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We consider the contribution of nuclear polarization to the Lamb shift of A- and L-shell elec-
trons in heavy atoms and quasiatoms. Our formal approach is based on the concept of efFective
photon propagators with nuclear-polarization insertions treating effects of nuclear polarization
on the same footing as usual QED radiative corrections. We explicitly derive the modification of
the photon propagator for various collective nuclear excitations and calculate the correspond-
ing effective self-energy shift perturbatively. The energy shift of the 18&~2 state in 9& V due
to virtual excitation of nuclear rotational states is shown to be a considerable correction for
atomic high-precision experiments. In contrast to this, nuclear-polarization effects are of minor
importance for Lamb-shift studies in 82 Pb.

I. INTRODUCTION

Future experimental abilities to prepare highly ionized
atoms and possibly even bare heavy nuclei up to ura-
nium will open a new generation of high-precision ex-
periments. One of the fascinating aspects is that studies
with almost bare nuclei may provide new sensitive tests of
quantum electrodynamics in strong external electromag-
netic fields. For the analysis of proposed precision exper-
iments with hydrogen-, helium- or lithiumlike uranium a
precise knowledge of the electronic spectrum is required.
In heavy atoms several effects give rise to measurable con-
tributions to the total binding energy of atomic states.
Of those the effect of finite nuclear size as well as quan-
tum electrodynamical (QED) radiative corrections such
as vacuum polarization and self-energy effects are well
known. ~

At very high precision the additional energy shift of
K-shell electrons due to nuclear polarization may be-
come relevant. The interactions between leptons and
nuclear degrees of freedom have been extensively stud-
ied in muonic atoms s (see, e.g. , Ref. 6 and references
therein). In muonic atoms the resulting energy correc-
tions can become relatively large since binding energies
of muonic states are comparable in magnitude with typ-
ical nuclear excitation energies. Analogous calculations
performed in the case of electronic atoms show that
the corresponding energy shifts are much smaller. One
reason for that is the much larger size of the electronic
orbits. However, the influence of this contribution in-
creases when the interaction with low-lying nuclear ro-
tational modes is taken into account. For heavy nuclei,

such as uranium, the electronic transition energies are
comparable in magnitude with the nuclear excitation en-
ergies.

It is useful to set up a more general and rigorous
treatment of nuclear polarization within the framework
of QED, where these contributions appear on the same
footing as the QED-radiative corrections. Our treatment
of the energy shift is based on the concept of dressed
photon propagators containing nuclear-polarization in-
sertions. Effects due to nuclear polarization thus appear
as part of the radiative corrections to electronic levels.
We then discuss the treatment of nuclear excitations lay-
ing particular emphasis on collective nuclear modes. We
will derive effective propagators for nuclear surface vibra-
tions, rotations, and giant resonances, respectively.

In order to get an insight into how the energy correc-
tion increases for large values of the nuclear charge Z,
we performed model calculations for superheavy quasi-
atoms formed in heavy-ion collisions. A static calcula-
tion for a system with a united charge Z = 170 reveals at
least qualitative features of the Z-dependence and gives a
rough estimate for the order of magnitude. As a function
of Z the binding energy of atomic levels rises monotoni-
cally with increasing nuclear charge. The binding energy
of a quasiatomic 18 state is supposed to exceed twice
the electron rest energy for Z„- 172.s io Since QED-
vacuum polarization and self-energy contributions to the
binding energy almost cancel 2 one would like to know
to what extent nuclear-polarization effects may alter the
value for the critical charge Z„.

This paper is organized as follows: In Secs. IIA and
II B we review some theoretical formalism useful for our

43 S8S3 1991 The American Physical Society



5854 PLUNIEN, MULLER, GREINER, AND SOFF 43

purposes here. The eA'ective self-energy correction in
first-order perturbation theory will be evaluated in Sec.
II C. In Sec. III we present some results of our calcula-
tions. In Sec. III A we point out some numerical aspects
to illustrate the basic diKculties one is faced with when
performing such calculations in the case of light leptons.
We then discuss our result for the contribution to the 18-
Lamb shift in Pb and U presented earlier. 4 Finally in
Sec. III C, we turn to the model calculation of the energy
shift for a system with charge Z = 170 to estimate the
eKect in superheavy quasiatoms. We will use units with
A=C= 1) A= 4

II. THEORETICAL APPROACH

with

H;„,(t) = H' (t)+H' (t), (5)

H'~ = dsz j,"(z)A'„(z),

of the free photon field A&„, and the fluctuating part

Afl„, generated by the nuclear transition current j&„, .
Since we intend to consider one- or few-electron systems
the electron-electron interaction mediated by the part A~
will be neglected.

The interaction between the electron-positron field and
internal nuclear degrees of freedom is described by the
interaction Hamiltonian

%e start with a description of the formalism used here
in which the effects of nuclear polarization on the atomic
level spectrum naturally appear as effective radiative cor-
rections. The general concepts of nuclear-polarization in-
sertions and dressed interactions allow a systematic treat-
ment of nuclear-polarization corrections to an arbitrary
QED process. EfFective photon propagators will be spec-
ified for collective nuclear excitations and in particular
the eA'ective self-energy correction will be evaluated.

A. The interaction operator, nuclear-polarization
insertion, and effective photon propagator

Although the interaction between electrons and the nu-
cleus is in principle known, a complete quantum field
theoretical treatment of the atomic bound-state problem
has its practical limitations. Nevertheless the major cor-
rections to the energy of atomic states can be obtained
by means of perturbation theory. In the case of highly
ionized atoms or even bare nuclei a good approximation
is achieved by considering the following scenario: The
nuclear charge distribution is described by the electro-
magnetic current density

j.".,(z) = j.".~(x) + &s.,(z).
It consists of a static equilibrium (c-number) part j,„,
(only an external charge density p,„i in the rest frame
of the nucleus) characterizing the nucleus in its ground
state and a second quantized, time-dependent part jfl„,
characterizing intrinsic dynamics of the nuclear charge
density due to external electromagnetic excitations. The
Dirac current

H' = —,'6m Jd'z[T(z), 4(z)].

The first term H' describes the interaction between the
Dirac field and the total radiation field (4) while the term
H has to be added for reasons of mass renormalization.
Accordingly the mass correction bm to the (unphysical)
bare mass of the noninteracting electron is determined
such that the observable mass of the interacting (physi-
cal) electron becomes m = 1 .

It is most adequate for the problem set up here to work
in the Furry picture (bound state interaction picture)
(Ref. 15) where the external field problem is already
solved. Accordingly one expands the field operators @ in
terms of the one particle basis

@(z) = ) b, e "g;(x) + ) d~ e "@;(x),
i (&F) i (&F)

where the g; obey the Dirac equation

tip g [V'+ieA, „i(x)]+eA,„,(x)+ p m)g;(x)

and thus taking into account the interaction between
electron and the electromagnetic field of the static nu-
cleus up to all orders in Zn . The time evolution of a
(normalized) one-particle state

I 4;(t)) is given via the
evolution operator U'(t, t') according to

I 4"(t)) = ~(t t')
I
c'(t'))

= T exp
I
i-t

d~ H;.,(~)) ~

o;(t')).

interacts with the electromagnetic field

A" (z) = A,".t(x) + A,".d(z) + A". (z)

where the classical external field A," ~ is created by the
classical static nuclear source j," ~ . We introduce a total
radiation field A," d as the sum

A,"~(z) = A,"„,(z) + A„"„,(z)

This formal equation should also imply adiabatic switch-
ing off of the interaction H;„i at t ~ +oo and that

I 4;)
asymptotically becomes again an eigenstate of Ho, i.e. ,

I 4;(t ~ +oo)) = aJ I 0) =
I C, ). In accordance with

Gell-Mann and Low's theoremis the energy shift of a
given electron bound state

I
(I)o) =

I i) due to the inter-
action with the total radiation field is expressed by the
Tomonaga-Schwinger equation



43 NUCLEAR POLARIZATION IN HEAVY ATOMS AND. . . 5855

4 T exp i
T/2

T/2

17„„(z,z')

d z d z D„(z—z ) II P(z, z )Dp„( — '),

in the limit of large time differences T. The energy shift
given by (9) is in general complex valued. While the
real part describes the physical energy shift of the bound
state, the imaginary part gives the decay rate of the
bound state due to possible transitions of the electron
into lower-lying unoccupied bound states. Thus only the
energy correction for the 18 state is real.

Equation (9) contains the complete information about
the change of the electron spectrum due to the inter-
action with the free radiation field Af,e, and with the
fluctuations A&„, arising from nuclear transitions. When
performing perturbation expansion of (9) one is naturally
led to Feynman diagrams with dressed (inner) photon
lines representing an effective photon propagator defined

by the time-ordered product of the total radiation field

operators

i&p (z, z') = (0
~
T[A'„(z) A; (z')] [ 0). (10)

The "vacuum" expectation value implies that the nucleus
is considered to be in its ground state. We can rewrite
the definition (10) as the sum of the free photon propa-
gator iD„,(z —z') = (0

~

T[A~"'(z)Ar„'"(z')]
( 0) and a

polarization correction

which defines the reducible polarization insertion II~i .
The polarization tensor can be expressed as current cor-
relation function

ill (», z, ) = (0 I T[jn.,(») ~„'„,(»)]10). (12)

It contains all nuclear degrees of freedom which can be
virtually excited by means of virtual photon exchange be-
tween a bound electron and the nucleus. Equation (12) is

only exact if j&„, represents the exact Heisenberg opera-
tor. Since the exact transition current is not known from
first principles Eq. (12) can only be specified by applying
particular nuclear models. Consequently the effective in-
teraction (11)becomes model dependent. Before we turn
to its explicit derivation let us give the result for the en-

ergy shift due to nuclear polarization in lowest-order per-
turbation theory. Expanding (9) in lowest nonvanishing
order in H'~ reveals that nuclear-polarization contribu-
tions now appear as part of the QED radiative correc-
tions. Applying Wick's theorem~ and arranging terms
depending on whether they contain free photon lines D&
or effective photon lines D& leads to the energy shift

AENP = in dszi dsz2 @,(xi)p" dE S~(xi 2 x22 E)+p v (x12 x2 2
E Ei)7 Pi (x2)

—2gn d z, d zg,". ( x)i17„,( x, i', E = 0)Tr[y S~(xi, x2, E —0)],

where the p'ourier-transformed electron propagator Sz satisfies the equation

(E —(ipog [V'+ ieA, „(,-(x)]+eA,„(.(x)+ p m))Sz(x, x', E) = p &(x —x ).

The first term in Eq. (13) represents an effective self-

energy diagram. As we will see below it contains the con-
tribution calculated earlier by means of second-order
(Schrodinger) perturbation theory. The second term de-

scribes a contribution due to the interaction between the
induced vacuum polarization and nuclear degrees of free-
dom. In the calculation presented here we will focus on
the effective self-energy.

When calculating 'V& we will neglect possible distor-
tions of the nuclear excitation spectrum due to the pres-
ence of the electron. Such effects, which occur in the case

of muonic atoms, are expected to be of minor importance
here. Accordingly the time evolution of the nuclear tran-
sition current jg„, is governed by the nuclear (model)
Hamiltonian H„„, . For our purposes we will further ne-
gleet the contribution of the vector current jg„, because
the velocities associated with intrinsic nuclear dynamics
are mainly nonrelativistic. Keeping the II component
of the polarization tensor we thus deal only with the lon-
gitudinal part Too of the effective propagator. We will
calculate the part

AE; = lz d zl d 222)l,. (xl) f F'd( ElEx2,xE; —E)022(xl, x2, E)'Y d';(z2) (15)
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of the effective self-energy.

B. Polarization insertions and efFective photon
propagators for collective nuclear excitations

Having set up the more general framework we now de-
rive explicit expressions for the nuclear-polarization in-
sertion and for the modification of the eA'ective propa-
gator. We will give some details for the cases of the
harmonic surface vibrator and giant resonances.

To begin, let us recall the well-known parametrization
of the nuclear surface

R(Q, t) = Rp 1+ ) o.rM YL,M(A)

H. = ) .~r. (Pr.M Pr, M + —,') =: H. : +Eo
L,M

for the Hamiltonian.
By means of the surface parametrization R(Q, t) and

requiring that the charge is always homogeneously dis-
tributed, i.e. , with an average density pp

—
4 ~g, , then,X p

as a consequence of volume conservation, the following
expression for the charge density results:

(r, t) = p,„,(r) + p,„,(r, t) = p.e(R —.),

p-~(r) = poe(Ro —r),

where Ro denotes the radius of a homogeneously charged
sphere characterizing the nucleus in its ground state. In
the harmonic approximation the collective dynamics of
the nuclear surface is described by the collective Hamil-
tonian H, (Refs. 19 and 20)

H~ = —,').ri, I~r.M I'+-,') .&r.
I
~r.MI',

I,M L,M

where ~LM ——BLaLM are the conjugate momenta to
the collective coordinates nr. M . Br. and Cr. stand for
the inertia and stiKness parameters, respectively. The
dynamical evolution of the Heisenberg operators ELM is
given by

Jt

~r.M(t) = e d'r. M(0) e

nr. M (t) = i[H„nr.M (t)],

which implies the time dependence

~ (t) = ~ (0) (18)

for the free shape oscillations. The operators ELM and
err.~ are related to phonon creation (annihilation) oper-

ators Pr M (Pr.M) via a canonical transformation

(~r.Br, ) ' f'i
()rM =

I

Z
I lgrM —

Z ~&M).4)LBL

leading to the form

=R ~ +'lb(Ro — ) ) .Qr.M(&) Yr.M(~),

(21)

where the electric multipole operator Qr, M defined as

QLM (i) = d p p(i|re(rr t) p Yr.M ('Q) (22)

has been introduced. We should note here that assuming
irrotational liow an expression for the nuclear vector cur-
rent jfI„, can easily be derived. However, we will neglect
these contributions to the polarization because they are
of the order O(v, ))ic) and thus of minor importance. Ac-
cordingly we only need to calculate the II component of
the corresponding nuclear-polarization tensor. The den-
sity correlation function II can be calculated applying
the defmition (12). Since we assume that the density
fluctuation is time-evolved by the collective Hamiltonian

(20) IIoo becomes homogeneous in time

R" ( d"
pn„, (r, t) = ppb(Rp —r)), I O(R —r)

n=l R=Ro

X [~(O, t)]",

together with the abbreviation e(A, t) = [1 +
+&M nrM(t) Yr.M(Q)]. The corresponding Hermitian
transition charge-density operator up to lowest order in

ELM reads

-( ~)= o~(R' — ) ). ' (t)Y (~)+ o( ')

ilI"(i r' t —~') = (0 I TIPii (r t) Ps-(r', ~')]
I o)

= 8(~ - ~') ) (o I p&„,(r, 0)e-*:".:('-"l
I ~)(~ I ps.,(r ', 0) I »

V

+e(t' —~) ).(0 I ps .(r', 0)e """ ' '
I ~)(~ I ps (r o) I o)

which gives after temporal Fourier transformation

DD(,
) ) - Pn .(,o) Pr-(, o)

)((,~—:H, : +i@ su+: H, : ig— (23)
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The vacuum
I 0) represents the ground state of the nucleus defined as Pl.~ I 0) = 0 and a complete set of one-phonon

states
I v) = PIM I 0) =I LM) has been inserted for evaluating the matrix elements occurring in the case considered

here. In view of (21) we can further write

1I (r, r ', ~) = Rp b(Rp —r)6(Rp —r')
I iM;L'iM')L» M»

R, & + '&(0
I q I

I."M")(L"M"
I
q', ,

I o)

2(d L»
. &I.M(~) &ZM (~').

4PLI g + 2'g
(24)

Using the signer-Eckart theorem for evaluating the matrix elements

&o I @&M I

L"M")(L"M"
I q,',~, I o) = s«s«. sMM-~MM (o II q, II L")(L" II q,' ll 0)

and introducing the reduced transition probabilities B(EL;L ~ 0) for electric transitions from excited states
I LM) =

PltM I 0) of the nucleus into its ground state
I 0), defined as

l(0 II ql II LM) I

2L+ 1

then the polarization function takes the form

rr"(, ', ~) = b(R, —r)g(R, —r') ) R &'+'&a(EL;I. O), ,' . &&M(&)&,* (&').
L+2

1

Having derived the expression for the polarization insertion we are now in the position to calculate the longitudinal
component Dpp of the modification of the photon propagator. This is most easily achieved in the Coulomb gauge
according to

Dpp(r, r ', u) = 3 3 1 00 1
(26)

Performing the integrations leads to the result

'Dpp(r, r', ~) = ) B(EL;L 0) 2 2 . Fl, (r) Fl, (r') RIM(A) YL*M(Q'),
I,M

—(dL —2g

where the radial dependence is carried by the functions

(27)

(28)

This form of the propagator explicitly reveals how ob-
servables like nuclear excitation energies ~L and corre-
sponding reduced electric transition probabilities come
into play. The assumption of a sharp nuclear surface
made here is reflected in the specific form of the radial
behavior of the functions Fl, (r) However, it t. urns out
that in contrast to the situation in muonic atoms, where
the details of the r dependence have significant influence
on the results for the energy shift, only qualitative fea-
tures (strongly pronounced maximum near the nuclear
surface and regularity) are of importance in the case of
electronic atoms.

Given the result for the harmonic surface vibrator
one can immediately conclude the form of &00 in the
case of a free nuclear collective rotator. Following sim-
ilar steps as before (with respect to the body-fixed nu-
clear coordinate system) only minor changes are required
due to a finite ground-state deformation described by
an angular-dependent equilibrium radius Rp(O) . I et
R; = min[Rp(O)] and R, = max[Rp(Q)], respectively;

one obtains a radial function

4m
Fl. r L 1 X

(2I. + 1)R', +'

if 0 (r( R;RL+1

RL
ifr &R,

P

being piecewise defined in regions inside a sphere with ra-
dius R; equal to the length of the smaller nuclear semiaxis
and outside of a sphere with radius R, equal to that of
the larger semiaxis, respectively. Based on (29) the easi-
est way to proceed further (but nevertheless suKcient for
our purposes) is to interpolate the region R, ( r ( R, by
continuing the functional dependence given in (29) up to
an average equilibrium radius R0 . This may legitimize
why we can keep the same functions I"L as obtained for
the harmonic vibrator. The nuclear radii R0 and R0 will
both be determined via Rp ——rpAi~s (with rp ——1.2 fm).
Again we note that a more careful analysis is adequate in
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the case of muonic atoms (compare with the interpolation
proposed in Ref. 5).

A second modification is that the set of intermedi-
ate states

I v) to be inserted in (23) is now given by
eigenstates of the free rotation-vibration Hamiltonian

&) =I IM&&&on2). Evaluating the matrix elements
(0 I QLM I

IMIi00) leads to

'Dpo(r, r', u) = ) 2 B(E2;2I& ~ 0)2~+ '"

x P, (r) 5;(r') Y, (n) Y,
" (n'),

(30)

for quadrupole deformed nuclei. K = 0 takes into ac-
count virtual excitations into the 2+ state of the 0+
ground-state band while I& = 2 describes the (sup-
pressed) transition from 2+ ~ 0G+s . In actual calcu-
lations we will use experimental values for the transi-
tion probabilities and energies of the states taken into
account.

Let us now derive the correction Bpp to the propaga-
tor in the case of virtual excitations of giant resonances.
Vfe exploit the hydrodynamical description according to
Steinwedel and Jensen. To begin with, we briefly re-
view some basics of the model for spherical nuclei ~ The
normal mode decomposition of the operator for proton
density Quctuations reads

where

'4M(t) 9LM (r)
n, L,M

gLMn(r, &) = &L gL(kL )') YLM(Q) (32)

(
d jL(—kL„)) Idr j (33)

We note the first zeros zL„kL„R—0 which will be used
in later calculations:

zq q ——2.08, z2g ——3.34, z3g ——4.51. (34)

The normalization factor NL„ follows from the normal-
ization condition:

~Ln = ( 2Rp L'(L(zLn) —jL 1(zLn)j L+) (zLn)]}

with zLn ——kLnRp. Performing now similar steps as indi-
cated above we can write down the polarization function

are the regular eigenfunctions of the Helmholtz equation.
The wave number kL„of the nth harmonic with multi-
polarity L is determined by the requirement of vanishing
proton current through the nuclear surface (equilibrium
sphere with radius Ro) by imposing the Neumann condi-
tion

ifoo( I
)

2 ) )~ ) ~ p)L"n"

n, I., M n, L,M n

&«r M(r) m'M' '(r')(0
I

iL~"M
I

n"I "M")(n"I"M"
I
iL"M'

I 0) (36)

which is the analogous expression to (23) now evaluated
by inserting a complete set of eigenstates

@~M(') —j ~'""'~iMp))&~-(' '( = ) .pi~

I ~) =1«M) = PL("M)
I o&

of the collective Hamiltonian

) ~ Ln(~LM ~LM + Z)
-(n)t (n)-

n, L,M

where

"{n) -{n)
QLM —pp &Ln G(n VLM)

j+( )
Ln —

p )

ZLn

for giant resonances. Introducing electric multipole op-
erators via

denotes the contribution of a single harmonic (labeled by
the index n) we can write

(»r' ~) = ) ~
2" . I(0 I QLM I &LM)l GL„jr(kr, &)iL(kL &')YLM(f)) YLM(~').

Cd —4)L + tT/

Computing again the effective propagator according to (26) leads to the result

(39)

'Dp()(r, r, ~) = ) 2 . XL( )())XL( (r )YLM(A) YLM(A ),+ Rgn ) )

(40)
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with radial functions

pL RL

, aL + 1 jL, (zL„r, /Ro)+ (Rp —pJ
Ro zs;„js+i (zs „)

is(zs )
2L+1(ZLo)

(41)

Notice that the TL~"~ contain a part which does not de-

pend on n It .is identical to the radial functions Es, ob-
tained for the surface vibrator. The second part in XL"
causes slight changes. It shifts the maximum towards the
interior of the nucleus (see figures in Sec. III).

The question arises whether the convergence of the in-
finite summation over all harmonics n for fixed multipo-
larity L is a priori guaranteed. A minor consideration
reveals that this is the case. To give a simple argument
one may look at the behavior of each term contribut-
ing to 17op for large values of zs„[L fixed; suppose zs,„
const(L)+n for n » I]. For large n we expect roughly the
following asymptotic behavior of the relevant factors:

(r t) =
I "d +3Po(") I ~oo(t) Ypp(~)
( dpp

r

�dr
(44)

and assuming pp(r) = poo(Rp —r) to be the nuclear
charge density in its ground state the resulting modifica-
tion of the propagator Doo is given by

Dpp(r, r', ~) = B(EO;0 ~ 0) 2 . Fp(r) Fp()'),—No+ Cg

(45)

We also employed the (phenomenological) energy
weighted sum rule

) ~sB(EO;0~ f) =n 15Z~R02

rn~A
(46)

Together with an overall factor 1/us. „ from the energy
denominator we conclude that these terms will decrease
sufliciently rapidly for n » 1 . For reasons of simplicity
let us assume that resonance states with fixed multipo-
larity L but difFerent n (if such states really exist) may be
properly described by one state

l LMl) with an average
energy ~L = ~Li . This also implies the introduction of
average transition probabilities according to

) l(0 l
Q~~"~l

l
LMn) l

b(ur' —~s.„)

Under these assumptions we can further simplify the ex-
pression for the propagator, which now again takes the
form

'Doo(r, r ', ~) = ) ~ B(EL;L ~ 0)—COL + lg

x S~~'l() )X~~'l(r') YsM(Q) Ys'M (Q),
(43)

where B(EL;L —+ 0) stands for an average reduced tran-
sition probability. In practical calculations we will use
empirical data.

For the sake of completeness let us briefly mention that
by means of similar arguments as used before one can
derive the correction to the propagator for monopole ex-
citations. Based on the Goldhaber-Tassie form of the
transition density

and it was assumed that it is completely fulfilled by one
state with excitation energy ~o and reduced transition
probability B(EO) .

C. Evaluation of the efFective self-energy

Having derived explicit expressions for the longitudi-
nal component of the eA'ective propagator we are now in
the position to evaluate the first-order self-energy contri-
bution to the energy of atomic bound states. According
to (15) we have to insert the exact electron propagator
Ss;(x, x ', E) for electrons in the external field of a homo-
geneously charged sphere. Since an analytical expression
is not available we formally make use of its eigenfunction
expansion into Furry states:

S („„E) ) - &~(x)4r:(x')
(47)

jv~ gg
'

k

where we will use the convenient spherical representation
of the eigenfunctions @~ .2i

(r) = y (r)—). q if„„,(r) y„, „,(0) y
'

if ji —Pr —i ( 8)
—(Er + 1) if ji ——lr + —.

~ ~

~

~

vp stands either for the principal quantum number of a
bound state or the energy of a continuum state. Intro-
ducing the following quantities (let Eg denote any radial
function occurring in L)po):
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z~
v&l» p; «F~(~) b. (r) ~..., (r) +f-(r)f, -, (r))

=(vK I F, I v, ~,),

gL
vol v& p' dE(E —E„,„,+ irI)-'

'2

d»~M(~) &+,(~)~,~, (~) = (~v I &~M
I ~~v~),

the self-energy can be cast into the form

EE„„„=in) B(EL;L~ 0) ) ) (W„„~„„)
M, p, q

L I, 2f„„i„„,('R,„i„„). (49)

The above equations already indicate the order in which summations and integrations will be carried out. Questions
about the convergence of this formal expression will be addressed later.

The angular matrix elements are straightforward to calculate leading to the result

(50)

where we have suppressed the triangle relations b(E& j) b(Eq 2 jq) 6(j qj I) as well as a parity factor:

+ ] +:even
4 0 otherwise.

For evaluating F~„~ „ the integration over energy can be performed by means of complex contour integration (e.g. ,

closing the contour in the lower half plane):

dE(E —E„,„,+ ~g) '[(E —E.„—EL, + ig')-' —(E —E.„+EI. —ir7) ']

Q (E E~) Q(E~ E )" E..., -E..+E. +E..., -E..-E.
Inserting these results into (49) we end up with the general expression for the effective self-energy:

AE,„„=—n ) B(EL;L 0)l~ql(jq jI
I 2

—
2 0) M

(52)

dE, 1&v~ I Fl
I
E'~i) I' - l(v~ I Fi

I »K~) I'
+ +E' —Ev„+ EL, E„„,—E,„+EI. —ig

„ I(vie
I
Fl,

I
E'~g)l

E -E..-E.

The overall minus sign of the energy shift indicates that
this part of the nuclear polarization increases the binding
energy of electronic states. It parametrically depends on
the excitation energies El. and the corresponding B(EL,)
values. The erst two terms in ~ „~„are equivalent to
the usual expressions derived in second-order perturba-
tion theory. They mean that the considered electron in
the bound state

I vKp) can be excited into a higher unoc-
cupied intermediate state

I vqKq) by a virtual (eft'ective)
photon. The third term has to be understood in the
charge-conjugated picture where a hole can be demoted
into the negative-energy continuum by emission of a pho-
ton. This vacuum contribution has not been taken into
account in previous calculations. The discrete summa-
tion over the bound states needs some special attention.

For an excited electron state
I vKp) the energy difference

(E,„,—E „+El, ) can become arbitrarily small reflect-

ing the possibility of spontaneous decay into a lower-lying
unoccupied bound state. Close to such resonances the
perturbative treatment of the energy shift is in general
no longer adequate. However, using perturbation theory
we can estimate the spontaneous transition probability as
the imaginary part of the level energy of a bound state.
It gives rise to a Rnite width of the excited state due
to the interaction with the radiation field. In a consis-
tent calculation no divergencies appear. It should also
be emphazised that such a resonance may only occur
in connection with low-lying nuclear rotational states.
On the other hand, one can calculate matrix elements

(vr I FI. I vyKy) and compare them with those involv-
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ing continuum states. The latter turn out to be orders
of magnitude larger. One reason lies in the radial func-
tions I"I, which are predominantly peaked near the nu-
clear surface where the overlap between different bound
states is small by itself. For that reason we will later ne-
glect the contribution to the energy shift arising from the
sum over bound states. Further aspects concerning the
convergence of the integration over the continuum will
be discussed in the following section.

III. NUCLEAR-POLARIZATION
CONTRIBUTION TO THE BINDING
ENERGY OF K'-SHELL ELECTRONS

0.15

0.05

0.00
0 5 10 15 20 25 30

R (fm)

In the preceding section we have explained how to treat
nuclear-polarization contributions as effective radiative
corrections. Having derived the general formula for the
effective self-energy in first-order perturbation theory we
are now ready for specific applications. To demonstrate
the importance of the effect and the practicability of our
approach we will calculate the contribution to the 18-
Lamb shift in hydrogenlike lead and uranium. It is the
latter which is the focus of various planned experiments
because it has the highest accessible nuclear charge. We
will use available experimental data for the various nu-
clear excitations taken into account. The model calcu-
lation for a superheavy system will representatively il-
lustrate the general features and the increase of nuclear-
polarization effects for large Z.

A. Some numerical details

The practicality of solving Eq. (53) for the energy shift

may be best shown by a brief discussion of the main as-

pects encountered with the numerical evaluation. The
general procedure will be the following: The contribu-
tion of each single nuclear excitation (with multipolarity

L) to the energy shift (53), denoted by AE „&, has to be
calculated separately. For a given type of nuclear excita-
tion (vibrations, rotations, giant resonances) with mul-

tipolarity L we first have to compute the radial matrix
elements (vr

~
FI,

~
Ezt) between the considered electron

bound state
~

ve) and the intermediate continuum state

~
Ezq) with the radial function Fl. of the correspond-

ing propagator. The allowed values for Kq follow from
the selection rules implied by (50). The dependence of

[(vtc
~

FL, (
Elr, q)[ on the energy E of the continuum

state will tell us how far we have to integrate to ensure
convergence. The resulting quantities M+„~„(the tilde
indicates that we neglect the contribution from the sum-
mation over the bound states) depending on the excita-
tion energy EL, have then to be multiplied with the corre-
sponding B(EL) values. In a last step one has to perform
the summation over all intermediate angular momentum
quantum numbers K~ to obtain the contribution AE„„&
for a given nuclear multipole I.

To begin with, let us compare the radial functions I"I,
in the case of vibrations (rotations) (see Fig. 1) and gi-

FIG. 1. Radial functions for collective vibrations and ro-
tations (L = 0, dashed line; L = 2, solid line; L = 3, dash-
dotted line). FL, (2L + l)Rp /4s is plotted.
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FIG. 2. Radial functions for giant resonances (L = 1, solid
line; L = 2, dashed line; L = 3, dash-dotted line). Xr, (2L +
l)I4 /4a is plotted.

ant resonances (see Fig. 2). As a common feature of
both types of functions they exhibit a pronounced max-
imum near the nuclear surface. Strictly speaking, while
the maximum is located at r = Ro in the case of sur-
face vibrations it is slightly shifted towards the interior
of the nucleus in the case of giant resonaces. They both
decrease with the same power law r & + & outside the
nucleus. It is exactly this decrease of I"I. which addition-
ally supports convergence of the radial matrix elements.
Even if one would like to calculate the energy shift of
higher bound states a suf5ciently large integration inter-
val is found to be 0 & r & r „104fm . We perform
the integration using a Gauss-I egendre routine with ad-
justable number of grid points. For increasing continuum
energy the corresponding radial functions gz„, and fz„,
oscillate strongly. To ensure a sufBcient accuracy even
for high continuum energies the radial integration is de-
signed according to the following scheme: We divide the
total interval I = [O, r „] into three principal intervals
Iy —[0, Rp], I2 —[Rp, rp] (with r p - 100 fm), and
I3 —[rp, r „].Regarding the fact that the functions Fl,
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have their pronounced maximum near the nuclear su r-
face which we like to represent well, the first two inter-
vals cover the interior and the near outside region of the
nucleus. The exterior region I3 is divided into a num-

berr

of N subintervals of equal size where N can be large
depending on the energy of the continuum state. Per-
forming the integration over each subinterval using again
a Gauss-Legendre routine one may now determine N by
the requirement of a minimum number of grid points per
half oscillation of the continuum state. Proceeding in
that way it is possible to achieve an accuracy for the
matrix element (v~

~
FI

~
E~r) of about 10 up to

continuum energies E 750 MeV.
As the next step towards the integration over contin-

uum energies we have to investigate the energy dep en-
dence of the matrix elements squared, ((vK ) Eg

~ Etc') )

An extensive analysis of such matrix elements reveals
that they all display similar characteristic features. As a
function of E they show an oscillatory behavior which be-
comes strongly suppressed with increasing ~E~ . Figure
3 displays a typical matrix element in connection with
quadrupole vibrations in 82 Pb. It has a dominant maxi-
mum for positive continuum energies at E 50 MeV, i.e.,

the main contribution arises due to virtual excitations
into the unoccupied electron continuum. Additionally
there is a less pronounced maximum (and also smaller
in magnitude) in the negative-energy continuum. The
basic character of the energy dependence can be under-
stood qualitatively from the fact that, roughly speaking,
the matrix elements (vz

~
FL,

~
E lcr) are Fourier-Bessel

transforms of the radial functions Fg . The oscillations
are due to the strongly localized peaklike structure. De-
tailed studies support the expectation that the position
of the maximum remains almost at the same position
even for higher mul tip oles I and for larger values of Z .
Its magnitude, of course, increases with Z.

Compared to these extrema the others appearing for
large ~E~ are strongly damped and thus of minor im-

portance. In order to convince ourselves we calculated

I
~ I ~ I ' I ' I ' I ' I

matrix elements up to continuum energies ~E~ 750
MeV. A semilogarithmic plot (see Fig. 4) of a typical
matrix element over the considered energy range reveals
a suKciently rapid decrease in magnitude. Usually we
found convergence of the energy integration (performed
by means of a Gauss-Legendre routine) for energies (E~
less than 350 MeV. Note that in addition the energy de-
nominators in JH, „I„ improve the convergence. Fixing

VIC Ky

the upper integration limits at ~E~ 350 MeV ensured
a relative accuracy up to 10 . It should be mentioned
that corresponding matrix elements calculated with the
function T~ for giant resonances show the same qual-
itative features because of the similarities between the
functions Fg and

Based on these feasibility studies we conclude: The di-
rect evaluation of the self-energy (53) using an eigenfunc-
tion decomposition of the electron propagator S~ is prac-
tical. Some efFort has to be spent in performing the radial
integration with sufficient accuracy for large continuum
energies. The sp ecific form of the structure functions Fg
supports convergence of both the radial and the energy
integration. In addition, they guarantee that contribu-

tionss

from higher multip oles become increasingly less im-
portant. As a consequence also the absolute convergence
of the summation over angular momenta is ensured. In
view of the properties implied by the effective propaga-
tor 'Vpp the evaluation of the effective self energy in the
manner proposed here is quite different from the situa-
tion encountered for the usual @ED self-energy, where
the energy integration is logarithmically divergent ~

B. Nuclear-polarization contribution
to the Lamb shift in lead and uranium

Vfe now turn the discussion to the calculation of the
effective self-energy shift of the 18 bound state in hydro-
genlike 82 Pb and 92 U. Both nuclei have well-established
collective excitation modes. While the first is a candidate
for a collective nuclear vibrator the latter allows one to
study the effect of low-lying rotational states. To check
our formalism let us first look at pure model calculations

2.0
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where we also use the analytical (model dependent) ex-
pressions for the B(EL) values. We simply consider the
contributions LE» for vibrational modes as a represen-
tative example. This gives a first insight about the upper
bound for the order of magnitude as well as the system-
atic dependence on the multipolarity L. The results for
virtual monopole and quadrupole excitations for Z = 82
and 92 are shown in Figs. 5(a) and 5(b), respectively.
As expected, the contributions LE&, grow with increas-
ing nuclear charge Z but decrease with increasing multi-
polarity. The systematic increase of the effect for small
excitation energies indicates the importance of including
low-lying collective excitations. We therefore expect the
energy shift to be larger in uranium than in lead. Model
calculations performed in the case of giant resonances
show similar dependences.

Let us now brieAy comment on the more realistic
results obtained for the nuclear-polarization effect on
the 1s-Lamb shift based on experimantal values for the
transition energies and the reduced transition probabil-
ities. In the case of 82 Pb we calculated the contribu-
tions caused by virtual excitation of the following modes:
(a) the collective quadrupole excitation (2+ state) at
E&' ——4.086 MeV and the low-lying octupole excitation
(3 state) at Es' ——2.615 MeV, both with experimental
B(EL) values;2 (b) the giant quadrupole resonance at
E& 12 MeV again with empirical data. For com-
pleteness we also calculated the contribution due to the
monopole vibrational state at Eo ——13.5 MeV and the
dominant giant dipole resonance at E&G = 13.7 MeV
where the B(EI) values have been taken from Ref. 25.
The results are displayed in Table I. They are in convinc-
ing agreement with values obtained earlier. 8

We now turn to 29~&sU where we can study the effect
of low-lying rotational states. The following E2 transi-
tions have been taken into account: (a) the transition
2G+s ~ 0G+s within the ground-state band (I~ = 0);
(b) the transition between the 2+ state in the y band

(I& = 2) and the 0G+s state. This calculation is again
based on experimental values for the reduced transition
probabilities. The results are given in Table II. It con-
tains additional results of a model calculation estimat-
ing the contributions of the giant dipole and the giant
quadrupole resonance, respectively. The energy shift due
to virtual excitation of the 2+ rotational state of the
ground-state band obviously dominates. It is about two

QJ 0.1 =

0.1

I I I I I I

1

EL (MeV)

I I I I I I I I

0.1 =

EL (MeV)

FIG. 5. (a) Contributions b,Ei,,&
(g = 82, El.) for I = 0

(solid line) and L = 2 (dashed line); (b) the same as in (a)
for Z = 92.

)
gENP

~EQED

' 4x 10 for Pb

2x 10 for U.
(54)

At that point let us only comment on the inhuence of

orders of magnitude larger than the one caused by the
E2 transition in 8& Pb, a fact which is not surprising in
view of the large differences in the corresponding B(EL)
values. One should again incorporate the contributions
arising from giant resonances. Let us mention that for
the type of collective excitations considered here the re-
sults do not significantly depend on the explicit form of
the functions I"I,.

If we compare the nuclear-polarization contribution
with the @ED Lamb shift we find

TABLE I. Energy shift of the lsqg2, 2sqg2, and 2pqgq state due to various collective excitations
in qz Pb. AE is given in units of meV.

Er, (MeV)

Ep ——13.5

E2 ——12.0E"' = 4.086
E3' ——2.615

B(EL;L ~ 0) (units of e b )

0.199
0.072
0.106
0.060
0.096

23.7
47.0
16.9
8.0
5.7

f AE„/
4.1
8.1
2.9
1.4
0.9

0.3
0.7
0.2
0.1
0.1
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TABLE II. Energy shift of the 18&g2, 28&y2, and 2pzg2 state due to low-lying rotational states
and due to giant resonances (GR) in 9~ U. EE is given in units of IneV.

transition

GS GS
+ +

oas+ +

GR (L= 1)
GR(L=2)

0.0411
1.0583
13.0
10.0

B(EL;L ~ 0) (units of e b )

2.38
0.025
0.135
0.195

808.0
7.7

195.1
68.4

151.8
1.4

36.6
12.9

17.5
0.2
4.2
1.5

the rotational state on the 281~2-2p1g2 Lamb shift in ura-
nium. Nuclear-polarization efFects tend to reduce the 2s-
2p Lamb shift. The calculation reveals that a reduction
of about 0.2% of the total 2s-2p Lamb shift is already
due to the 2+-rotational excitation.

II1 silInIIial'y we obtained for sq Pb AE(lsi(2) = 101.3
meV, AE(2si~q) = 17.4 meV, and AE(2JII~2) = 1.4
meV. Similarly we computed for P2 U b, E(lsi~q)
1079.2 meV, EE(2sI~2) = 202.7 meV, and EE(2pI~2) =
23.4 meV. Please note that the present numbers deviate
slightly from those published in Ref. 13. The level shift
for the 2p3~2 state is completely negligible. The uncer-
tainty in the quoted energy shifts caused by the nuclear
polarization is more di%cult to estimate compared with
radiative corrections in quantum electrodynamics. The
numerical error in our computational treatment which is
assumed to be below the 1% level is of minor importance
compared with the uncertainty in nuclear parameters,
e.g. , the nuclear transition strengths. Only the dominant
nuclear levels have been taken into account in our eval-
uations while the majority of states was neglected. Fur-
thermore, we disregarded the spreading width of giant
resonances. In average we assign a typical error of 25%
to the final energy corrections for the considered electron
bound states.

C. Estimate for nuclear-polarization efFects
in superheavy quasiatoms

Heavy-ion collisions provide the opportunity to study
quantum electrodynamical efFects in extremely intense
electromagnetic fields. During such collisions quasi-
atomic states are formed where an electron experiences
the strong external field of the united charge Z = Zy +Z~
of projectile and target nucleus. ' In collisions slightly
above the Coulomb barrier both nuclei are supposed to
form a short-living ( 10 21 sec) compound system.
We now estimate the order of magnitude of nuclear-
polarization corrections to the strongly bound quasi-
atomic 18 state by means of a simplified static model
calculation for a system with united charge Z = 170. We
note, however, that the following calculation based on the
perturbative treatment as discussed earlier may be an un-
realistic description of the situation for several reasons.
A first concern may be that the perturbative treatment is
no longer adequate in external fields where the coupling
constant Zo. & 1. The strongly bound electron is local-
ized near the nuclei so that one cannot neglect possible

distortions of the intrinsic nuclear dynamics. A second
concern lies in the absence of detailed knowledge about
the internal degrees of freedom of short-lived nuclear sys-
tems and that the static description has its limitations.
Despite these uncertainties we assume that the follow-

ing calculation provides a rough estimate of the possible
magnitude of nuclear-polarization effects in superheavy
quasiatoms.

To proceed let us assume that the collective excitations
of the superheavy composite system may efFectively be
described by monopole or quadrupole shape oscillations.
Vfe assume an equilibrium radius Ro of about 10 fm. In-
stead of deriving a more sophisticated expression for the
efFective propagator in the framework of the dynamical
collective model proposed by Hess and Greiner, 2s we will
use the effective propagators given in Eqs. (27) and (45),
respectively.

Calculating first the radial matrix elements one finds
a drastic increase of about a factor 10 for matrix ele-
ments such as ((ls (

I"I, [ Exi)( . The reason for this
is the fact that the 18 state is now strongly localized
near the nuclei with the large nuclear charge number Z.
Otherwise one recovers almost the same energy depen-
dence as in the case of heavy atoms discussed previously
(see Fig. 4). Having performed the integration over con-
tinuum energy the resulting quantities M~i, „can be

S l/2l Kl
treated as a function of the unknown excitation energies.
The time scale involved in the problem suggests possible
excitation energies larger than 1 MeV. However, consid-
ering the M~ as a function of EI, they turn out1s,/~l&&

to be only slowly varying functions of the excitation en-
ergy (see Fig. 6). Thus it seems reasonable to introduce
an average value M+I, ,„(EL,) to eliminate this weak

18&/&LKz

dependence on the unknown excitation energies. The re-
maining dependence of the energy shift is governed by
the reduced electric transition probabilities of this com-
posite system. Figure 7 shows the result for the energy
shift due to monopole and quadrupole excitations as a
function of the unknown B(EL) values.

Also in this case the monopole vibrations seem to dom-
inate. Our calculation yields a total possible energy shift
of the quasiatomic 18 state of the order of about 1 keV.
We conclude that the major reason for this increase of
the efFect is due to the increase of the radial matrix el-
ements. Our result, based on the perturbative approach
does not indicate any significant modification of the value
for the critical charge Z, at which the 1s states exceed
twice the electron rest mass.
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FIG. 6. Energy dependence of P A4~, ~„as a func-

tion of the excitation energy Er, for I = 0 (solid line) and
I = 2 (dashed line).

IV. SUMMARY

We have presented a systematic approach to the treat-
ment of the effects of nuclear polarization in analogy to
the usual QED radiative corrections. Inspired by the no-
tion that a nucleus acts like any other polarizable medium
we have utilized the concept of an efFective photon prop-
agator with nuclear-polarization insertions. Explicit ex-
pressions for the modification of the photon propagator
have been derived in the case of virtual collective nu-

clear excitations like surface vibrations, rotations, and
giant resonances. The structure of the effective propaga-
tor turns out to be fairly model independent in the sense
that it depends only on observables like excitation en-
ergies and the corresponding reduced electric transition
probabilities.

Based on the Tomonaga-Schwinger equation we have
deduced the energy shift of atomic levels. Performing
a perturbation expansion one obtains the correction due
to nuclear polarization as part of the effective radiative
corrections. To lowest order one 6nds an efFective self-
energy and a vacuum polarization diagram containing
effective photon lines. When evaluating the self-energy
one recovers the terms usually evaluated in the spirit
of Schrodinger perturbation theory. Besides these terms
we derive an additional vacuum contribution as a conse-
quence of our field theoretical approach which is absent in
calculations performed earlier. The nuclear-polarization
contribution arising from an analogous vacuum polariza-
tion diagram has not been calculated. However, in the
case of a nucleus which is characterized by a spherical
ground-state charge distribution the induced vacuum po-
larization charge density is, to lowest order, also spherical
sylrsmetric. Thus it can only couple to intrinsic nuclear
monopole excitations, while the interaction with higher
collective multipole excitations vanishes. Here, we con-

O. 01 0.1 1 10 100

B(EL) (units of e b )

FIG. 7. Contnbution of nuclear polarI2, ation to the energy
shift of the quasiatomic 1sqg2 state for Z = 170 as a function
of the unknown B(EI) values (I = 0, solid line; I = 2,
dotted line).

sidered exclusively the effective self-energy.
In particular, we were interested in its contribution

to the Lamb shift of K-shell electrons. We found a fair
agreement with results obtained in Ref. 7 for 82 Pb. As
a second application we calculated the energy shift in

92 U in order to investigate the efFect of low-lying rota-
tional states. On the basis of our results we conclude
that in uranium polarization effects caused by these col-
lective modes will not be negligible in experiments with
extremely high precision. Each nuclear excitation con-
tributes additively to the total energy shift. One may
expect a total energy shift of about O. l eV in 82 Pb while
nuclear-polarization effects in 9~& U yield a correction of
about 1 eV. The latter should be compared with the to-
tal ls-Lamb shift of 458 eV in uranium. The effect of
nuclear polarization also decreases the 2s-2p Lamb shift
by about 0.2% in uranium. The fact that uncertainties
due to nuclear polarization enter at the 0.2% level may
indicate that they become relevant in future Lamb-shift
experiments aiming at utmost precision tests of quantum
electrodynamics.

The scaling of nuclear-polarization effects when calcu-
lated perturbatively does not seem to change significantly
even in the case of extremely intense fields in superheavy
quasiatoms. Our rough estimate of its contribution to
the 1s-binding energy confirms this. However, we should
be aware of the nonperturbative character of nuclear-
polarization effects in strong fields which requires in prin-
ciple a more sophisticated iterative solution of the Dyson
equation. The exact knowledge of nuclear-polarization
effects would be valuable for the analysis of striking mea-
surements which may further deepen our understanding
of QED in strong Coulomb fields.

'Permanent address: Department of Physics, Duke Univer-
sity, Durham, NC 27706.
P. J. Mohr, At. Data Nucl. Data Tables 29, 453 (1983).
W. R. johnson and G. So%, At. Data Nucl. Data Tables

33, 405 (1985).
G. Soff and P. J. Mohr, Phys. Rev. A 38, 5066 (1988).
W. Greiner, Z. Phys. 164, 374 (1961).
W. Pieper and W. Greiner, Nucl. Phys. A109, 539 (1968).



5866 PLUNIEN, MULLER, GREINER, AND SOFF 43

E. Boric and G. A. Rinker& Rev. Mod. Phys. 54, 67 (1982).
B. HofFmann, G. Baur, and J. Speth, Z. Phys. A 315, 57
(1984).
B. HofFmann, G. Baur, and J. Speth, Z. Phys. A 320, 259
(1985).
W. Pieper and W. Greiner, Z. Phys. 218, 327 (1969).
B. Miiller, J. Rafelski, and W. Greiner, Nuovo Cimento A
18, 551 (1973).
M. Gyulassy, Nucl. Phys. A244& 497 (1975).
G. SofF, P. Schliiter, B. Miiller, and W. Greiner, Phys. Rev.
Lett. 48, 1465 (1982).
G. Plunien, B. Miiller, W. Greiner, and G. Soft, Phys Rev.
A 39, 5428 (1989).
G. Plunien, Gesellschaft fiir Schwerionenforschung Report
No. GSI-89-17, ISSN 0171-4546, 1989.
W. H. Furry, Phys. Rev. 81, 115 (1951).
M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).
S. S. Schweber, An Introduction to Relatieistic Quantum
Field Theory (Harper ltc Row, New York, 1961).
G. C. Wick, Phys. Rev. 80, 268 (1950).
J. M. Eisenberg and W. Greiner, Nuclear Models (North-
Holland, Amsterdam, 1987).

A. Bohr and B. R. Mottelson, Struktur der Atornkerne
(Akademie-Verlag, Berlin, 1980).
E. M. Rose, Relatiuistische Elektronentheorie (BI,
Mannheim, 1971).
A. I. Achieser and W. B. Berestezki, Quantenelektrody
narnik (Harry Deutsch, Frankfurt, 1962).
A. M. R. Joye, A. M. Baxter, M. P. Fewell, D. C. Kean,
and R. H. Spear, Phys. Rev. Lett 38, 807 (1977).
J. Barrette, N. Alamanos, F. Auger, B. Fernandez, A.
Gillibert, D. j. Horen, j. R. Been, F. E. Bertrand, R. L.
Auble, B.L. Burks, J. Gomez del Campo, M. L. Halbert, R.
O. Sayer, W. Mittig, Y. Schulz, B. Haas, and J. P. Vivien,
Phys. Lett. B 209, 182 (1988).
G. A. Rinker and J. Speth, Nucl. Phys. A306, 360 (1978).
V. P. Varshney, K. K. Gupta, A. K. Chaubey, and D. K.
Gupta, Can. J. Phys. 60, 1461 (1982).

"W. Greiner, B. Miiller, and J. Rafelsk, Quantum Electrody
namic of Strong Fields (Springer-Verlag, Heidelberg, 1985).
W. E. Meyerhof, Science 193, 839 (1976).
P. O. Hess and W. Greiner, Nuovo Cimento A 83, 76
(1984).


