
VOLUME 43, NU BER 11 ] JUNE 199PHYSICAL REVIEW A

o)ec

. Hulskotter, and iang Dai
n ord, California 9430e ', f d Uniuersity, Stan or, ' ' 0Department ofP y

'
h sics, Stan or

ith a molecular hyd gro en targetPr ' iet'1 electron loss wa a

h K 66506
Y. D. Wang

sas State University, Manhattan,t o Physics, Kansas ta eDepartmen f
'

ed 6 December(Receive

as contraste w awit an aa w atomic targe, odrogen target, a
e Born approximat' tion.

ct of a molecular hy r g
k of the plane-wave o

We examine the effect o
-e ec r - '

electron loss wit in
roximate mo ecu a

. The

-electron-projectile e e
: (1) the use of an appches are explored:

or the two atoms in e
ron loss

Two different approac e
modified form factor or

ross sections for electron
and (2) the use of a mo i e

p
yva'

lle in tota cts are neghgi
n er atom.t e ual to twice t e o amolecule is just equa

I. INTRODUCTION

n rojectile electronpf ex eriments on pro
et-

nar
rets, t e ro

~ ~h' """'1e tile-electron interaction in
h b 1p

po
p

g

t'1 1

do 1h b en calculate onwhich, so far, as ee
as ara

he molecular na u
h b o d d

H ""'fun""n ""'d bf'"""'ff
roximate Hz wav

Wein au
atomic centers in the molecu e an

due to the molecu lar
two a om

trix elements ue
' nisn rojectile electron o

f h transition mat
'

1 ss the situatiowave function. In projec
similar.

ectron. In the center-o-- f-gtwo
the Hamiltonian, emass system, t e

units, is given by

v'H=—

(V")'+ (V")
2

1 +r' —r"r

projectile

uced mass o the rojectile. hhe first
term in

1 1 t o ithtia e
h ki i d

'
1termist e tnuc eus,

tar et electrons. e r ' v-
f h 1 1brationa g

V is the pertur a ioed. The last term V is
which is given by

II. THEORY

rference effectA. Two-center inter

electron loss from a one-The simplest casse to treat is e e
'

n to a many-electron p jelectron projec i
1

'
ummation over.t. It requires su

the ro-11g
jec g o

nuclear screening c
14tb itod d.in energies mus

in the fol-coordina e
e Z

igu
ro'ectile wi

ctron in its 1s state T e arcarries one electron in i
ith internuc ear segenen molecule wi

m for one-electron-p j- ro'ectile —H&-FICx. . o~ 1. C ordinate system or
molecule collision.

43 5907 Ph sical Society1991 The American y
'



5908 MEYERHOF, HULSKOTTER, DAI, McGUIRE, AND %AN@ 43

1+ IR' —r
1

IR"—rl

Z Z Z+ +R' R" R'+r'I
Z

IR-+. -I

where M is the reduced mass of the system, q denotes the
momentum transferred in the collision, U is the collision
velocity, and in the PWBA, f(q) is the scattering ampli-
tude given by

1 1

R'+r ' —r IR "+r"—rl
(2)

f(q)= —f dR&q/lvle, )e"" . (4)

f Ifl'dn
4~ final states

f q dq lf (q) I',
final states

(3)

Here, the first term describes the interaction between the
projectile nucleus and the target nuclei, the second term
the interaction between the projectile nucleus and the tar-
get electrons, the third term the interaction between the
projectile electron and the target nuclei, and the fourth
term the interaction between the projectile electron and
the target electrons.

Generally, the cross section can be written

Equation (3) assumes aximuthal symmetry about q. In
Eq. (4), 4I and 4; denote the initial- and final-state wave
functions which, with the neglect of any exchange in-
teraction, are given by

0 f C +(r', r")P&(r) and P, =No(r', r")P, (r )

where @(r',r") and P(r) are the internal wave functions
of the molecular target and atomic projectile and N, O

and f,i refer to the final, initial, target and projectile
states, respectively. The sum in Eq. (3) is over all final
states relevant to the collision under consideration. Sub-
stitution of Eq. (5) into Eq. (4) gives

f(q)= —f f f f dRdr'dr "dr +z(r', r")P&(r)

=fEN(q)+fEE(q) .

1 1 1 1+ +
IR '+r ' —rl IR "+r"—rl

e'q @o(r', r")P';(r) (6)

(7)

The first two terms in Eq. (2) do not contribute to the
scattering amplitude since they do not involve the
projectile-electron coordinate r and the integrals are zero
due to the orthogonality of the projectile wave functions.
The two terms in the integrand of f, due to the
projectile-electron —target-nuclei and projectile-
electron —target-electron interactions, give rise to the am-
plitudes fEN and fEE, respectively. In Appendix A it is
shown that the evaluation of Eq. (6) results in the expres-
sion

other, introducing phase factors exp(+iq p/2) with
respect to the molecular center of mass. This interfer-
ence effect is identical to that for elastic collisions. ' Sub-
stitution of Eq. (8) into Eq. (3) gives the desired cross sec-
tion for projectile-electron excitation or electron loss by
collision with a H2 molecule.

If in Eq. (3) one separates out those collisions that
leave the target in its ground state, one can write for the
case of projectile electron loss,

o =o., +o, ,

f(q)= 2
cos F (q)F, (q), (8) where

where F is the projectile form factor

F (q)= fdrPIe'q'P;(r)

and F, is the form factor for one electron in the target
molecule, briefly called the target form factor,

~, = '~ f "d.f ' '""q 'dq IF (q)I'-
0 qmin{s)

x f(4~) 'dfl ll F,(q)l'—
X2I 1+cos(q.p)]

and

(12)

F, (q) =
& e IS„,—e'q" IC, ) . (10)

2 f dEQ f q dqlF(q)l
U 0 N~o qmln{a)

In F, , the Dirac 5 function term can be traced to fEN,
and the other term to fEE (see Appendix A). The two-
center interference effect appears in the term
2cos(q p/2) in Eq. (8). As shown in Appendix A, it
arises due to the translation of one center relative to the

x f (4n) 'dQ IF, (q)l

X2I 1+cos(q.p)] .

(13)
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Here, F, without a superscript denotes F, (N=O), and

q;„and q „are the minimum and maximum momen-
tum transfers to the projectile necessary to eject projectile
electrons with kinetic energy c and, in o„to also excite
or ionize the target electrons. For heavy projectiles, q
may be set equal to infinity and q;„can be approximated
b 14, 15

q;„(,) =(I +s)/v,

q;„(,)=(I +s+b,E, )/v,

(14)

(15)

where I is the projectile-electron ionization energy and
AE, is the target excitation energy. The integrals over
the solid angle d 0 in Eqs. (12) and (13) generally cannot
be immediately performed because the molecular form
factor F, is orientation dependent. " In Appendix D we
show that only small errors are introduced in the cross
sections if this form factor is orientation averaged before
integrating over dQ .

In the literature, o., and cr, have been called the elastic
and inelastic, or screening and antiscreening, cross sec-
tions, and o., has also been recognized as a two-center
electron-electron scattering correlation. ' We use the
nomenclature of Ref. 7.

B. Closure approximation

The main difficulty in evaluating Eq. (11) lies in the
summation over excited target states in (T, [Eq. (13)].
This cannot be executed except for atomic H, because
q;„(,) depends on the target excitation energies [Eq.
(15)]. Hartley and Walters have suggested that by mod-
eling the actual target states as hydrogenic states, one can
bypass this problem, especially if further simplifying as-
sumptions are made. Typically, though, one interchanges
the summation over target states and the integration over
q in Eq. (13) after replacing AE, in Eq. (15) by a suitably
chosen average energy. Various proposals have been
made, which are discussed in Ref. 9. In the calculations
shown below, we have set the average value of AE, equal
to the ionization energy I, of H2, thus replacing q;„[,) by
the average momentum transfer

q;„(,)
=(I +E+I, )/v . (16)

Montenegro and Meyerhof have shown that a better
value for q;„~,~

can be obtained directly from the theory
by making use of an energy-weighted sum rule for iF, i

derived by Bethe. ' ' The value for q;„[,) found is prac-
tically that for ionization of the projectile by free elec-
trons of velocity u. This agrees with the fact that o., is
purely due to the target-electron —projectile-electron in-
teraction (because of the factor 5&o in fEN) and also
justifies a similar assumption for q;„~,~

made in Ref. 9.
Once the summation over target states has been inter-

changed with the integration over q in Eq. (13), closure'
can be used to yield

f dEf q dq F (q)i
0 &min(a)

X f (4m) 'dQ, [1—iF, (q)i']

X2[1+cos(q p)]

o., ' =o, o.,(v)/o~(v) . (19)

This prescription agrees well with the calculations of
Bates and Griffing" for electron loss in H +H collisions,
both below and above the threshold velocity. But the
prescription produces an artificially sharp threshold,
whereas in reality the electron momentum distribution in
the target smears out the threshold. ' The proposals of
Refs. 9 and 17 avoid any such ad hoc multiplying factor
for o., and automatically produce a smooth threshold
eA'ect through the appropriate choice of q;„~ ). Never-
theless, because of ease of programming, we have used
Eq. (19) in the calculations shown below. Also, we have
shown that the various approximate treatments for o., in
Refs. 8, 9, and 17 give very similar results as the projec-
tile atomic number increases.

C. Effective squared target charges

For the remaining discussion, it is useful to define
effective squared target charges S,(q) and S, (q) by the
equations

(20)~sa= 2
dc q dq F~q S, , q

0 ~min(s, a )

S,(q)= f (4~) 'dQ 2[1+cos(q.p)]i 1 F,(q)i—
S, (q)= f (4m') 'dQ 2[1+cos(q.p)][1—iF, (q)i ] .

(21)

(22)

The Anholt modification, Eq. (19), still has to be applied
too,

We now proceed to evaluate Eq. (20) in three ways, by
using the Weinbaum wave function and by obtaining the
molecular form factor F, through two diff'erent
modifications of the atomic form factor for H .

D. Modified Weinbaum molecular form factor

Weinbaum' has proposed a simple wave function for
the Hz ground state which takes into account atomic and

Unfortunately, the choice of a constant average target ex-
citation energy in q;„[,) produces very poor results at
low projectile velocities, because it ignores the kinematic
requirement that the target electron(s) must have enough
energy in the projectile frame to ionize the projectile elec-
tron. If the target electrons were free, o., would have a
sharp threshold at the velocity u given by

v /2~I~ . (18)

Anholt made the ad hoc proposal that o should be
modified by multiplying it with the factor o, (v)/o~(v),
where o., is the free-electron and o. the free-proton cross
section for projectile electron loss at the velocity v. Then
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ionic configurations:

No =N [c[g(r ')P(r ")+f(r ")P(r ') ]

+1t(r ')f(r ")+P(r ')P(r ")] . (23)

where b =ah, =0.3693 and F is given by Eq. (30). This is
our modified Weinbaum form factor.

Now, the integrals over dQ in Eqs. (21) and (22) can
be performed. We denote the effective squared target
charges, calculated with the Weinbaum wave function, by
S, (q) and S, (q), respectively. Then one finds

y(r) =Z3/2 zr/ 1/2

P(r)=f(r —p) .

(24)

(25)

Here, Z is an effective atomic number, to be chosen later.
The normalizing factor N is'

The coordinate system of Fig. 1 is used. Each wave func-
tion is of the form of a 1s hydrogenic wave function,

S, (q)=2[1 3aF—+(3a +b )F +(6abF 3bF—)R,

+[1 4aF—+(4a +b )F ]Rz

+ (2abF —bF )R 3+(a F aF )R—4 ],
S, (q)=2[1—(3a +b )F 6abF—R,

(36)

N= 1/I2[(1+c )(1+3, )+4ch]] '/

where b is the overlap integral"

b, = fdr f(r)p*(r)

=[1+Zp+(Zp) /3]e

(26)

where

+[1 (4a—+b )F ]R2

2abF —R3 —a F R4] (37)

F, =a (1+e'~ t)F+a 'F' .

Here, F is the H atomic form factor'

F(q)= f dr~/(r)~ e''t'=1/[1+(q/2Z) ]

and F' is the displaced form factor

F'(q) =f dr g(r)g'(r —p)e' ' .

Also,

a =(1+c +2c b, )N =0.3153,
a'= [2b (1+c )+4c ]N =0.5496 .

(29)

(30)

(31)

(32)

(33)

Analytically, F' can be reduced only to a one-dimensional
integral which depends in a complicated manner on the
relative orientation of p and q. ' We shown in Appendix
B the exact evaluation of F', but we found that the effect
of F' on the total cross section is small. Hence, we have
also evaluated it crudely for ease in computation. By
shifting the origin of coordinates, we approximate the in-
tegrand of Eq. (31), namely,

g(r)g*(r p)e' '=—g(r+p/2)g*(r p/2)e'~"—+~/ '

=q(r)q*(r)e'~ (r+P/2)g

Then, from Eq. (31) it follows that

(34)

and one obtains

F, = [a(1+e'~'~)+be "~/2]F, (35)

By minimizing the binding energy of the Hz molecule
(p=1.417 a.u. ), Weinbaum' obtained the values c=3.9
and Z = 1.193, yielding 6=0.672 and X=0. 1212.

The evaluation of the target form factor

F,(q)= fdr'dr" 40~ e'~' (28)

is straightforward, but tedious. The final result is

R„=[sin(nqp/2)]/(nqp/2), n =1,2, 3,4 . (38)

Evaluation of Eq. (20) must be done numerically. The
results are given below in comparison with results using
other expressions for the molecular form factor F, (q).

E. "Hubbell-Cooper" molecular form factor

Crasemann et ai. have shown that the photoelectric
cross section per H atom in H2 near 5 and 8 keV is ap-
proximately 1.45 times the calculated cross section for a
free H atom. Cooper explained this as being due to an
increased electronic density at one nucleus in H2 over
that at the H nucleus, which in turn affects the form fac-
tor per atom in Hz at high momentum transfers. Cooper
computed the relative increase to be 1.444, in excellent
agreement with the experimental enhancement. Inciden-
tally, the Weinbaum wave function predicts a nearly
identical enhancement, as shown in Appendix C.

Bentley and Steward computed an orientation-
averaged squared H2 form factor, from which Hubbell
et al. deduced a form factor per H atom in H2. In our
notation, this can be written

F, (q) =&2FO(q), (39)

where Fo(q) is given by Eq. (30) with Z= l. The bar on
F, indicates the implied orientation averaging. For
q ))1, this agrees with the enhancement factor found by
Cooper. But, for q ~0.87, F, exceeds unity, reaching
the value &2 at q=0. This would imply a negative
effective squared target charge if substituted into Eq. (22).
In the calculation shown below we bypass this problem
by simply setting F, = 1 whenever F, exceeds unity.
Theoretically, this is not justifiable. The Weinbaum form
factors given in Eqs. (29) or (35) have the correct limiting
values F, (0)=1.

With Eq. (39), the integration over dQ in Eqs. (21)
and (22) can be immediately performed, yielding for the
"Hubbell-Cooper" effective squared target charges
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(40) Stewart effective squared target chargesSH=2(1 &—2FO) (1+R2),
S, =2(1—2FO )(1+R2 ), S, =2(1 g—FO) (1+R2),

S, =2[1—(gFO) ](1+RE),
(41)

(46)considerably simpler than Eqs. (36) and (37). Here, Rz is
defined in Eq. (38). Results using these relations are
presented in Sec. III. In these calculations, we have used
the Cooper factor 1.444, rather than &2, in Eq. (39).

F. "Stewart" molecular form factor

The behavior of Eq. (39) at low q values stimulated us
to search for a more satisfactory target form-factor ex-
pression. Hubbell et al. list an orientation-averaged in-
coherent scattering function S;„, per H atom in Hz, cal-
culated by Stewart. By using the relation

(42)

where R2 is defined in Eq. (38).
The Hubbell-Cooper and Stewart models both make

use of a form factor F, which really is the square root of
an orientation-averaged squared form factor ( ~F, ~ ) [see
Eqs. (32) and (31), respectively, in Ref. 25]. In Appendix
D we discuss what error may be introduced by this pro-
cedure. We find that, had we used an orientation-
averaged "Weinbaum" squared form factor, the
electron-loss cross section would be lowered by less than—15% for Z = 1, by less than -7% for Z =2, and pro-
gressively less for higher values of Z, in the region of va-
lidity of the PWBA.

based on Eq. (31) of Ref. 25, we have computed the pro-
portionality factor g(q) in the expression

F, (q) =g(q)FO(q), (43)

g(q) = 1+k, /[1+ (k&/q )cos(k3q )], (44)

with k, =0.444, kz=3. 8, k3=0.673, gives a fit within
2% up to q=3. 5 to Eq. (42). Above q=3. 5, Fo(q) lies
below 0.1, so that the small deviation shown in Fig. 2 is
of no importance in the final cross section.

Using Eq. (43), one finds from Eqs. (21) and (22) the

U

0 16—
CC

CC0 1.4—
0
LL

1.2—0
LL

I I I I I I I I I I I I I

1.0
0.1

L

1.0

q (a.u. )

10

FIG. 2. Proportionality factor g(q) between molecular and
atomic hydrogen form factors calculated using tabulation in
Ref. 26. The curve gives the fit represented by Eq. (44). The
dashed horizontal line is the Hubbell-Cooper value 1.444.

where Fo(q) is again the atomic form factor for a free H
atom, given in Eq. (30) with Z =1. Figure 2 shows the
factor g (q). At low q, it has the value unity assuring that
F, (0)=1, and at high q it appears to oscillate toward the
Hubbell-Cooper value 1.444, discussed in Sec. II E.
Hence, we believe that Eq. (43) represents a theoretically
acceptable improvement over Eq. (39). By trial and er-
ror, we have found that the relation

III. RESULTS AND COMPARISON
WITH EXPERIMENT

Using the models presented in Sec. II D to Sec. II F, we
have computed the electron-loss cross section [Eq. (11)]
for one-electron projectiles scattered by Hz. For the
Weinbaum, Hubbell-Cooper, and Stewart models, respec-
tively, we denote the cross sections by cr, o, and cr .
We have searched the literature in order to confront the
theory with two types of experimental data: (1) the ratio

r2, =o(H2)/cr(H ) (47)

A. EfT'ective squared target charge

The three models we have computed differ only in the
effective squared target charges S, and S, . These are
shown in Figs. 3(a) and 3(b). The wavy nature of the
curves is due to the interference effect. At high q, the
three models converge. At low q, they differ appreciably,
with the highest suppression (largest F, ) occurring for the
Hubbell-Cooper model. We now examine which region
of q is relevant.

The integrations over q in the cross sections o., and u„
Eqs. (21) and (22), have the lower limits q;„~,~, Eq. (14),
and q;„~,~, Eq. (16). The lowest values for these limits,

for electron loss in molecular and atomic hydrogen and
(2) the absolute cross section o (H2). We thought that the
ratio rz& is particularly significant since it might cancel
out possible defects in the PWBA theory as well as some
systematic experimental errors. Unfortunately, we have
found measurements of rz, only for the one-electron pro-
jectiles H and Li +.

For the calculation of cr(H ) we have used Eq. (12) for
0., and the closure expression analogous to Eq. (17) for
o„with F, (q) replaced by Fo(q) and 2(1+cosp.q) re-
placed by unity. Also, we have applied the Anholt
modification, Eq. (19). This keeps the theoretical treat-
ment near the electron-electron threshold [Eq. (18)] con-
sistent between o(H2) and o.(H ). In principle, a better
calculation is available for o(H ) by using the Bates-
Grifting expressions.
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Ss
2

(3
CL

C3
I—

CC

I—
c3 0
CC~ Sa

)
I—

LU

LL

I
)

I

(a)

units of the electron-electron threshold velocity (which is
just the projectile E-shell Bohr velocity)

1/2 1/2Z (51)

where g is the ratio of the actual projectile kinetic energy
to that at the electron-electron threshold. Then the cri-
terion (50) reduces to

g &)Z (52)

Hence, for the H +H electron-loss cross section, the
PWBA should break down below some bombarding ener-

gy considerably higher than 0.02S MeV/u. This agrees
with the finding of McClure that the Bates-Griping cal-
culation deviates from the data below -0. 1 MeV/u.

Briggs and Taulbjert reasoned that for total cross sec-
tions the validity criterion for the PWBA is not as strict
as for di6'erential cross sections. They find that, if
Z ))Z„ the condition (52) is relaxed approximately to

i)»Z, '/200 . (53)
0 2 4 6 8

MOMENTUM TRANSFER CI (a.u. )

q;„~,~
and q;„~,~, occur for zero electron energy in the0 —0

c.m. frame, c.=0, and are given by

q;„(,i =I /u, q;„(,i =(I +I, )/u, (4g)

where I and I, are the projectile and target ionization
energies, respectively. Let us assume a typical projectile
velocity to be the electron-electron threshold velocity
given in Eq. (18), u,h=(2I )' . Then, with I =Z /2
and I, =Z, /2, one finds

q;„(,) =Z /2, q;„(,) =(Z +1)/2Z„. (49)

(Actually, for Hz, Z, =1.15.) Since below we discuss re-
sults for Z =1 to 8, from Fig. 3 we expect quite diferent
cross sections for the three models at low Z, but similar
results at high Z, especially since the 1/q factor in the
cross-section expressions emphasizes the lowest q region
above q;„ofS(q).

B. Region of validity of the PYVBA

Before confronting the cross-section models with ex-
perimental data, it is useful to have some idea in which
bombarding-energy region the PWBA is expected to be
valid. Briggs and Taulbjerg have discussed this topic in
detail. The most restrictive condition is

Z~Z, /u ((1 . (50)

It is convenient to express the projectile velocity U in

FIG. 3. Effective squared target charges: (a) for screening
and (b) for antiscreening part of electron-loss cross section. The
short-dashed, solid, and dash-dotted curves represent the Wein-
baum, Stewart, and Hubbell-Cooper models, respectively. The
latter is cut off below q =0.87 for reasons discussed in Sec. II E.

For 0 +H2 electron loss, for example, the PWBA
should then be valid down to bombarding energies lying
far below the electron-electron threshold.

C. Loss cross-section ratio for H2 and H targets

Figures 4 and S present our model calculations and the
corresponding data ' for the cross-section ratio r2&

[Eq. (47)] for Z =1 and 3. As noted in Sec. III B, for
Z =1 one would expect the PWBA to break down far
above g=1 and this is borne out. The energy corre-
sponding to g = 1 is marked by an arrow in Fig. 4 and in
all subsequent figures. Qualitatively, the dip in rz, at low
energies is reproduced by the theory, but this may be for-
tuitous. The very low value of r2, for the Hubbell-
Cooper model is caused by our artificial cutoA of the in-
tegral over q in o(Hz) whenever F, ) 1, discussed in Sec.
II E. This suppresses the important low-q contribution to
(r(Hz). At energies above 0.1 MeV/u, experiment indi-
cates that r2j lies somewhat below 2 in agreement with
the Stewart model, but measurements at larger bombard-
ing energies would be desirable.

For Z =3, the Stewart and Hubbell-Cooper models
give similar results (Fig. 5). The Hubbell-Cooper result is
not particularly low compared to the others, because now

q;„ is larger than 1.5 [see Eq. (49)] which assures that
the artificial cutofF for F, &1 does not come into play.
The experimental data ' for r2& rise to a value of 2
whereas two models indicate lo~er values. We note
though that for a whole range of many-electron projec-
tiles (C+, C +, C +, B+, B +), the experimental data
rise slowly toward 2, but stay below this value at the
highest bombarding energies measured ( —0.2 MeV/u).
Since one would expect the PWBA validity criterion to
lie between Eqs. (52) and (53), the large deviation between
theory and experiment at lower energies is not unexpect-
ed.

For completeness, and to stimulate measurements, we
show in Fig. 6 the calculated values of r2, for He+ pro-
jectiles. We have also computed r 2, for C + and Q +
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FIG. 6. Same as Fig. 4, but for He+ projectiles. No data are
available.

PROJECTILE ENERGY (MeV/u)

FIG. 4. Ratio r f Hz& of H projectile electron-loss cross sections
for H, and H targets. The short-dashed, solid, and dashed-
dototted curves represent the Weinbaum, Stewart, and Hubbell-
Cooper model results, respectively. The arrow on the abscissa
gives the electron-electron threshold energy (q = 1). The
squares give data from Ref. 29, the circles and triangles from
Ref. 30. For clarity, some data points have been omitted. To be
consistent with the theory, the lower-energy data have been
corrected for capture.

projectiles. All the models give the value 2, within 10%
for C + and within 2% for 0 +.

D. Loss cross sections for Hz targets

tion, in some cases we show only some of the available
data.

In Fin Fig. 7 we see the suppression occurring in the
Hubbell-Cooper model for Z =1, discussed in Sec. III C.
The other two models lie above the data. ' We already
noted above that the PWBA loses its validity below O. l
MeV/u, i.e., g=4, in accord with criterion (52), applic-
able here.

For Z~ =2 (Fig. 8), the models lie closer to the
data"-" th an for Z = 1, although at the higher energies
wide variations are found in the measurements (see Ref.
37). Here, discrepancies between theory and experiment
are seen below g=2, as the validity criterion moves to-

Figures 7—11 show comparisons of the three models
with available data for o(Hz). For clarity of presenta-
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FIG. 5. Same as Fig. 4, but for Li + projectiles. The data
points are from Ref. 31; only the recent, more accurate, data are
shown except for the lowest-energy point (square).

FICz. 7. Electron-loss cross section in H2 target for H projec-
tiles. The short-dashed, solid, and dash-dotted curves are the
Weinbaum, Stewart, and Hubbell-Cooper model re lte resu s, respec-
rve y. e long-dashed curve is the screening cross section o,

for the Stewart model. The triangles give data from Ref. 34, the
circles from Ref. 33. The arrow on th bon e a scissa gives the
electron-electron threshold energy (g = 1).
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tional to F are very small. The speculation of Anholt
et al. that at high-q values the H momentum wave
function in H2 is unaffected by molecular effects, cannot
be correct in view of the Cooper enhancement factor.

IV. DISCUSSION AND CONCLUSIONS

The three models we have investigated enhance the
ground-state molecular form factor in H2 at high rnomen-
tum transfers q and hence, in principle, would be expect-
ed to lower the effective target charge S(q) and the
electron-loss cross section, compared to twice their value
for free H atoms. A lowering of the cross-section ratio is
found experimentally at least for H projectiles in the re-
gion of validity of the PWBA. Unfortunately, for low-Z
projectiles (Zp (4), the low-q behavior of the ground-
state molecular form factor F, (q) is much more impor-
tant than the high-q behavior. Here, the different models
give quite different results. At low q, the Hubbell-Cooper
model tends to make F, (q) like that of an atom with &2
electrons, ' whereas the Weinbaum model makes F,
look like that of an atom with one electron. The Stewart
model lies in between, but at q =0 also gives the hydro-
genic value. As a consequence of the interference effect
in H2, discussed in Sec. IIA, the value of S(q) can lie
even above twice the H atomic value in the critical q re-
gion just above q;„, giving a cross-section ratio of r2,
greater than 2.

The model calculations provide mixed answers for the
absolute molecular target cross sections in the Z region
below 4, in which molecular effects should make them-
selves felt. Overall, the Hubbell-Cooper model lies
closest to the experimental data points, but for Z =1 our
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APPENDIX A: TWO-CENTER
INTERFERENCE EFFECT

In Eq. (7), we first consider fEN(q). Making use of the
"Bethe integral"'

iq.R

iR —r/

and substituting

4m;q. ,e
q

(A 1)

R=R '+p/2=R "—p/2,
one finds

artificial suppression of q values for F, ) 1 decreases the
cross sections too much. For Z =2, this model falls
somewhat below and for Z =3 somewhat above the data.
For Z =6 and 8, the data cannot decide between the
models.

We conclude that our calculations have met with some
success and show that molecular effects should be taken
into account in the electron-loss cross sections for one-
electron projectiles with Z ~4. Experimental data for
r2, and (r(H2) with H, He+, and Li + projectiles at
higher bombarding energies would be helpful in guiding
future theoretical developments in this area.

iq.R ' iq-R"
fEN(q)= 2

e' ' f fdR'dr@*(t)f. . . 40()(;+e ' ' 'f fdR "dr4zit(f*,
q ~R '+r~ ~R "+r

iq. (p/2) d @e e iq. r&p + —iq (p/2) d
. @e e iq r@ y

4m
2 O I o (A2)

where we have abbreviated the integrals over the three electron position vectors by dr Equation (A. 2) can be further
simplified by making use of the orthogonality of the target wave function. The final result for the electron-nucleus
scattering amplitude is

fEN(q) = 5i((ocos F (q)
8~ q'c

q 2
(A3)

where 5 is the Dirac 5 function and Fp(q) is the projectile form factor defined in Eq. (9). As p approaches zero, the
scattering amplitude reduces to the result for a target atom with twice the nuclear charge.

Similarly, one finds for the electron-electron scattering amplitude

4m iq.R' iq R"
f (q)= e'q'p"' J—fdR dr 'a „*yf*,', e,y, e-"'p"—' f f dR "dv4&" f R'+r' —r

4m. —F ( )e' 'P/ ' dr'dr "q&*e'q' @ —F (q)e ' ' ' dr'dr "@*e'q' @q N 0 p N 0 (A4)
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By symmetry, the two spatial integrals in Eq. (A4) are
identical so that the two terms can be combined. Adding
the two scattering amplitudes fE~ and fEE gives Eq. (8).

1

F, =(1+e'q'e) A+ dx e" 'q eB(x),
0

where 2 =aF and

B(x)=a'2Z x(1—x )(3/n +3p/n +p /n3)e

with

n =Z +x(1—x)q

(Bl)

By substituting the above "exact" Weinbaum form fac-
tor into Eqs. (21) and (22), we can obtain the efFective
squared target charges numerically and make comparison
with the approximate analytical expressions in Eqs. (36)
and (37). Defining the following auxiliary functions:

Wo= jo(qp),

Wi =jo(2qp»

W2 =jo(qp(1 —x )),
W3 =jo(qp(2 —x ) ),
W4= jo(qpx ),
W, =jo(qp(x —y )),
W6 =jo(qp(1+x —y ) ),
W7 =jo(qp(1 —x +y ) ),
W8 =jo(qp(1+x ) )

and

S, =2(1+Wo),

S =2&(3+4WO+ W, )+2f dx B(x)(2W2+ W, + W4),

S,=A'(6+8W, +2W, )+f dx f dy B(x)B(y)
0 0

X(2W~+ W6+ W7)

+2W f dxB(x)(7W, +2W, +6W, +W, ),
0

APPENDIX B: EXACT WEINBAUM FORM FACTOR
AND EFFECTIVE SQUARED TARGET CHARGES

Using Cheshire's Fourier transform technique, ' the
displaced form factor in Eq. (31) can be reduced to a
one-dimensional integral and the Weinbaum form factor
can be expressed as

C9
CC

(3
CC

I—
CI 0—

(b)

2

)

0 I

0 2 4 6 8

MOMENTUM TRANSFER q (a.u. )

FIG. 12. Comparison of exact and approximate e6'ective
squared target charges: (a) for screening and (b) for antiscreen-
ing. Solid lines, exact calculation given in Appendix 8; dotted
lines, approximate calculation by Eqs. (36) and (37).

error is less than 10%. The efFect on the total cross sec-
tion for Z =1 is less than 5% and even less for higher
values of Z .

le,(r'=O) I'=(X'Z'/~) IGP(r")+Hf(r") I', (C2)

APPENDIX C: ELECTRON DENSITY
AT ONE NUCLEUS IN H2 IN WEINBAUM MODEL

In terms of the Weinbaum wave function' given in
Eq. (23), we wish to compute the density 5(H2) at one nu-
cleus in the H2 molecule, say, the lower one in Fig. 1.
This is the probability that one electron, say, the lower
one, is at this nucleus and the other one anywhere else:

n(H, ) =2f« "l@o(r=O)I' . (Cl)

The reason for the factor 2 is that the other electron in
H2 can also be at the lower nucleus, and its partner any-
where else. Making use of Eqs. (24) and (25), we find

the efFective charges can then be written as
where Vis given by Eq. (26) and

(B2)S, (q)=S, —S +S
S, (q)=S, —S

G =c+e )', H=1+ce (C3)
(B3)

Using the definition of the overlap integral 6 in Eq. (27),
one now finds

5(H~)=(2N Z /vr)(G +H +2GHb, ) . (C4)

From Eq. (24) one sees that with our normalization the
density at the nucleus of a free H atom is given by

In Fig. 12 we compare numerical results obtained by
Eqs. (B2) and (B3) (solid lines) with Eqs. (36) and (37)
(dotted lines). Except near q =2, the error due to the use
of the approximate form factor is much less than 5'7o for
both screening and antiscreening cases. Near q =2, the
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FIG. 13. Squared target charge for screening. The short-
dashed curve is for the Weinbaum model, without separate
orientation averaging of the squared form factor, as rn Fjg. 3(a).
The solid curve is for the separate orientation averaging de-
scribed in Appendix D. For S„separate orientation averaging
produces a change of 1% or less.
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5(H )=1/m. , (C5)

so that the density ratio 5(H2) /5(H ) is immediately ob-
tained from Eq. (C4). With the values for 5, c, Z, b„and
X given in Sec. IID, one finds N =0.0146, G=4.085,
H=1.720, giving 5(H2)/5(H )=1.45.

FIG. 14. Electron-loss cross section for H projectiles in H2
target, according to the Weinbaum model. The short-dashed
curve is without separate orientation averaging of the squared
form factor, as in Fig. 7. The solid curve is for the separate
orientation averaging described in Appendix D.

APPENDIX D: USE OF ORIENTATION AVERAGED
FORM FACTOR

In the integrands of Eqs. (21) and (22), the interference
terms and the form-factor terms can both depend on the
angle between q and p, as can be seen from the phase fac-
tors in Eqs. (29) or (35) in the Weinbaum model. Hence,
one would expect different values for the effective charges
and total cross sections, depending on whether the in-
terference and form-factor terms are separately averaged
over dQ or not. One would expect that this dependenceP
is strongest if q;„&1/p=0. 7 a.u. , and progressively
weakens as q;„exceeds this value. In view of Eq. (49),
this means that separate orientation averaging may be
important for Z =1, but then should become less and
less important as Z increases.

We noted at the end of Sec. IIF that the Hubbell-
Cooper and Stewart models actually use orientation-
averaged squared form factors, so that the interference
term could be orientation averaged separately. We now
apply the Weinbaum model to check what errors may be
introduced by this (incorrect) procedure in the effective
squared target charges and in the total cross section. Us-
ing Eq. (35), the orientation-averaged squared form factor
is given by the relation

((F, (
)/F = f (dy/2)(a(1+e'~~~)+be'qi'~~

)—1

(D 1)

where y =cosO, 0 being the angle between p and q. The
evaluation of the integral yields

2a (1+R2)+b +4abR, , (D2)

where R„ is defined in Eq. (38). The square root of this
expression can now be substituted for g(q) in Eq. (43) and
one then finds orientation-averaged squared target
charges analogous to Eqs. (45) and (46).

In Fig. 13 we compare the Weinbaum model values of
S,(q) and S,(q) using the orientation-averaged factor
F =(( ~F

~
) )' and using the correct unaveraged factor

of Eq. (35). As expected, the effect of orientation averag-
ing appears only at low-q values. For S„the difference is
less than 1% over the entire range of q.

In Fig. 14 we show the effect of orientation averaging
on the electron-loss cross section for H projectiles. We
see that orientation averaging results in a lowering of the
cross section by less than 15% in the relevant energy re-
gion. (We recall that here i)=4 is approximately the
lower limit for the validity of the PWBA. ) A similar cal-
culation for Z =2 shows that orientation averaging
lowers the cross section by less than 7%, and progressive-
ly less for higher values of Z . For differential cross sec-
tions the situation is completely different. Here one finds
a strong orientation dependence, e.g., up to 40/o for 1-
MeV/u Li ++H2.
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