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The cross sections for one- and two-photon detachment of H with excitation of the degen-
erate H(2s) and H(2p) levels are calculated within an adiabatic hyperspherical representation.
Both the partial cross sections, o(2s) and o(2p), and the photoelectron angular distribution
asymmetry parameters are obtained. Our one-photon detachment results are dominated by the
P shape resonance feature above threshold, which is well known from prior theoretical and

experimental work, with which our results are compared in detail. Our two-photon detachment
cross sections and angular distribution asymmetry parameters exhibit a half-cycle of dipole-
field-induced oscillation in the energy region from the H(n=2) threshold to approximately 34
meV above threshold. The occurrence of a half-cycle of oscillation with significant amplitude
over a 34-meV energy region above the H(n = 2) threshold is due to two circumstances unique
to this two-photon process: first, in contrast to the strongly suppressed oscillations in the S
and P attractive dipole-field channels for the H(n=2)-e system, the amplitude of oscilla-
tion in the channel having D symmetry is not strongly suppressed above threshold; second,
electric dipole selection rules for the two-photon process do not permit population of the in-
tense P shape resonance located above the H(n=2) threshold, which would otherwise obscure
the half-cycle of dipole-field-induced oscillation. For these reasons, the process of two-photon
detachment of H is a favorable one for observing this dipole-field-induced oscillation above
threshold, which has yet to be observed experimentally in any process.

I. INTRODUCTION

The low-energy states of the fundamental H(n = 2)-
e three-body system have been of longstanding the-
oretical and experimental interest, for two reasons es-

pecially. First, the dipole interaction between the de-

tached electron and the degenerate H(2s) and H(2p) en-

ergy levels can result in an attractive long-range poten-
tial in particular channels. Processes involving tran-
sitions to these channels have been shown theoretically
to have finite cross sections at threshold, which oscillate
above threshold. ~ Second, one of the P' channels of the
H(n = 2)-e system has a well-known shape resonance
approximately 18 meV above the detachment threshold. 3

The influences of these two effects have been analyzed
for a number of processes involving the H(n = 2)-e
system: Low-energy electron impact excitation of H has
been treated by Gailitis and Damburg and by Macek
and Burke, & ~ among others. Single-photon detachment
of H with excitation of H has attracted a number of
theoretical studies3~b& ~ 5 because this process focuses on
the iP' shape resonance feature and because electron
correlation is essential for its description. Additionally,
detailed experimental data for this process have been
obtained. Lastly, the infIuences of the long-range at-
tractive dipole field and of the ~P' shape resonance on
fast H detachment collisions with rare-gas targets have

been analyzed recently by Liu and Starace. s

The occurrence of Gailitis-Damburg oscillations~ has

never been observed experimentally above the H(n=2)
threshold. Indeed, such oscillations in the total cross
section are predicted to be strongly suppressed above
threshold Liu and Starace &~& ~ & pointed out that
such oscillations are in general not suppressed in dif-

ferential cross sections, which are sensitive to phase
interference efI'ects between difI'erent channels. They
predicteds(a) sizable dipole-field-induced oscillations in
the angular distributions for collisional detachment of H

accompanied by excitation of H(n=2). However, for this
process the intense shape resonance feature at 18 meV
above threshold in one of the P' final-state channels ob-
scures these oscillations in the meV energy region. These
predicted sizable oscillations can only therefore be ob-
served in the collisional detachment process in the exper-
imentally inconvenient energy region below 1 meV above
threshold. A major result of this paper is the quantita-
tive prediction of a half-cycle of sizable Gailitis-Damburg
cross-section oscillation2 over an experimentally accessi-
ble energy region of tens of meV for the process of two-
photon detachment of H with excitation of H(n = 2).

More specifically, in this paper we employ an adiabatic
hyperspherical representation 2 to obtain theoretical re-
sults for the one- and two-photon detachment cross sec-
tions for H with excitation of H(n=2), i.e. ,

: H(n= 2)+e

: H(n=2)+e
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We also obtain the corresponding photoelectron angular
distributions. The advantage of photons as probes of the
H(n = 2)-e system is that only a few final states, having
particular symmetries, are excited. Thus, the photode-
tachment process (I) involves only iP' final states; con-
sequently, the cross section near threshold is dominated
by the P' shape resonance. The two-photon detachment
process (2), on the other hand, populates only S and
D final states due to electric-dipole selection rules; con-

sequently, this process permits a better demonstration
of long-range attractive dipole field effects —in particu-
lar, of Gailitis-Damburg oscillations —since, in contrast
to collisional detachment processes, ~~& these eA'ects are
not obscured by the intense P' shape resonance feature.
Indeed, a half-cycle of oscillation in both the 2s and 2p
partial cross sections and in the corresponding angular
distributions is shown to be observable over the energy
range from 0.5 meV to approximately 34 meV. In the
partial cross sections, these oscillations are due essen-
tially entirely to an oscillating amplitude for transition
to one of the D' final-state channels. The magnitude
of this oscillation of the transition amplitude is shown to
be sizable, in contrast to all other cases that have been
considered so far. In the angular distributions, these
oscillations are due primarily to phase interference ef
fects similar to those considered in Refs. 9(a) and 9(b),
in which the energy dependence of the analytically deter-
mined phase shift arising from the long-range dipole field
was shown to be rapidly decreasing above threshold.

We have chosen to carry out our calculations in the adi-
abatic hyperspherical representation because of its utility
in describing the states of the H(n = 2)-e system. First,
this represent, ation incorporates many of the electron cor-
relations that are important for this system. In particu-
lar, Lin has shown that the key Feshbach and shape res-
onance features of the P' final states may be understood
immediately upon observing the structures of the three
i P' hyperspherical radial potentials for this system. Sec-
ond, this representation describes correctly at asymptotic
separations the eA'ects of the long-range dipole interac-
tion between the degenerate H(2p) and H(2s) states and
the detached electron; i.e. , at large separations this dipole
interaction is diagonal in the adiabatic hyperspherical
representation.

Our results using the adiabatic hyperspherical repre-
sentation may be summarized briefly as follows. For the
photodetachment process (I), our cross sections are in

I

reasonable agreement with the relative experimental data
of Bryant and co-workers. All theoretical calculations,
however, difkr significantly from one another in their
predictions for the height, width, and energy position of
the iP' shape resonance feature. Our predicted photo-
electron angular distributions, however, are in reasonable
agreement with the predictions of Hyman, Jacobs, and
Burke. 4 For the two-photon detachment process (2), as
already stated, our cross sections demonstrate the oc-
currence of a half-cycle of significant Gailitis-Damburg
oscillation in the experimentally accessible energy re-
gion within a few tens of meV of the detachment thresh-
old. These oscillations occur in both the H(2s) and H(2p)
partial cross sections as well as in the corresponding pho-
toelectron angular distribution asymmetry parameters.

In Sec. II we summarize our theoretical formulation.
In Sec. III we present our cross sections and angular
distributions for single-photon detachment of H with
excitation to H(n=2) and make comparisons with ex-
perimental and other theoretical results. In Sec. IV
we present our cross sections and angular distributions
for two-photon detachment of H with excitation to
H(n=2). In that section we also discuss in some detail the
conditions that determine whether the Gailitis-Damburg
oscillations2 will be observable and show that those con-
ditions are favorable for the two-photon process that we
consider. Finally, in Sec. V we present our conclusions.

II. THEORETICAL FORMULATION

The wave functions employed in the current calcula-
tions have been described in detail in Ref. 9(b). Further-
more, the adiabatic hyperspherical method has been pre-
sented in detail by several authors. Finally, for-
mulas for the calculation of electric dipole transition ma-
trix elements using adiabatic hyperspherical wave func-

tions have been published. In this section, therefore,
we present only the key formulas needed to understand
our theoretical approach and refer the interested reader
to these other references for relevant details.

A. The final-state wave functions

The incoming-wave-normalized wave function describ-
ing a final state in which asymptotically the H atom is
excited to its nlm, level and the detached electron departs
with relative momentum k is

Here 4
& is an incoming-wave-normalized hyperspheri-pk

cal wave function for the channel p; this wave function
is dependent on the hyperradius R —= (ri~ + r~) ~~ and
the five angular variables n = tan (r2 ji i), ri, and rg.
(& is an analytically determined phase characteristic of
the channel p. (Both @„& and (& are described in more

detail below. ) The matrix Al
&&&, l

transforms the dipolep, (tt )
field channels p to the independent electron channels ll'
characterized by the orbital angular momenta l and l'
of the H atom electron and the detached electron, re-
spectively. The channel index p designates implicitly the
total orbital and spin angular momenta, LS, of the final
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state, although this fact is not made explicit in Eq. (3) for
simplicity of notation. Similarly, the dependence of the
wave function 4 I, on the magnetic quantum numbers
M and M~ corresponding to I and S is also suppressed.
The Clebsch-Gordan coefficient projects the total orbital
angular momentum state ( LM~ onto the independent
electron state ~tmt'm' ), while the spherical harmonic
projects the detached electron state ( I'm'~ onto the state
having momentum direction k. Lastly, the prefactor k

in Eq. (3) is needed to ensure normalization of the wave

function in Eq. (3) to a b function in electron momentum
k.

1. Adiabatic hyperspherical repreaentation

The incoming-wave-normalized hyperspherical channel
wave function 4„& in Eq. (3) is given by

4„&(R,n, ri, r2) = (R cos n sin n) 4&(R, n, ri, r2)F&y(R)e (4)

The prefactor on the right-hand side is a weight factor.
4& is the adiabatic hyperspherical angle function, which
is a function of the five angles n, r~, and r2 and is de-
pendent only parametrically on R. It satisfies an an-
gular equationiz i" is having eigenvalue U„(R). Here

p labels a particular solution of this angular equation
for specified values of total orbital and spin angular mo-
mentum. F„i,(R) is an energy-normalized radial func-
tion of R for the pth channel and q& is its phase shift,
which is defined later below. In general, the radial
functions for diA'erent channels p satisfy a set of cou-
pled radial equations; however, in the adiabatic
approximation 2 all but the diagonal coupling matrix el-
ements are dropped so that each F&I.„(R) satisfies a one-
dimensional radial Schrodinger equation

2
—V„(R)+k ~ F„y(R) = 0.6 d2

In Eq. (5) the efFective radial potential V„(R), which
characterizes the dynamical features of a particular hy-
perspherical channel p converging to the nth level of the
H atom, is defined by

(6)

where (4&, d24„/dR2) is the R-dependent diagonal cou-
pling matrix element for the pth channel. Since the
long-range dipole interaction due to the degeneracy of
the H(n=2) statesi is diagonal in the hyperspherical
representation, the asymptotic form of the eA'ec-

tive radial potential is

V„(R) —A„(A„+ 1)/R

Here A& is an eA'ective orbital angular momentum, which
may be real or complex depending on the channel p. The
effective potentials V&(R) that are important for pro-
cesses (1) and (2) are shown in Fig. 1. Those poten-
tials that converge asymptotically to the H(n=1) level are
shown in Fig. 1(a); those that converge to the H(n=2)
level are shown in Figs. 1(b) and l(c). The channels
p in Fig. 1(a) are identified uniquely by their total or-
bital and spin angular momenta; those in Figs. 1(b) and

l(c) require additional specification. For these latter po-
tentials we employ abbreviated labels corresponding to
Lin's classification of doubly excited states. Note fi-
nally that the adiabatic P+ and P—curves have a
sharply avoided crossing near R 13.3 a.u. , implying
a very strong interaction between them at this value of
R. Following others, ' ' we take this strong interac-
tion into account by replacing the adiabatic potentials by
the corresponding diabatic potentials (near R 13.3 a.u.
only) and ignoring any residual interaction between the
potentials. We emphasize that this use of the diabatic
approximation is limited to these two potentials. All of
the six other potentials (as well as P+ and P poten-—
tials outside the R 13.3 a.u. region) are calculated by
solving the adiabatic hyperspherical equations.

2. Asymptotic forms

The energy-normalized radial wave functions tend
asymptotically to

F„p(R) —(2/m k)' sin(kR +g„+g„), (8)

where g& is the phase shift in the pth channel and („ is
an analytically determined phase dependent on the efFec-
tive angular momentum A& characterizing the long-range
dipole interaction of the H(n = 2)-e system. is For real
values of A&,

(„—:—
~ xA„, (9)

while for complex values of A&, one may write, quite
generally,

1
2 + 2CIp

in which case

(„—:—4iv+ 0„,
where

i tan[n„ ln(k/2) + xqj
tanh(m n„/2)

and

xp
—al'g I (1 —lo'p, )

The angular functions tend asymptotically to
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4„(R,cr, ri, r2) — + I2 11 ~ +nl(12)3 ll'LM(&2 &1)A1 (ll'), p, .
)

(14)
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2
(1)

a(' a» .e* . ) .e; al'o)
i=1

= ( g„&~„~R(coso' cos Hi + sin n cos Oz) ~@p &

= k i ) ) Yj ~ (k) ( lml'm'~IM )X„Il„(,
ll, m' L,M

where X„&&&, is the amplitude for a one-photon electric(1)LM
7

dipole transition from the initial state to a final state
of angular momentum I,M characterized by the hydro-
gen atom in the nl state and the detached electron having
wave number k and orbital angular momentum jt'. Specif-
ically,

R„a aa
=—) A( &»oe

+"' "J "dR Foe(R)RF»(R)1»o(R),
IJ 0

(18)

where the result of the angular integrations is given by I&p(R),

I„p(R) —=
x/2

dn d01 d024& R;o, , r»r2 cosncos0& + sino. cos02 40 R;o, , rl, r2

Typically, the hyperspherical angle functions
4„(R;n, ri, rz) may be expressed as an expansion in cou-
pled spherical harmonics [cf. Eq. (15)]. In this case the
integrations over the angles rl and r2 may be performed
analytically. The general result for I&p(R) for the case
of linearly polarized light treated in Eq. (19) is given
by Eq. (9) of Ref. 17. Other cases of light polarization
may of course be obtained from Eq. (19) through use
of the Wigner-Eckart theorem. For the specific case of
one-photon detachment of the iS ground state of H

by linearly polarized light, the integrations in Eq. (19)
give b functions that restrict the Anal state to L = 1,
M = 0. We retain the general labels LM on the one-
photon transition amplitudes X~ & I, however, in order
to emphasize the similarity between the one-photon tran-
sition amplitude T&il, in Eq. (17), and the two-photon
amplitude T~~l, defined in Sec. IID.

D. The two-photon transition amplitude

Two-photon detachment of II in which the H atom
is unexcited in the final state has been treated in the
adiabatic hyperspherical approximation by Fink and
Zoller. A general description of multiphoton processes
for two-electron systems within the adiabatic hyperspher-
ical representation has been given by Gao, Pan, Liu, and
Starace. ~i We treat in this paper the two-photon detach-
ment process (2) in which the H atom is excited to the
n = 2 level by procedures similar to those of Refs. 20 and

21, which we outline briefly here.
For a final-state wave function of the form in Eq. (3)

and an initial-state wave function of the form in Eq. (16),
the amplitude for the two-photon process (2) for the case
of incident light linearly polarized along the z axis is

2 2

» '* ') .»' '* ') .e' aoo)
i=1 i=1Ep+~ —H

(2o)

1
&z ' ri 0Ep+~ —H '

we expand ~v) in adiabatic hyperspherical angle functions

4p )

~v) = (R sinn cosn) ) vtA(R)4P(R;nori i r2),

(22)

where the coefficients v&(R) of this expansion satisfy the
following inhomogeneous radial equation

~

k' + —U„(R) ~ v„(R) = 2RI„p(R)Fp(R) .(,z
d'

(23)

In Eq. (23), the photoelectron wave number k' is defined

by

1ik'z = Ep+~+
2n2 ' (24)

the effective potential U&(R) is defined by Eq. (6), Fp(R)
is the radial part of the initial-state wave function [cf.
Eq. (16)], and I&p(R) is the angular integral defined in

Eq. (19) and evaluated explicitly in Eq. (9) of Ref. 17 for
the case of linearly polarized light.

The boundary conditions for the function v„(R) have
been discussed in detail by Aymar and Crance. 2 For
k' ( 0, v&(R) must be finite at both R = 0 and R ~ oo.
For k'2 ) 0, v&(R) must be finite at R = 0 and have no
component of the regular solution of the homogeneous
equation at R —+ oo. The asymptotic boundary condition
on v&(R) is therefore2~

where Ep is the ground-state energy, ~ is the photon
frequency, and 0 is the atomic Hamiltonian. Defining
formally a function
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vl, (R) ———~, ~
cos(k'R+(& + g„) 2 F„(R)RI„O(R)FO(R)dR,

0

where F„(R) is the solution of the homogeneous equation
corresponding to Eq. (23), the factor xj2 represents the
Wronskian of the regular and irregular solutions of the
homogeneous equation, the function (2/ark') ~ cos(k'R+
(& + g&) is the asymptotic form of the irregular solution
of the homogeneous equation, and the radial integral in

Eq. (25) gives the electric dipole matrix element between
the ground state and the adiabatic hyperspherical chan-
nel p for the total energy (Eo + w).

With the solutions v&(R) of the radial equations (23)
in hand, the two-photon transition amplitude in Eq. (20)
may be expressed using Eqs. (3), (4), (21), and (22) as

T„t „——k ~ ) ) Yjl (Ir) (/mt'I'( IM) X„t q(,
ll, mj L,M

(26)

where X„& &&, is the amplitude for a two-photon electric(~)LM .
)

dipole transition from the initial state to a final state
of angular momentum IM characterized by the hydro-
gen atom in the nl state and the detached electron having
wave number k and orbital angular momentum /'. Specif-
ically,

~(2lLM Q~ ~ j((„,+g„,) )(«'), p'e dR F„~r (R)RI„„(R)v„(R)

dR'F„~g(R')R'I„„~ (R')F„(R') dR F„(R)RI„O(R)Fp (R), (27)

where

-k:—Eo+ 2~+ )2n2 ' (2S)

to the real term inside the large parentheses is almost
negligible for the results we report below.

E. Photoelectron angular distributions

and where the imaginary term inside the large parenthe-
ses stems from the standard treatment of the pole in
Eq. (20) for the case of the intermediate-state channel
p" = P' converging to the H(n = 1) threshold. Numer-
ically, the contribution of this latter term as compared

The transition amplitudes for processes (1) and (2) in
Eqs. (17) and (26), respectively, have the same structure.
Hence the angular distributions may be calculated for
both processes using the following general formula for
q = 1, 2 (where q is the photon number):

) „t „=k ) . ) ) Q t'tlat(„)t(L'M'~&ml"m")V, * „(k)Y~ (k){lml'm'~LM)X~', lq(,

Using well-known relations for expressing the product of spherical harmonics as an expansion in single spherical
harmonics, summing over the magnetic quantum numbers I,, rn', and m" using a well-known relation for 3j
symbols, and noting that for the spherically symmetric initial states with which we are concerned here, M = M is
fixed by the polarization of the incident light, we obtain

1',/" L,L'

x ) [A]([l'][I"][L][L'])
~ M ~ t &«&, Pp(cos 0&) . (30)

In Eq. (30), Ok is measured with respect to the axis of
linear polarization in the case of linearly polarized inci-
dent light and with respect to the incident light beam
in the case of circularly polarized light. The symbol [x]
denotes 2z + 1.

III. 8 ESULTS FOB. SINGLE-PHOTON
DETACHMENT

The single-photon detachment process (1) in which the
H atom is excited to the H(n=2) level has been studied
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both experimentally and theoretically. s(b)' 's Its theo-
retical description requires detailed consideration of elec-
tron correlations since this process cannot be described
by an independent electron model. Comparison of our
results with those of t, hese other studies provides an indi-
cation of the accuracy of the adiabatic hyperspherical ap-
proximation's description of electron correlation eA'ects.
Such an indication is important for judging our predic-
tions for the corresponding two-photon process (2), pre-
sented in Sec. IV, since there are no experimental or
other theoretical results for this process of which we are
aware.

A. Cross-section formulas

which, using Eq. (30), may be written for the case of
linearly polarized incident light as follows:

"[ +P ( ~ -)] (32)

where

rr2i =4m'~n) [X,it( )' for I =0, 1, (33)

2s (34)

i/~ t
2

[I-'hi, t.~~
—2 ( ~,„t, &~„,t~

02

+&2u, t. &2„,w)] .

(35)

In these equations, X2I t~ is given by Eq. (18) with I, =
1, M = 0. The difkrential cross section for the case
of circularly polarized incident light is simply related to
Eq. (32): +Pgi in Eq. (32) is replaced by —P2&/2 and 8k
is measured with respect to the direction of the incident
light.

B. Calculational details

The eA'ective potentials for the adiabatic hyperspher-
ical channels p over which the sum is performed in

Eq. (18) are presented in Fig. 1(b). There are three
i P potentials, indicated by P+, P , and P(pd—). [As
noted in Sec. IIA 1 above, near R = 13.3 the adiabatic
P+ and P—potentials have been replaced by the cor-

responding diabatic potentials. ] As discussed in detail
by Lin, the P+ potential is attractive at short dis-
tances and weakly repulsive at large distances thereby
giving rise to a shape resonance at about 18 meV above
threshold. The iP(pd) potential is strongly repulsive at
all distances. Finally, the P—potential is repulsive only

Single-photon detachment of the iS' ground state of
H leads only to P final states. The difI'erential cross
sections for the H(2s) and H(2p) states are given by

2""=4 ' nk) T,", „

at short distances, but is attractive at large distances.
This channel has a complex effective angular momen-
t,um A&, and, as discussed in Sec. IIA3, gives rise to a
small but finite cross section at threshold. However, due
to the shape resonance near-threshold, Gailitis-Damburg
oscillations2 near threshold are obscured. In addition,
Gailitis-Damburg oscillations are extremely weak for the
P—channel. i For these reasons, we do not examine

the near-threshold behavior of the cross section in detail
for this process.

Our results for the radially dependent angular integrals
I&o(R), defined in Eq. (19), are shown in Fig. 2 for the
three iP final-state channels p relevant for process (1).
We see that these three angular integrals have significant
and comparable amplitudes at both small and large radii
R. This is to be contrasted with the radial functions,
I"&(R), which have very diff'erent amplitudes, at small R
in particular, as may be deduced from the corresponding
eff'ective potentials shown in Fig. 1(b).

C. Results

0.1

1 p(pd)
" p+
1

C)
0.0
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FIG. 2. Radial dependence of the angular integrals I„o(R)
defined in Eq. (19) for the three P hyperspherical channels
p= P+, 'P , and 'P(pd)—

Our results for the total n = 2 cross section, i.e. ,

o2, +o2&, are shown in Fig. 3 in comparison with the rela;
tive experimental data of Butterfield. As pointed out by
Lin i3 the hyperspherical potential i P+ predicts a shape
resonance about 18.9 meV too high. In order to compare
our n = 2 cross sections with experiment, we have there-
fore shifted our curves 18.9 meV lower in energy for this
figure only. The experimental data in Fig. 23 of Ref. 8
have a nonzero background below threshold; we have sub-
tracted this background from the data above threshold.
Furthermore, we have normalized the experimental data
to our theoretical prediction at the peak of the shape res-
onance. As shown in Fig. 3, our theoretically predicted
n = 2 cross section is somewhat wider in energy than
that measured experimentally. Nevertheless, the agree-
ment is quite reasonable considering that our final-state
hyperspherical potentials are uncoupled.
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FIG. 3. Photodetachment cross section for the process y+H: H(n = 2) + e . Solid line: present (dipole length)
adiabatic hyperspherical results, shifted to the experimental
peak position. Solid circles: relative experimental data o
Butterfield (Ref. 8) normalized to our predicted peak height.

Figure 4 compares our theoretical results for the to-
tal n = 2 cross section with predictions of Hyman, Ja-
cabs and Burke4 and Broad and Reinhardt. s (Macek's)

results& & for the n = 2 cross section are only given
explicitly for photon energies considerably higher than
those shown in Fig. 4.) The ls-2s-2p close-coupling cal-
culation of Hyman, Jacobs, and Burke4 gives the low-
est, broadest, and highest, energy prediction for the shape
resonance feature. The 160 configuration J-matrix cal-
culation of Broad and Reinhardt5 gives the highest, nar-
rowest, and lowest energy prediction for the shape reso-
nance feature. The present hyperspherical results for the
height, width, and position of the shape resonance feature
are intermediate between the results of these two other
calculations. The relative experimental results for the
iota/8 detachment cross section in the neighborhood of

2.5
C7

z 2.0

FIG. 5. Theoretical (dipole length) predictions for the
partial photodetachment cross sections o (2s) and o (2p) for
the process T + H: H(2s, 2p) + e . Solid [dashed] lines:
present adiabatic hyperspherical results for o (2p) [o (2s)].
Open [closed] circles: 1s-2s-2p close-coupling results of Hy-
man Jacobs, and Burke for o(2p) [o(2s)] (cf. Table 1 o'7

Ref. 4).

the n = 2 threshold have been fitted in detail to the cor-
responding theoretical results of Broad and R,einhardt5
taking into account the experimental resolution. Very
good agreement was obtained. Nevertheless, the sensi-
tivity of the theoretical calculations for the n = 2 cross
section to the approximations employed, as demonstrated
in Fig. 4, indicates a need for an absolute experimental
measurement of the n = 2 cross section.

In Fig. 5 we present our results for the partial cross
sections for detaching H and leaving the H atom in the
28 and 2p states. We compare our dipole length results
with the corresponding dipole length results of Hyman,
Jacobs, and Burke. 4 Our results agree qualitatively with
those of Hyman, Jacobs, and Burke. In particular, both
calculations predict that o'(2p) is significantly larger than
o (2s) in the vicinity of the n = 2 detachment threshold.
As far as we are aware, there are no other theoretical re-
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FIG. 4. Theoretical (dipole length) predictions far the
photodetachment cross section for the process y + I
H(n = 2) + e . Solid line: present adiabatic hyperspherical
results. Dashed line: ls-2s-2p close-coupling results of y-

160 configuration J-matrix results of Broad and Rein ar t
(cf. Fig. 6 of Ref. 5).

FIG. 6. Theoretical (dipole length) predictions for the
photoelectran angular distribution asymmetry parameter, P2r
[cf. Eq. (35)], far the process T+ H: H(2p) + e . Sa '

line: present adiabatic hyperspherical results. Solid circles:
ls-2s-2p close-coupling results of Hyman, acacobs and Burke
(cf. Table 1 of Ref. 4).
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suits for these partial cross sections with which to com-
pare.

Finally, in Fig. 6 we present our results for the an-
gular distribution asymmetry parameter for the H(2p)
final state. This asymmetry parameter p2p is defined in
Eq. (35). Once again we compare our dipole length re-
sults with the only other theoretical results of which we
are aware, namely, those of Hyman, Jacobs, and Burke. 4

The two predictions are in very good agreement.

IV. RESULTS FOR TWO-PHOTON
DETACHMENT

Experimental observation of nonresonant multiphoton
detachment of 8 ions has recently been reported. In
anticipation of future, more refined experimental mea-
surements, we present here theoretical predictions for
process (2) in which two photons detach H and excite
the n = 2 level of the H atom. A key feature of our results
for this two-photon detachment process is the presence of
a half-cycle of Gailitis-Damburg oscillation in the cross
sections above the H(n = 2) threshold over an energy
region of tens of meV.

A. Cross-section formulas

Two-photon detachment of the 9' ground state of H
leads only to S' and D' final states in the case of lin-
early polarized photons and only to D' Anal states in
the case of circularly polarized photons. The difFerential
cross sections for the H(2s) and H(2p) states are given
by

2'=8~ n~ k) (36)

which, using Eq. (30), may be written as

2

) P2'P2/(cos gk) .' 2=0
(37)

For the case of /inearly polarized incident light, the par-
tial cross sections o2~ and the asymmetry parameters

Pzz (j = 0, 1, 2) are defined in terms of the two-photon

transition amplitudes Xz& &&, in Eq. (27) as follows:

(IX2g y, I
+ IX2 1g I ) )

3 2 2 (2)00 2 (2)20 2

p28 ]

/32' =
O2s

(10 IX(2)2oI2 + 51/2 2 R KX( )20)tX(2)00j)
) ) 7

(4o)

2sP4' =
&2s

8% o. 4) 18 (2)20
7 2S)kd (41)

&2P = «'n'~'(lx2p', ~p I + lx2p', apl + lx2p', g/I ), (42)

p2p (43)

p p
8vrao;2~2

I
X( ) oI2+ slX( ) oI2

2p, kp 7 2p, kf

2]/2(X(2)00)tX(2)20 31/2(X(2)00)tX(2)20 (X(2)20)tX(2)20
61/2

2p, kp 2p, kp 2p, kp 2p, kf 7 2p, kp 2 kpf (44)

Svrsn2~2 6 63/2
p2p

I

lx(2)20 I2 & 2 Rewx(2)20)tx(2)20~
0"2p

(45)

For the case of circnlarly polarized incident light, the corresponding partial cross sections and asyrnrnetry parameters
are given by

~„=8~3n2~2 IX(2)22 I22s, kd (46)

2s
0
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P2' = —10/7, (48)

P4" = +3/7, (49)

~2P = 8~'~'~'(1~2''k
p
I'+ IX2p'kf I') (50)

PeP =1,

8~sn2~ gl/2
p'p

I

I~('12 I2 I~('1 '
I2 + x 2 Re[(x(21 )t~('1"]~I2

~
2p, kp 7 2pkf , 7 2p, kp 2p, kf )02p

(52)

p p 8x n ur 1 (21222 6
2p, kf

CT2p

In the above equations, Re[a] denotes the real part of the
complex number a.

B. Calculational details

The effective iP' potentials V&(R), which determine in
part the solutions v&(R) in Eq. (23), are shown in Fig. 1.
The iP' potential converging asymptotically to H(ls) is
shown in Fig. 1(a); those converging to H(n=2) are shown
in Fig. 1(b) and have already been discussed in Sec. III 8
above. The eA'ective S' and D' potentials for the adi-
abatic hyperspherical channels p' over which the sum is
performed in Eq. (27) are shown in Figs. 1(b) and 1(c).
The iS(A = —1), iD(I& = 0), and iD(Ii = —1) poten-
tials are strongly repulsive at all distances. On the other
hand, the iS(I& = +1) and the iD+ potentials are both
attractive and have complex eA'ective angular momenta,
A&. As discussed in Sec. II A 3, these channels have small
but finite cross sections at threshold. Furthermore, they
both exhibit Gailitis-Damburg oscillations near thresh-
old.

C. Observation of dipole-field-induced oscillations

There are two ways in which an attractive dipole field
introduces oscillations in measured cross sections on a
ink energy scale. The first is due to the rapid varia-
tion of the analytically determined dipole phase 0& [cf.
Eqs. (11) and (12)] for those hyperspherical channels p
having complex values of the eft'ective angular momentum
A„[cf. Eq. (10)]. This analytically determined phase 0&

(through $„) appears explicitly in the phase factor in-

cluded in the two-photon transition amplitudes X~& &&,A )

in Eq. (27). Interference effects between different am-
plitudes, such as occur commonly in the angular distri-
bution asymmetry parameters [cf. Eqs. (40), (44), (45),
(52), and (53)], generally lead to sizable, undamped os-
cillations in the corresponding cross sections due to the
rapid decrease of the analytically determined phases 0&
with increasing ink. This analytic behavior is shown in

Fig. 10 of Ref. 9(b).
The second way the long-range dipole field introduces

oscillations in the cross sections is through the eA'ective

normalization of the final-state wave function for the
H(n=2)-e system. These additional oscillations may
be extracted using generalized quantum defect theory
by representing our adiabatic hyperspherical radial wave
functions as

F~k(R) = ~~(k)I";k(R) (54)

where N&(k) is the analytically determined effective nor-
malization factor, which determines essentially all of
the energy dependence of the radial wave function near
R 0, and where F„' (Rk) is a more smoothly varying
function of k. The oscillatory, energy-dependent normal-
ization factor Ii'&(k) is defined as follows:29

N„(k) = [ B„cos g„+B„(1+ g„)sin g„
—g„sin 2g„]'f', (55)

where il& is the phase shift in the pth channel [cf. Eq. (8)]
and where B& and g& are analytic functions defined by

sinh em&

cosh em„—cos2[n& ln(k/2) + z„] '

—sin 2[n„ ln(k /2) + z„]
cosh ~n„—cos 2[n„ ln(k /2) + z„]

(57)

B„=[1 —2e " cos 2(n„ ln(k/2) + z„)] (58)

The parameters n& and z& are defined in Eqs. (10) and

(»).
As noted by Greene and Rau, the energy dependence

of N2(k) stems primarily from the function B„.In par-
ticular, the oscillation amplitude of N„(k) is governed
primarily by that of B„. Now, neglecting terms of or-
der exp( —2xn&) compared to 1, B„ in Eq. (56) may be
approximated by
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TABLE I. Dipole potential strengths [A„(A„+1)], com-
plex parts of A„(o.~), and oscillatory damping factors
(2e &) for the S, P, and D attractive dipole po-
tentials of the H(n = 2) —e system.

Term ( L)
Se

1po
1 ac

A„(A + 1)
—5.0827
—3.7082
—0.8102

2.198
1.860
0.748

0.20 x 10-'
0.58 x 10
19.08 x 10

From Refs. 1 and 2, A~(A~+1) = L +L+1—[(2L+1) +36]
From Eq. (10), a& = [—A&(A& + 1) —1/4]

D. Results

Our results for the two-photon detachment cross sec-
tions o~, and o2& as well as the total cross section for the
n = 2 subshell, o2, + o2&, are shown in Fig. 7 plotted ver-
sus ink so that the Gailitis-Damburg oscillations above
threshold can be seen clearly. Conversion of ln k to pho-
toelectron energy above the H(n = 2) threshold is given
in Table II. As indicated in Table II, the assumption of
degeneracy in the n = 2 level of H breaks down due to
the spin-orbit interaction and the Lamb shift at values of
ln k —6. We have nevertheless plotted our results over
the region ln k ) —9 in order to exhibit two cycles of the
oscillatory behavior expected above threshold under the
assumption that the n = 2 levels are degenerate.

Figure 7(a) shows our results for the case of linearly

(L) polarized light using Eqs. (38) and (42); Fig. 7(b)
shows our results for the case of circularly (C) polarized
light using Eqs. (46) and (50). In the region of ln k ~ —3,
the oscillatory behavior of the cross sections becomes ir-
regular and arises not only from Gailitis-Damburg os-
cillations but also from dynamical oscillations stemming
from, e.g. , the free-free matrix elements, which deter-

Hence, one sees clearly that the amplitude factor 2e
for the oscillatory cosine term is in general likely to
be small. This suppression of the dipole-field-induced
oscillations above threshold was first pointed out by
Fabrikant and was analyzed in detail for single-photon
photodetachment of H with excitation of the residual
H atom by Greene and Rau. ii However, as we show
in Table I, the iD' channel of the H(n=2)-e system is
only very weakly damped due to its having an unusu-
ally small value of n&. Consequently, in contrast to the
iS' and iP' attractive dipole channels, whose oscilla-
tions have amplitudes of 0.2% and 0.6%, respectively, the
iD' channel has an amplitude of oscillation of 19%. Ex-
plicit calculations9(b) of the normalization factors N&(k)
for these three channels confirmed these predictions, as
shown in Fig. 11 of Ref. 9(b). For this reason, the two-
photon detachment process (2) is a very favorable one for
observing dipole-field-induced oscillations above thresh-
old, particularly since the intense (and nonoscillatory)
P' shape resonance channel, which would obscure the

effect, is not populated.

mine the two-photon amplitude in Eq. (27). This ampli-
tude involves an overlap of the final-state radial function
I„lq(R) with the continuum radial function v„(R) de-
fined by Eqs. (23)—(25). In order to disentangle these
other dynamical effects from the Gailitis-Damburg os-

cillations, we plot renormalized cross sections for the
cases of linearly polarized and circularly polarized in-
cident light in Figs. 7(c) and 7(d), respectively. The
renormalized cross sections are obtained by dividing all

transition amplitudes by the effective normalization fac-
tor N&(k) discussed in Sec. IVC above and defined by
Eqs. (54) and (55). These normalization factors con-
tain the oscillatory behavior expected to arise from the
long-range dipole field. As is seen clearly in Figs. 7(c)
and 7(d), repioval of the energy dependence embodied
in these normalization factors results in constant cross
sections in the region —9 & ink + —3. The remaining
energy dependence of these renormalized cross sections
shown in Figs. 7(c) and 7(d) in the region ink ~ —3 is
due to other dynamical effects.

We conclude therefore that the region —6 ~ ln k + —3
is the energy region in which the long-range dipole field
interaction determines the energy behavior of the cross
sections. This region lies between the energy region
ink —6 at which the assumption of energy-level de-
generacy breaks down and the energy region ink + —3
in which other dynamical influences have significant ef-
fects. This region encompasses more than a half cycle
of oscillation of the cross sections, including a minimum
at ink —5 and a succeeding sharp rise in the cross
sections to a maximum at ln k —2.8.

Plots of our cross section results, shown in Figs. 7(a)
and 7(b) on a ink scale, are given on an energy scale
in Fig. 8. Figures 8(a) and 8(b) give our results for the
case of linearly (L) polarized light and Figs. 8(c) and

8(d) give our results for the case of circularly (C) po-
larized light. Figures 8(a) and 8(c) present the energy
region from 0.025 —25 meV, over which essentially the
entire energy dependence is due to the half-cycle of the
Gailitis-Damburg oscillation shown in Figs. 7(a) and 7(b)
over the region —6 ln k —3. One sees that there are
minima near 0.5 meV [located in Figs. 7(a) and 7(b) at
ln k —5] and significant 30% and 50% rises in the lin-
ear and circular polarization cross sections respectively
over the energy range up to 25 meV. The cross-section
maxima appearing at ink —2.8 in Figs. 7(a) and 7(b)
occur in Figs. 8(b) and 8(d) as the peaks near 0.05 eV.
The cross sections shown in these figures over the energy
region up to 5 eV above threshold reQect many dynami-
cal infiuences and not just long-range dipole field effects,
as explained above in our discussion of the renormalized
cross sections in Figs. 7(c) and 7(d).

The angular distribution asymmetry parameters, Pz
and P4, are shown in Fig. 9 for the cases of both linearly
and circularly polarized light. Those for the 2s subshell
of H are defined by Eqs. (40), (41), (48), and (49) and
those for the 2p subshell are defined by Eqs. (44), (45),
(52), and (53). In addition, we have plotted the asymme-
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try parameters for the H(n = 2) subshell; these average
asymmetry parameters are defined by [cf. Eq. (37)]:

~z.P» + rr~r P»
28 2p

pl!:2
O2s + O2p

(j= 1,2).

One sees that many of these asymmetry parameters
also have strongly oscillatory behavior above the n = 2
threshold. As discussed in Sec. IV C, this oscillatory be-
havior may be understood in terms of two eA'ects of the
long-range dipole field: the oscillatory behavior of the
efFective normalization factor, N&(k), and the rapid en-

ergy variation of the analytically determined dipole phase
shifts g& and 0„[cf. Eqs. (11) and (12)]. In the case of
linearly polarized light, P4~' is determined by the absolute
square of a single transition amplitude [cf. Eq(41)]. Its
energy dependence is therefore governed essentially en-
tirely by the squared normalization factor N~(k) for the

p = D+ hyperspherical channel, which gives the dom-
inant contribution to this transition amplitude. Its de-
pendence on the analytically determined phase, („, is
removed when taking the absolute square of this ampli-
tude. This dominance of the p = D+ channel over the
other two D final channels explains also why the energy

2p 0

dependence of the asymmetry parameter P4 m the case
of linearly polarized light and both Pz and P4 in the2p 2p

case of circularly polarized light are determined primar-
ily by the squared normalization factor N~(k) for this
dominant hyperspherical channel and not by any phase
interference effects. The asymmetry parameters Pz~' and
P " for the case of linearly polarized incident light, how-2

1 1ever, both involve an interference between S and D
final-state transition amplitudes. For these two cases,
the rapid energy variation of the analytically determined
phases (& and t)& for the r S(I& = +1) and D+ final-state
channels may be shown to govern nearly all of the energy
dependence in the region ln k —3. The remaining weak
energy dependence of these two asymmetry parameters
may be described analytically using the quantum-defect,
theory (QDT) for a long-range dipole field to introduce
smooth short-range parameters. The result of such a
QDT analysis is that the remaining energy dependence
is determined about equally by the oscillatory normaliza-
tion factors N (k) and by the very weak oscillationssr of

1the short-range phase shift, g&, for the D+ final st, ate.
For details of the requisite QDT analysis, the interested
reader is referred elsewhere.

To summarize this discussion of Fig. 9, we point out
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light far the process 27 +H: H(2s, 2p) + e plotted vs ln k, where k (a.u. ) is the photoelectron momentum. (a) L results
far p

-'
p " d p~= [ f F s (4()) (44) and (59)] (b) L results for p4', p4", and p4

= [cf. Eqs. (41), (45), and (59)]j (c)
its for p ' p ~ d p

= [cf. Eqs. (48), (52), and (59)]; (d) C results for p4', p4+, and p4 [cf. Eqs. (49), (53), and (59)].

use of linearly polarized light and small angles of detec-
tion) ok.

V. CONCLUSIONS

1n this paper we have reported our results using an
adiabatic hyperspherical representation for the one- and
two-photon detachment of H with excitation of the

degenerate H(2s) and H(2p) states. As is well known
from previous work, the one-photon detachment process
is dominated by the ~P' shape resonance near t,hresh-
old. Furthermore, its theoretical description requires in-
clusion of electron correlations. Detailed comparisons
of our results are made in Sec. IIIC with the relative
experimental measurements of Butterfield for the total
H(n = 2) cross section, with the theoretical results of
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FIG. 10. Differential crass sections [cf. Eq. (37)] for the cases of linearly (L) and circularly (C) polarized light for the
process 27+H: H(n = 2) + e plotted vs ln k, where k (a.u. ) is the photoelectron momentum, for the detached electron
angles 8- = 0', l8', 36', 54.7356', 72', and 90'. (a) L results; (b) C results.
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Broad and Reinhardts for the total H(n = 2) cross sec-

tion, and with the theoretical results of Hyman, Jacobs,
and Burke4 for the H(2s) and H(2p) partial cross sec-
tions as well as the corresponding detached electron an-

gular distributions. These comparisons indicate a need
for absolute experimental results for each of the H(2s)
and H(2p) partial cross sections.

Our results for the two-photon detachment of H in-

dicate that long-range dipole field eA'ects dominate the
energy dependence of the cross section over the experi-
mentally observable energy region from about 0.5 meV
to approximately 34 meV above threshold. In particular,
this energy region encompasses more than a half-cycle
of Gailitis-Damburg oscillations, which have yet to be
observed experimentally. Extensive discussion has been
presented in Secs. IV C and IV D of the reasons why this

two-photon process in H is probably the most likely
one in which to observe such eAects of long-range dipole
fields.
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