile better.
For helium atoms, that profile can be easily computed by
using Clementi-Roetti Hartree-Fock wave functions.!”
Some improvement is observed when a single z function,
curve 1Z, and multiple z functions, curve 5Z, are used, as
shown in Fig. 3(b) (the 2Z function does not introduce
appreciable differences relative to the 5Z one). We con-
clude that the shift A seems to be quite sensitive to the
description of the initial wave function. Still, the simple
PW model does not fully explain the experimental shift.

As indicated before, the previous study does not con-
sider the influence of the projectile. For large Zp, the
maximum of the peak is expected to be shifted. The use
of the EIS, instead of the simple PW, introduces substan-
tial agreement with the data, as shown in Fig. 3(b). The
tendency and magnitude of the experiments are now
reasonably described if the errors of the experiments are
considered. The EIS approaches the PW, as the velocity
increases, as expected.

The use of the IA to calculate A is very expensive in
computing time. For Zp <9, its shift (not shown) ap-
proximately equals the EIS shift. However, for large Zp,
the shift is even less than the PW shift.

Two main conclusions should be drawn from the
present discussion: first, the position of the peak varies

with the Compton profile used, and second, for relatively
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FIG. 3. Scaled shift A/|e;| vs the scaled kinetic impact ener-
gy %u2/|s,-| where ¢; is the binding energy of the electron
(e;=—0.918 for He and ¢;= —0.567 for H,). Open and solid
cirlces are the experiments corresponding to F°* on He and H,,
respectively. Dotted curve U denotes the PW approximation
using a_target charge in the initial electronic state given by
Zr=1"2lg;| (i.e., Zz=1.35 for He and 1.065 for H,). Dotted
curves labeled 1Z and 5Z are results with the PW approxima-
tion using a single (Z;=1.687) and multiple z function of
Clementi and Roetti,'” respectively. The dashed line denotes
the EIS calculation for F** on helium.
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large projectile charges the binary encounter peak is fur-
ther shifted. These effects seems to be quite important if
we are interested in a quantitative description of the
binary encounter peak, even though such features are not
immediately apparent from the DDCS.

V. RIDGE OR v /2 ELECTRONS

It is well known that electron spectra exhibit two
cusps, namely, the ECC one at the projectile velocity
k,=0 (or ky=v) and another one at k;-=0 (or kp=—v)
corresponding to electrons at rest with respect to the tar-
get. It has been found experimentally®* that there is also
a ridge in the electron distribution between these cusps.
Although later measurements showed that the ridge is
less prominent than first measured,? it is still observed as
an enhancement of the electron distribution in the for-
ward direction. It should be remarked that we do not
mean electrons with a precise velocity v /2 or any other
preferable velocity arising from the saddle region, where
the derivatives of the combined projectile and target po-
tentials cancel. These saddle electrons®* would travel in
the neighborhood of the equiforce or saddle point, which
changes with the target and projectile charges.

Figure 4 displays the DDCS for helium ionization in
the forward direction for electron velocities in between
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FIG. 4. Double-differential cross sections in the forward
direction (8, =0) for ionization of helium by impact of He**
and H™ as a function of the ejected electron energy. The impact
energy is in both cases 100 KeV/amu (v =2). All quantities are
in the target reference frame. Theory as in Fig. 1. Open and
solid triangles are the experiments of Bernardi et al.?® corre-
sponding to He?’* and H* impact, respectively. The arrow indi-
cates the position of th ECC cusp.



43 QUANTUM-MECHANICAL IMPULSE APPROXIMATION FOR . . .

the projectile and target nucleus one. The IA gives a
very good description of the two sets of data,?> corre-
sponding to H and He?* projectiles at the same impact
velocity (v =2). The EIS moderately follows the proton
results, but, as for any perturbative method, breaks down
as Zp increases. The IA, on the other hand, seems to
cope quite well with Z, =2, indicating that this theory
may be adequate to deal with multicharged ions.

Now, we investigate the ridge region of the DDCS, i.e.,
the region near 0° between the k=0 and K;=v cusps.
To that end, we extend the electron angular range. As in-
dicated in Sec. III, for electron angles other than 0° or
180°, an additional integration on the projectile azimuth
is needed, which would involve an undesirable amount of
computing time. Since we are interested in small electron
angles, the following approximation was made:

do 2 do
dE,d(, dE,dQ,dg

(p—@,=m/2), (5.1)

which is equivalent to one-point integration with a Gauss
quadrature. Equation (5.1) is correct for 8, =0° or 180°,
and it should be quite accurate for the small angles used
here.

Figure 5 shows DDCS as a function of the ejection an-
gle for two electron energies, 20 and 40 eV, correspond-
ing to the ridge region. The system here under considera-
tion is protons on helium at 100-keV impact energy. The
IA is compared with three sets of experiments®>2% and
the agreement is very satisfactory (in fact, better than ex-
pected if we take into account the fact that we are using
an approximate wave function for the final continuum
state of helium?®). The ridge is not spectacular but is ob-
servable. The ridge is present at 20 eV corresponding to
ky=1.21 a.u. =v /2 in both the IA and EIS theories. In
contrast, for the Born theory with target eigenstates, the
cross section has a minimum at 0°. Dettman’s first-order
theory and similar theories which employ plane-wave ini-
tial state and the final state of Eq. (2.1) naturally obtain
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FIG. 5. Double-differential cross sections for ionization of
helium by impact of H* as a function of the ejected angle 6,.
(a) and (b) show results for 20 and 40 eV electron energies, re-
spectively. The proton energy is 100 KeV/amu (v =2). All
quantities are in the target reference frame. Theory as in Fig. 1,
with the dot-dash curve representing a calculation with a
plane-wave initial state. Solid triangles are the experiments of
Bernardi et al.,?® solid and open quadrangles are data from
Rudd et al.?®
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the ECC cusp, but do not usually obtain a ridge. For in-
terpretive purposes, we considered an approximation!’
using the final state of Eq. (2.1) and plane-wave initial
states in the ridge region. For 20-eV electrons, we ob-
tained the distribution given by the dot-dash curve in Fig.
5(a). The distribution is essentially flat between 0° and
10°, and decreases slightly at 20°. In contrast, the IA and
EIS show a more noticeable ridge structure, although the
ridge is less pronounced for the EIS. Also, note that the
absolute value is in poor agreement with experiment
when plane-wave initial states are used.

In this paragraph we attempt to give some explanation
as to why the ridge extending to the v /2 region is most
prominant in the IA, less prominant in the EIS, and not
present in simple first-order theories. In a multiple-
scattering interpretation, we consider two steps. The
electron is first “boosted” to some intermediate state and
this is described by the initial wave function. Then, the
electron is “guided” by the final potential. Provided that
the final state includes the effects of both centers [as in
our Eq. (2.1)], the electron distribution is expected to de-
scribe the ECC cusp and also to narrow in the direction
perpendicular to the beam to produce the ridge, as ex-
plained in Ref. 22. Certainly, the IA initial state [Eq.
(2.5)], which better describes the short P-e distances,
seems to boost the electron appropriately in the first step.
The EIS initial state [Eq. (2.17)], describing only the long
P-¢ distances, seems to boost electrons with lower proba-
bility. Compare this mechanism for the two theories ap-
plied to 1s-1s charge transfer as opposed to the 1s-kpl
charge transfer relevant here. For 1s-1s charge transfer
the peaked IA includes a term (P*—v?—2iZ;v)" ! that
describes the Thomas double-collision mechanism. The
corresponding peaked EIS has an approximate form of
this term, namely, (—v2—2iZTv)_‘; thus it lacks the
Thomas peak but does incorporate the double-collision
mechanism, although with lower probability than does
the IA. The presence of a ridge extending to the v /2 re-
gion is therefore completely consistent with the multiple-
scattering interpretation. Although this analysis is given
within the high-energy distorted-wave formalism, a simi-
lar a21§1a1ysis holds in the low-energy molecular formal-
ism.

VI. ECC CUSP OR v ELECTRONS

Regarding the ECC cusp, there are a series of interest-
ing features that we would like to investigate (for a good
review on the subject, see Ref. 28). We would like to con-
centrate on two points, namely, shape and magnitude.
As is well known,'® the main behavior of the cusp is as-
cribed to the Coulomb factor around the projectile:

2map

ly(ap)?= —2map as ap—> o .

1—exp(—2map)

(6.1)

So to get more insight, we define a ““normalized” DDCS,
as follows:
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do¥ _ 1 do , 6.2) o_ doN+da¥ andf, = do¥ —do¥ 6.4)
dE,dQ, |y(ap)|* dE.dQ, 0 2 ! doN +do¥ '

which is plotted is Fig. 6 and compared with the corre-
sponding experimental quantity for 100-keV amu H" and
He?* on helium in the forward direction. We do not ex-
tend the data very near to the ion velocity to avoid deal-
ing with the experimental angular resolution, which is
known to be decisive for the yield at the cusp.!® The IA
accounts for the experiments in magnitude and shape, ex-
cept in the forward direction for He?’t impact, where it
seems to underestimate the data, for unknown reasons.
Note that the asymmetry of the cusps, i.e., more electron
production for k; <v than for k4 <v, is quite well ex-
plained by the IA. On the contrary, the EIS seems to
have the wrong asymmetry for He?* impact.

By introducing the most elementary parametrization of
the cusp,®

do?

- ~BY%Y1+
dE.d<, By(1+B,cos6p) ,

(6.3)

where Op is the electron ejection angle relative to the
beam direction in the projectile frame, we find that
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FIG. 6. Double-differential cross sections normalized to the
projectile Coulomb factor [see Eq. (6.2)] in the forward direc-
tion (6, =0) for ionization of helium by impact of (a) He** and
(b) H* as a function of the ejected electron momentum. The
impact energy is in both cases 100 KeV/amu (v =2). All quan-
tities are in the target reference frame. Theory as in Fig. 1.
Open and solid triangles are the experiments of Bernardi et al.?
corresponding to He?* and H™ impact, respectively. The arrow
indicates the position of the ECC cusp.

daiy_ are the normalized cross sections for 8, =0° and
180°, respectively, i.e., in the forward and backward
directions with respect to the cusp. For proton impact,
we can estimate very roughly from Fig. 6 that do and
do” are of the order of 0.2X107" and 0.7Xx10™"
cm?/eV sr to give a dipole parameter B8, ~ —0.55, which
compares quite well with the experimental values, —0.75
and —O0.65, of Lucas and Steckelmacher?® and Dahl,? re-
spectively for details, see Fig. 8 of Ref. 28). Similar eval-
uation for He?" impact gives 8, ~ —0.47. The IA seems
to be a successful theory for analyzing the details of the
ECC cusp with the above parametrization technique.

VII. BACKWARD DIRECTION

In this section we deal with the DDCS at backward
electron angles i.e., when the electron is ejected opposite
to the beam direction. For ejection angle 180° in the tar-
get frame, the integration on the projectile azimuthal an-
gle is again straightforward, and for slightly smaller an-
gles, approximation (5.1) can be used with confidence. In
this region Auger peaks are expected to be observed more
clearly because the direct ionization yield is small.

To our knowledge, no experimental cross section in the
present range of interest has been published using pure
hydrogenic targets; therefore, we compare again with ex-
periments performed with helium targets. A comprehen-
sive study of helium ionization by impact of protons at
large angles was published some years ago by Manson
et al.’® In that experimental and theoretical work, the
authors compared the experiments with the first Born ap-
proximation as a direct process calculated within the
independent-electron model with Hartree-Slater wave
functions for the discrete initial and continuum final
state. Two important conclusions were drawn: first, the
discrepancy of the first-order theory with the data in the
forward direction was correctly assigned to the capture
to the continuum mechanism. Second, the very good
agreement of the theory with the data at very large ejec-
tion angles was ascribed to the use of an adequate final
continuum state which accounts for the passive electron.
Previous results of Oldham,’! using a simple hydrogenic
continuum state, exhibited very large discrepancies at
very large angles. At this stage we have to remark that
the T-e interacting part, namely, ¢ (Z,,ky|r7) in our
final state \I/}’ in Eq. (2.1), is here also described by a sim-
ple hydrogenic continuum state with an effective charge
Z;=1.687. The inclusion of the Hartree-Slater final
wave function is, of course, possible, with the correspond-
ing increasing in the cost of computing time.

Fig. 7 shows DDCS versus electron energy for 100-keV
protons on helium for ejection angles 180° and 160°. As
usual, the crosses denote the IA calculations and the
dashed line, the EIS. Figure 7 also shows three sets of ex-
periments by Rudd et al.?® The structure at 35 eV is due
to autoionization of the double excited states, which is
not accounted for in the present formalism. The EIS un-
derestimates the data while the IA describes them quite
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FIG. 7. Double-differential cross sections at large angles for
ionization of helium by impact of 100-KeV H™* as a function of
the ejected electron energy. (a) and (b) correspond to electron
angles 6, =180° and 6, =160° respectively. All quantities are in
the target reference frame. Theory as in Fig. 1. Open, solid,
and half-solid quadrangles are the experiments of Rudd et al.
(Ref. 26).

well up to 20 eV. Beyond that, the IA also falls below ex-
periment. For proton impact, the IA is very close to the
first-order Born approximation (dot-dashed line in Fig.
8), calculated with the same initial and final T-e func-
tions. In accordance with Manson et al.,*® we expect
our IA to improve when the effect of the passive electron
is built into the final continuum wave function.

Backward ejection angles by impact of multicharged
ions would provide an important probe of the physics of
the problem. Figure 8 anticipates some results of interest
in relation to ionization of helium by impact of He?t,
Li*" and p ~ (antiprotons). The first-order Born approxi-
mation is well known to behave as Z} times the corre-
sponding value for proton impact (see dot-dashed line in
Fig. 8). However, the IA departs from the Zf, rule and
saturation effects are observed. Also, the IA predicts that
antiprotons with Z, =1 produce more electrons than do
protons, particularly at low electron energies. The pro-
ton and antiproton DDCS approach a common value as
the electron velocity increases, indicating that the mecha-
nism that produces high-energy electrons is a single col-
lision with the projectile.
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APPENDIX: PLANE-WAVE APPROXIMATION

The plane-wave approximation is the simplest quantum
model for ionization. The final state is described by plane
waves affected by neither the target nor the projectile,
and the initial state is the unperturbed first-order Born
wave functions. After simple algebra, one finds that the
T matrix is given by'*

-1
(217.)3/2

The DDCS can be rewritten, for convenience, as

Tpw Vp(P)§;(kr—P) . (A1)

do __277'kT
dE,dQ, 2

[ dP|7p(P)§,(kp—P)|28(P, —P,,) ,

(A2)

where P,, =(0.5k#+|¢;|)/v is the minimum momentum
transfer and ¢; is the initial binding energy. If the elec-
tron is initially in the ground state and it is ejected in the
forward direction 6, =0, the corresponding DDCS has a
simple closed form given by

dopw _ 2’72372k,

dE,dQ, 7v2P 0 ' (A3
where
1,22 ,10, 4 1 4
F&)= |-+ +—+— |—————In(1+§) ,
© £ 3¢ & & ja+ey e .
(A4)
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(Z2—P2)+(k—P,,)*
E= 5 : (A5)
Pm

In order to make a comparison with the classical
binary theory, we approximate: Vp(P)~Vp(P, ) in Eq.
(A2), so the DDCS can be written, for any 6,, as

dUPW 4kT
~ ZiJ.(V-k—P,), A6)
dEedQe UZP;:; P z(V T m) (

where J; is the so-called Compton profile
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Jiu0)= [ duld;(u)|?8(u, —u,0) . (A7)
Equation (A6) has a structure similar to the classical
theory [Ref. 8, Eq. (6)]. When k;~2v >>|¢;], the term in
square brackets in Eq. (A6) tends to the same limit as the
classical counterpart. Further, for the cases studied in
Ref. 8 we have found no appreciable differences in the vi-
cinity of the binary peak between the present quantum
plane-wave DDCS, Eq. (A6), and the classical model.?
Also, it can be proven that the first Born approximation
with target eigenstates!® approaches very closely the PW
values around the binary encounter peak, at large impact
velocities (v >>10Z ).
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